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Lp Norm Back Propagation 
Algorithm for Adaptive Equalization 

Sammy Siu, Ching-Haur Chang, and Che-Ho Wei 

Abstmt-The I ,  norm back propagation algorithm for perceptron 
based adaptive equalization is analyzed taking account of possible nu- 
merical problem encountered when p < l. Two methods are proposed 
to overcome the numerical problem. Computer simulations indicate that 
simultaneous improvement in convergence rate and bit-error-rate @ER) 
performance can be achieved by using p < 2. 

I. INTRODUCTION 

In recent years, neural network has emerged as a powerful tool for 
nonlinear adaptive filtering [ I]-[3]. The algorithm based on stochastic 
gradient with l:! norm error criterion is often used in training the 
neural network. It is known that the /:! norm gives equal weights for 
all errors during the weight updating process and may result in a slow 
convergence. The use of I, norm with p < 2 gives small weights to 
large errors and hence reduces the influence of aberrant noise [4]-[9], 
while it gives large weights to small errors. This property can be used 
to improve the tracking capability of the network. Taking account of 
possible numerical problem for p < 1, the I, norm back propagation 
algorithm with application to adaptive equalization is analyzed in 
this paper. Two methods are proposed to overcome the numerical 
problem. 

11. ANALYSIS OF THE L p  NORM BACK PROPAGATION ALGORITHM 

Consider a back propagation model of an m-layer perceptron 
network with m E { 1 , 2 . .  . . , M}, t z (n)  being the ith desired 
signal, and ~ l ! ~ ) ( n )  being the ith estimated signal at the output 
layer [lo], [ I  I]. Then the I, norm error function 191 is given as 
E ( n )  = p-’ E, ItJ(n) - t ~ i ~ ) ( n ) ( ~  where the factor p-’ is padded 
for mathematical convenience. Hereafter, le,(n)l is used to stand for 
l t z ( p ) - ~ ! M ) ( n ) l  for simplicity in our later expressions. The ith error 
signal for the output layer is then given as 

where ~ : ( ’ ~ ) ( n )  denotes the derivative of v!”)(n). If the sigmoid 
function sed is f(x) = (1 - e - = ) / ( l  + e-’), then ~ : ( ~ ) ( n )  = 
(1  - u : “ ~ ~  (n))/2.  Q. ( I )  indicates that changing the power metric p 
rescales le,(n)l in 6,(”)(n). Fig. 1 depicts le,(n)lP-’ versus le,(n)l  
for different p. It indicates that let(n)Ip-’ gives small weights for 
large le,(n)l and large weights for small le,(n)l  for p < 2, and 

The algorithm then corresponds to the standard back propagation 
algorithm. For p 2 1, le,(n)lP-’ is bounded for all le,(n)l. 
However, for p < 1, le,(n)lP-’ becomes very large as l e , (n) l  is 
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Fig. I .  l e , ( n ) ( p - l  versus Ie;(n)I for different p. 

approaching zero. This may result in numerical problem during the 
weight updating process. The following two methods can be used to 
solve the problem. In Method I, le,(n)l  is replaced by 0 whenever 
lez(.)[ < 6, where 0 is a small positive value. In Method 11, p is 
switchedfrompl < 1 to 1 5 p:! 5 2 whenever le,(n)l < 0. Defining 
6!”)(n) = 6!”)(n)1,,2, then 6,(”)(n) = l ez (n) lp-z6~M)(n) .  The 
increments of the weights for the output and hidden layers are then 
written as 

and 

x s,’”’(n)w;J”)(n)v,(m-2) ( n ) ,  (3) 

where fj is the learning gain at p = 2. Similar results can be applied to 
update the threshold levels. It is seen from (2) or (3) that the effective 
learning gain can be expressed as q,(n) = fj/lez(n)l’-p. Assuming 
that t~I(~“)(n) is uniformly distributed in [-1, I ]  [I21 and t , ( n )  belongs 
to the signal set (-1, I ) ,  the effect of p on the learning gain for both 
training mode and decision-directed mode is given below. 

Training Mode: Correct decisions make le, (n) I to be uniformly 
distributed in [0, 11. In this case, EIIet(n)I”-”] = (3 - p)-’ for 
p 5 2 and E[le,(n)1”-’] = (p - 1) for p 1 2. Thus the expected 
learning gain is given as 

(4) 

where the subscript cd denotes “correct decision.” It is seen that the 
expected learning gain increases by a factor of ( 3 - p )  for p 5 2, while 
decreases by (p - 1)-l for p 2 2. Incorrect decisions make le,(n)l 
to be uniformly distributed in [ I ,  21. Therefore, E[(e,(n)12-p] = 
(3-p)-’(23-p-l) forp 5 2, E[le,(n)lp-2] = (p-1)-’(2p-’-1) 
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Fi 2. Learning gain enhancement ( & ) / f j )  as a function of p for (a) 
Method I and (b) Method II under P(e)  FZ 0. For Method 11, the value 
of p is switched t o p  = 1.0 whenever ]e;(n)I 5 O t .  

where the subscript i d  denotes “incorrect decision.” Let P ( e )  be 
the error probability. Then the average value of E[le , (n)12-p]  or 
E [ l e i ( n ) l P - 2 ]  can be found by assigning a weight of P ( e )  to that 
when incorrect decisions are made and a weight of (1 - P ( e ) )  
to that when correct decisions are made. Thus E[le t (n) l”-”]  = 
( 3  - p ) - ’ [ l  + P ( e ) ( 2 3 - P  - 2 ) ]  for p 5 2 and E [ l e , ( n ) l p - 2 ]  = 
(p - 1 ) [ 1  + P ( e ) ( 2 p p 1  - 2)I-l for p 2 2.  The average learning gain 
is then obtained as 

where the superscript t denotes “training mode.” For small P ( e ) ,  
7%’ approximates (3 - p)ij  for p 5 2 and approximates ( p  - l ) - l? j  
for p 2 2. 

number of iterations 

(b) 

Fig. 3. Learning curves for the two DFE’s using different p and SNR= 20 
dB. (a) MLP: 4 = 0.1, p = 0.05, and Ot = 0.2 for p = 0.8 (b) PPS: 
9 = 0.1, p = 0.05, and Bt = 0.2 for p = 0.6. 

Decision-Directed Mode: le, (n) 1 is uniformly distributed in [0, 1 J 
and hence the average learning gain is obtained as 

where the superscript d denotes “decision-directed mode.” 
The effect of 6’ on the learning gain for the two methods used to 

overcome the numerical problem is analyzed below. 
For Method I, le,(n)l  is uniformly distributed in [6’,1] when correct 

decisions are made in training mode and when the equalizer is 
operated in decision-directed mode, The average learning gains for 
training mode and decision-directed mode are, respectively, found 
as 

’Hereafter p l / p z  is used to denote that p is switched from p l  to p 2  
whenever \.;(.)I 5 0. 
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Fig. 4. BER performances for the two DFE’s using different 4. (a)MLP: 
Bt = 0.3, 8 d  = 1.0 for p = 0.8/1.0’, SNR = 16 dB (b) PPS: 8t = 0.2, 
€Id ,=  1.0 for p = 0.6/1.0. SNR = 18 dB. 

and 

= ( 3  - P ) (  1 - e d ) (  1 - ei-P)-lq (9) 

where the subscripts t and d denote “trainin mode” and “decision- 
directed Lode.” For small H t  or e d ,  both &! (when P(  c )  = 0) and 
&? approximate (3  - p ) g .  

For Method 11, 1 5 pz  5 2 is used when Iel(n)l is distributed 
in [ O . H ] ,  while p1 < 1 is used when le,(n)l distributed in [e, 11 
or [1,2]. Therefore, the average leaming gains in training mode and 
decision-directed mode are respectively obtained as 

and 

1,;:) = ( ( 3  - pz)-lH;-”z + ( 3  - pL)-l(l- 0 j - P ’  d ) } - ‘ U .  (I1) 

For t9-” << 1 or e:-’’ << 1, both &.) (when P(e)  = 0) and &? 
tend to (3 - p1) i j .  For = 1. rl:? becomes (3 - p z ) f j .  Defining 
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Fig. 5. BER performances for the two DFE’s as a function of SNR. (a) 
MLP: f /  = 0.1, 8 = 0.05, p = 0.8/1.0, and 81 = 0.3, 6’d = 1.0 (b) PPS: 
f /  = 0.1, $ = 0.05. p = 0.6/1.0, and et = 0.2, 8 d  = 1.0. 

& j / f j  as the learning gain enhancement, Fig. 2 depicts & ) / r j  as a 
function of p for the two methods. Method I1 actually reflects small 
errors to 6!”)(n), instead of limiting small errors by 8. It is therefore 
seen that &)/ i j  is larger for Method I1 than that for Method I. Also, 
both q!? and 11::) increase with decreasing 0t or @ d  for both methods. 
However, the value of 0 can only be determined empirically. 

111. COMPUTER SIMULATIONS 
Two perceptron based decision feedback equalizers (DFE) are 

employed in the simulations. One is based on a multilayer perceptron 
(MLP) with 9 neurons in hidden layer 1, 3 neurons in hidden layer 2, 
and 1 neuron in the output layer [ 2 ] ,  and the other based on a third- 
order polynomial-perceptron structure (PPS) [ 131, [14]. The channel 
chosen is of the form H ( t )  = 0.3482+0.8704z-’+0.3482z~2. The 
input to the channel is random in { - I ,  I ). The channel noise is white 
Gaussian with zero-mean. The number of taps in the feedforward 
section of the DFE is 4 and in the feedback section is 1. Fig. 3 
shows the learning curves for the two structures using different p and 
SNR = 20 dB. It indicates that both structures converge faster for 
smaller p .  Fig. 4 shows the BER performances for the two structures 
using different f j .  It is seen that substantial performance improvement 
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is obtained with increasing f j .  This is because the noise caused by 
larger 75 can be suppressed by using p < 2. Fig. 5 shows the BER 
performances for the two structures as a function of SNR. It can be 
seen that better BER performance can be achieved by using smaller 
p and this is especially true for the PPS structure. 

IV. CONCLUSION 

The l p  norm back propagation algorithm for adaptive equalization, 
taking account of possible numerical problem encountered when p < 
1, is analyzed. Two methods are proposed to overcome the numerical 
problem. Simulation results indicate that simultaneous improvement 
in convergence rate and BER performance can be obtained by using 
p < 2. 
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Closed-Form Impulse Responses of 
Discrete-Domain Multidimensional Filters 

Dave Jin and L. T. Bruton 

Abstract- It is known that useful two-dimensional (2-D) and three- 
dimensional (3-D) discretedomain recursive transfer functions may he 
designed by applying the MD bilinear transformation to the continuous- 
domain transfer functions of prototype MD inductance-resistance net- 
works. Closed-form expressions are derived for the impulse responses of 
these 2- and 3-D discrete-domain filters. 

I. INTRODUCTION 
Prototype three-dimensional (3-D) inductance-resistance contin- 

uous-domain networks, having Laplace transform transfer functions 
of the form 

have been shown [ I ]  to be useful for the design of 3-D discrete- 
domain recursive filter transfer functions by applying the triple 
bilinear transformation to (1). In particular, such filters can be used 
to selectively enhance 3-D linear trajectory (LT) and 3-D plane wave 
(PW) space-time signals. 

The demonstrated usefulness of such filters in image processing has 
motivated this work, in which closed-form expressions are derived 
for the impulse responses, h( n) (where the boldface n represents the 
integer m-tuple n1, nz, . . . , nm), of both the 2-D and 3-D LT filters. 

Closed-form expressions for h( n) are not generally available for 
MD filters, primarily because of the lack of a Fundamental Theorem 
of Algebra for multivariate polynomials’. Therefore, MD transfer 
functions cannot be expanded by the method of partial fraction 
expansion as in the I-D case. However, closed-form expressions 
are available [2] for purely jrst-order m-D 2-transform transfer 
functions. This result has led to a deeper understanding of the 
2-D stability of transfer functions obtained via the 2-D bilinear 
transformation [3]. 

The availability of algebraic expressions for h( n)  facilitates further 
research on the input-output properties of LT and PW 3-D recursive 
filters, including issues relating to MD convolution and MD stability. 
The transfer functions considered here are more general than in [2]. 
In this brief, we present the derivation for the impulse response of 
the 2-D LT filter using the method of residues. The extension to the 
3-D case is straightforward but very lengthy, and is given in [4]. 
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’ For single-variable polynomials, the Fundamental Theorem of Algebra 
allows any Nth degree single-variable polynomial to be factored into N first 
degree factors; 
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