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Abstract: A novel architecture and an enhanced 
approach to a flexible, starvation-free ATM QoS 
managing function is proposed. To meet the 
stringent timing constraint of the delay QoSs, 
both high-speed sorter and subtractor are 
exploited to sort the priority value as well as to 
process the priority value. The subtractive policy 
is used to prevent starvation and to assign the 
priority of each output queue. In addition, to 
prevent underflow of priority value and to 
process the empty queue situation, both 
renormalisation circuit and empty flag are 
exploited to perform the normalisation function. 
Simulation results show that the throughput of 
the enhanced architecture is more than 50M 
output requests per second (21.2Gbith for ATM 
cells) by using a 1 . 2 p  CMOS process. The 
proposed architecture can be cascadable, making 
it very suitable for complex QoS management. 

1 Introduction 

Broadband ISDN or B-ISDN will become one of the 
most important communication styles. By using an 
ATM technique, B-ISDN allows various applications 
to share a high-bandwidth transmission channel. One 
can predict that the applications on ATM networks 
will become more and more complex and the network 
system will provide more Quality of Services (QoSs) to 
satisfy those applications. Most of today’s ATM sys- 
tems [3-61 provide more than four QoSs. The input 
packets are usually classified into corresponding queues 
by their different delay and cell loss rate requirements. 
In some cases [6],  more QoSs are provided by ATM 
systems to meet application needs. For example, multi- 
cast cells, best effort cells. and some OAM cells can be 
formed into individual QoSs to improve system effi- 
ciency. 

The priority policy of an ATM system can be set by 
two parameters, one is timing or delay, the other is 
protection or cell loss rate. In a real ATM system, 
there is more time to process the priority policy on cell 
loss rate, because one can set the warning logic to 
detect the buffer utilisation. And when the monitor cir- 
0 IEE, 1997 
IEE Proceedings online no. 19971685 
Paper fnst received 15th July 1996 and in revised form 25th April 1997 
The authors are with the National Chiao Tung University, Department of 
Electronics Engineering, 1001 University Road, Hsinchu, Taiwan, 
Republic of Chma 

412 

cuit indicates that the buffer will overflow, one can first 
drop the low-priority cells and use the back-pressure 
signals to inform input ports for ongoing services. In a 
real ATM system such a situation will not occur twice 
in only a few cell times, so there is a longer reaction 
time to deal with the cell loss rate priority. However, 
the processes of delay priority are more critical in an 
ATM system. Whenever the output port is ready and 
there are cells in output queues, the ATM switch con- 
troller must decide which nonempty queue can access 
the output port. If the output circuits are shared by 
many output ports like the architectures of most 
shared-buffer ATM switches, the output circuits only 
have several cycles to select one queue among all delay 
QoSs of a certain output port. 

For this reason most ATM switches [3, 51 serve the 
highest priority ATM cells unless the highest priority 
queues are empty and then cells with lower priority can 
be served. The scheduling algorithm among delay QoSs 
is static. Starvation occurs when continuing higher pri- 
ority cells arrive. To prevent starvation the scheduling 
algorithm can be modified by using the ageing tech- 
nique [8] to increase the priority of suspended cells per 
certain time period. To achieve the ageing function, 
one can modify the controller of ATM switch to proc- 
ess the lower delay priority ATM cell queues once per 
certain period. However, one can predict that there are 
more kinds of applications that will be provided by 
ATM networks resulting from the fact that the ATM 
system provides more different QoSs and schedules all 
the different QoSs to share network bandwidth. As 
with the history of resource scheduling policies in com- 
puter systems, it will need a general-purpose, flexible, 
and powerful scheduling engine to solve all the schedul- 
ing problems. 

Chao and Uzun [7] proposed an architecture based 
on a hardware sorter to provide a general-purpose 
scheduling function. By using a high-speed hardware 
sorter, this architecture can achieve a performance five 
times more than needed. Indeed, the architecture pro- 
vided by them is used to perform the scheduling func- 
tion for a single port, but seems to be an overkill. We 
propose a novel architecture based on a newly devel- 
oped high-speed sorter [l, 21 to provide a high-speed, 
flexible scheduling function to aid the QoS manage- 
ment of an ATM switch controller. By modifying the 
structure of the hardware insertion sorter, the proposed 
architecture can be shared by all output ports to 
enhance overall hardware efficiency. 

2 Algorithm 

In this Section we first present an algorithm to manage 
QoSs based on sorting concept. Then an example is 
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given to see how the proposed QoS manager works to 
solve the starvation problem. In addition, we discuss 
the key parameters needed in the algorithm. 

2.7 00s management approach based on 
sorting concept 
There are usually several output queues (for each QoS) 
per output port in real ATM switches, and some out- 
put ports may use the same set of output circuits to 
reduce hardware cost [3]. Indeed, the output circuits 
are shared by all output ports in most shared-buffer 
ATM switches. If there is a high-speed hardware sorter 
which can meet speed requirement, one can use only 
one set of priority process circuit, i.e. it can be shared 
by all output ports. The data flow diagram of the pro- 
posed QoS management approach is shown in Fig. 1. 
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Fig. 1 Block diagram of proposed QoS management algorithm 

A priority pool can be used to store priority data of 
all ports. Each element of the priority data pool stores 
all QoS data for a certain port. Except the cell pointer 
and other related messages, each queue of a port needs 
a priority value and a cost to perform the scheduling 
function. The QoS data within the same entry are 
sorted by priority value. 

As the output request arrives, the ATM cell queue 
with the highest priority will be sent to the output stage 
while the others will be sent into the sorter with their 
associated ranks. The priority data and cost of each 
output queue (supposing the larger priority value repre- 
sents higher priority) will be sent to the priority 
processing element to generate a new priority value. 

The priority value of each output candidate is gener- 
ated by a priority processor using an old priority value 
and its corresponding cost. The new priority value is 
sent to the sorter to determine its new rank. After sort- 
ing, the queues of this port have been sorted based on 
priority value and written back to the priority pool 
until the next output request arrives. To further illus- 
trate the proposed scheduling algorithm, a C-like 
description is given in the Appendix (Section 9.1). 

The structure of the priority pool is shown in Fig. 2. 
Each entry of the pool stores all queues and their cor- 
responding messages. The cost is used to control the 
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accessed frequency of all queues. Because of the finite- 
word-length effect, it needs a renormalisation process 
to prevent underflow or overflow. 

port 1 

Fig.2 

. . . 
Structure of priority pool 

By choosing a good cost function and appropriate 
cost values, a starvation-free and efficient scheduling 
policy can be realised. 

2.2 Example 
Because the substraction scheme is easy to implement 
and provides an ageing function inherently, the cost 
function is chosen for the priority processor in this 
example. 

Each queue is assigned to a smaller cost value for a 
higher priority (higher access frequency) cell, because 
the small cost value implies a slow decay rate on prior- 
ity value. If we set all costs larger than 0, all priority 
values in the same port will decay continuously, so the 
queue with the lowest priority will become the output 
candidate after a certain time. Starvation can be pre- 
vented by setting all cost values larger than 0. 

Because the priority value of each queue will be sub- 
tracted by a cost value that is equal to or larger than 
zero, the renormalisation function is required to pre- 
vent underflow of the stored priority values. Renormal- 
isation of the priority values is very simple in this 
example. When a new priority value is generated, the 
new value will be compared with the associated cost 
value. If the priority value is less than the correspond- 
ing cost value, the priority value of this queue will 
become underflow next time, so the QoS data need to 
be renormalised. The renormalisation function can be 
done by setting the MSB of all priority values of the 
same port to 1. Because the output candidate is always 
with the highest priority value, the cost value must be 
selected less than 2p-2 (priority value is a P-bit integer) 
to ensure that all priority values in this output port are 
less than 2 x 2p-2 = 2p-1 wh en renormalisation occured. 
Then the MSBs of all priority values are equal to 0, 
implying that the priority rank of each queue still 
remains unchanged. 

MSB + LSE 

I 
empty normalise 1 flag 1 bit 1 priority value other information 

I I to be compared 

Data format of input bus to sorter Fig.3 

After the switch is initialised, or the last cell of a 
queue has been sent to the output stage, the queue 
becomes empty. No matter what priority the empty 
queue is, if there are no cell in those queues, it is not 
necessary to consider their output priorities. For this 
reason, an empty flag is set to the MSB of the input 
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data in the sorter. Whenever the output stage finds a 
queue is empty, the priority value will bypass the sub- 
tractor and the empty flag will be set to 0. For those 
queues that are not empty, their empty flags are equal 
to 1, and they have higher priority than other empty 
queues. The data format of the input bus to the sorter 
for this example is shown in Fig. 3. 

When a new cell is inserted into an empty queue 
there are two methods to update its priority value. One 
method is to copy the highest priority value and insert 
this queue into the highest priority rank, and set its 
empty flag to 1. The other method is to use a routing 
network to copy the priority value of a certain rank 
and insert the queue to a dedicated rank. The former 
method is easy to implement but may give preference 
to short queues (queue which is usually empty), while 
the latter may result in extra hardware cost. With the 
former method, the first cell of an empty queue will get 
the highest priority. If the queue is usually empty the 
input cells of this queue will have higher service quality 
than they should have. 

Suppose an ATM system has four delay QoSs. The 
corresponding cost values and cell numbers of all QoSs 
in a certain output port are as follows: 
(1) delay sensitive (ds): cost value is five, the queue has 
eight cells 
(2) delay nonsensitive (dns): cost value is ten, the queue 
has nine cells 
(3) multicast cells (mc): cost value is two, the queue has 
five cells 
(4) OAM cells (OAM): cost value is one, the queue has 
four cells 
Suppose this system uses a six-bit integer to represent 
the priority value and a four-bit integer to represent the 
cost value; the initial priority value of each queue is 
assigned to 16. The detailed priority variation of this 
output port is shown in Table 1. From the Table, one 
can see the proposed algorithm can provide a flexible 
QoS managing function and prevent starvation without 
increasing extra computations. 

Table 1: Data of certain output port in QoS pool for the 
given example 

Rank 2 Rank 3 Rank 4 
Clock Rank1 
cycle (output cell) 

TO OAM:16:4 mc:16:5 ds:16:8 dns:16:9 

T I  mc:16:5 ds:16:8 dns:16:9 OAM:15:3 

T2 ds:16:8 dns:16:9 OAM:15:3 mc:14:4 

T3 dns: 16:9 OAM:15:3 mc:14:4 ds:11:7 

T4 OAM:15:3 mc:14:4 ds:l1:7 dns:6:8 

T5 OAM:14:2 mc:'E4:4 ds:11:7 dns:6:8 

T6 mc:14:4 OAM:13:1 ds:l1:7 dns:6:8 

T7 OAM:13:1 mc:12:3 ds:11:7 dns:6:8 

T8 mc: 12:3 ds:11:7 dns:6:8 OAM:13:0 

T9 ds:11:7 mc:10:2 dns:6:8 OAM:13:0 

Data format is 00s name: priorityva1ue:cell number. 
Empty flag is set to zero when queue is empty. 

2.3 Parameters assignment 
According to the example, one sees that the subtraction 
is a simple and efficient function. Indeed, every strict 
monotonic decreasing or increasing function can be an 
efficient starvation-free cost function for our proposed 
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algorithm. To discuss parameter assignment for this 
algorithm we use subtraction to be the target cost func- 
tion for easy illustration. 

The major parameters of this algorithm are cost 
value and priority value of each queue. Suppose we use 
a p-bit integer to represent priority value and a q-bit 
integer to represent cost value. As described in Section 
2.2, q must be less than p - 2 to ensure that the renor- 
malisation function can be performed correctly. The 
values of both p and q must be set as small as possible 
to save the size of priority pool. 

The analysis on cost-value assignment based on sub- 
traction is as follows: 

Suppose there are N queues in an output port, the 
cost values of them are D1, D2, ..., D,, respectively. If 
all queues are not empty, the bandwidth of a certain 
queue, (1 5 m I n) is obtained as 

2 

bandwzdth, = Lb-.- N (1) 
E& 

x=1 

The maximum delay of a certain queue, is given by 
N / - D  

delay,,, = 
x = l , x # m  

The proof of these equations is shown in the Appendix 
(Section 9.2). From these equations, we define suitable 
decrementors (or costs) for the ATM switch system. 

Because the cost values of each output port are 
stored individually, a different cost value can be 
assigned to different output ports, i.e. we apply differ- 
ent QoS policies to different ports. Thus the proposed 
algorithm provides high flexibility to ATM QoS man- 
agement. Although one can use another cost function 
to perform QoS management cost function, simulation 
results show that the performance obtained from using 
subtraction is good enough in many cases. 

3 Architecture 

To realise the algorithm discussed in Section 2, we have 
proposed a VLSI architecture based on high-speed 
sorter to perform the QoS management function. Due 
to the advantages of subtraction discussed, we choose 
the subtractor to be the priority processor. In this Sec- 
tion, we first discuss the basic architecture of this high- 
speed sorter and then show how to map the proposed 
algorithm onto the basic architecture. 

input comparator I controller I I comparator 1 
data 

control 
signal 

register register w 
controller 

register 

rank sdect .Ay-x--j 
output data 

Fig. 4 Architecrure of high-speed sorter 
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3. I High-speed sorter based on insert-and- 
delete concept 
Insertion sort is a well known software sorting algo- 
rithm, but suffers from high algorithm complexity. It 
needs ( N  - 1)(N ~ 2)/2 times of compares and moves to 
sort N inputs. By using semisystolic array architecture, 
we propose a high-speed hardware architecture [l, 21 
that can sort N inputs in N cycles and the hardware 
complexity is only proportional to specified input 
length. The high-speed sorter architecture, which is 
named ODI sorter here, is shown in Fig. 4. 

The high-speed sorter uses comparators to perform 
the parallel compare function between the data stored 
in each shift register and the input data applied to the 
common input bus. It uses the control circuit to gener- 
ate shift-right, shift-left and load signals. These shift 
registers are controlled by the signals generated from 
corresponding controllers to perform shift right, shift 
left or load. Using this mechanism as described, the 
input data can be routed to its corresponding rank in 
one cycle. The delete function can be performed by the 
same mechanism according to different control signal 
modes. 

This high-speed sorter can insert or delete an item 
during a single cycle, and can be cascaded to sort more 
items. For this reason, it is very suitable for implemen- 
tation of the priority queue mentioned. 

3.2 QoS management architecture based on 
OD1 sorter 
A block diagram of the proposed architecture is shown 
in Fig. 5 .  The key component of a complete QoS man- 
agement system is the hardware sorter. We select the 
OD1 sorter discussed to be the basic sorter architecture 
to provide a cost-effective solution. By using the OD1 
sorter to sort the priority values, the performance of 
the proposed algorithm can meet the requirements of a 
modern ATM system. 

cell input 

output stage 

priority value 

decrementor +- 
modified 

OD1 sorter 

new QoS data of port 

vput 

new priority value 
Fig. 5 Block drkgrum o j  ODI-bused QoS management architecture 

To be shared by all output ports the original OD1 
sorter must be modified to add the load function. By 
using the load function, each PE of the OD1 sorter can 
load the initial value in parallel from the priority pool. 
After the new priority of each output queue has been 
generated by the subtractor, it is inserted to high-speed 
sorter and routed to a suitable rank. It costs an extra 

data bus and some control logic to provide a load func- 
tion for each PE. The comparison between the original 
and the modified PE is shown in Fig. 6 .  
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input from output from 
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Comparison between original and modified PE Fig.6 

a PE of original OD1 sorter 
b PE of modified OD1 sorter 
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comparator 

controller 

shift 
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data in N 

comparator 

controller 

shift 
register 

I normalise 
control normalise circuit 
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Fig.7 Block diugrum of modified ODI sorter 

The renormalised function can be achieved by setting 
the normalisation bit to ‘1’ which can be realised by a 
normalisation network before the priority values are 
restored to priority pool. The block diagram of the 
modified OD1 sorter is shown in Fig. 7. 

Whenever an output request arrives, the correspond- 
ing priority data of the output port is read out from 
the priority pool. The output queue with the highest 
priority is sent to output stage, and its priority value 
and cost value processed by the subtractor. The prior- 
ity values and corresponding information of other 
queues are loaded into a modified OD1 sorter. The PE 
with the highest rank of ODI sorter must be fed with 
the maximum number when load signal is turned on. It 
causes the contents of this PE to be shifted out during 
the sorting stage and the proper ranks of queues can be 
preserved. After loading, the new priority value of out- 
put queue generated by subtractor will be inserted into 
the hardware sorter, and the new links among queues 
can be generated and restored to the priority pool. 

Indeed, the ODI sorter can route input data to its 
corresponding rank during a single cycle. By adding the 
load function it can achieve the priority sorting func- 
tion of an output port every two cycles (first cycle for 
load, the second for sort). Clock rate of the original 
OD1 sorter can reach 5OMHz in 1 . 2 ~  CMOS. It is 
expected that the throughput of the modified OD1 
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sorter can reach more than 25 M output requests per 
second (lO.GGbit/s, if each port outputs a 53-byte 
ATM cell) by using the same CMOS process. This per- 
formance is fast enough for modern ATM systems. 

The priority pool can be implemented by using 
embedded memory. If the system clock is 50MHz, a 
single-port SRAM architecture can meet the speed 
requirement of the high-speed sorter. In many cases, 
the output candidates are determined port by port. 
Therefore we can use a FIFO to realise the priority 
pool. 

The subtractor and other peripheral circuits can eas- 
ily be realised by cell-based design. They are not a crit- 
ical part of the complete system. 

4 Improved method 

As the discussion in Section 3.2, the modified OD1 
sorter need two stages to process a sort function. The 
timing bottleneck of this architecture lies in that the 
priority data must be loaded into shifter registers first 
and then read out to compare with input value on glo- 
bal input bus. The read-after-write procedure of prior- 
ity data makes it difficult to add a pipeline register. It 
needs at least two cycles to perform a priority sort. In 
addition, the synchronous shift operations in shift reg- 
isters will also result in a larger peak current and power 
consumption. 

We propose another architecture to break the timing 
bottleneck of the ODI-based architecture. By reorganis- 
ing the data flow and using multiplexers for the data 
routing function performed by shift registers in OD1 
architecture, a faster priority sorter can be obtained as 
shown in Fig. 8. 

data In 1 datain 2 A data in N 

input 
data 
from 

priority 
processor 

control 
signal 
(insert/ 
delete/ 
load) 

, -  

.. 
comparator 

- 1  

I.. 

g i  

MUX 

_c 

I I 
normalise 

control normalise circuit 

output data 
Fig. 8 Block diagram of multiplexer bused ODI sorter 

The priority data in this architecture is applied to the 
comparator directly. The new priority value of the out- 
put candidate is applied to the global input bus to com- 
pare with those priority data. Instead of using shift 
registers, the priority data is provided by the output 
bus of priority pool. It reduces one clock cycle because 
loading priority data into shift registers can be avoided. 
The sorting of priority values can be done in one single 
cycle. In addition, pipeline registers can be added in A ,  
B, C or D (as shown in Fig. 8) to enhance the system 
performance. 

The PE structure is shown in Fig. 9. The shift regis- 
ters are omitted, and three tristate buffer sets form the 
multiplexer to perform the data routing function. The 
chip area and power consumption can be reduced 
greatly by removing the register cells and their synchro- 
nous shift operations. It is estimated that the system 
performance of this enhanced architecture is double 
than the architecture proposed in Section 3.2. Based on 
previous research [I], for ATM systems with less then 
64 delay QoSs, the estimated throughput of this 
enhanced architecture is more than 50 M output 
requests per second (21.2 Gbitis) by using the same 
1 . 2 ~  CMOS process. 

from priority FIFO 

global input bus - - - - 

comparator 
to right PE 

to right PE 

output data 

Fig.9 Structure of multiplexer based ODIsortevS PE 

5 Discussion 

The QoS management algorithm and its corresponding 
VLSI architectures proposed deal with the queue level 
priority management function of the ATM switch. If 
the internal buffer of the ATM switch system is small, 
it is possible to provide the priority managing function 
of each cell in a reasonable hardware cost. For such 
architecture, one must provide a priority sorter for 
each output port. By providing the priority managing 
function at cell level, each connection is assigned to dif- 
ferent priority values in a more flexible way. 

external master/ 
input slave 

priority 

to output 
stage 

from left moduk sorter to right module 

Fig. 10 Structure of cuscuduble QoS management module 
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The basic QoS management architecture can be 
expanded to a cascadable version easily. Both priority 
pool and OD1 sorter are cascadable inherently. The 
whole system only needs a priority processor (substrac- 
tor) to process the priority value of the output candi- 
date. We use two sets of tristate buffers controlled by 
the mastedslave control signal to enable/disable the pri- 
ority processor of QoS management module. The struc- 
ture of the cascadable QoS management module is 
shown in Fig. 10. The slave mode module will disable 
the priority processor by turning off the tristate buffers 
and the PE of sorter with the highest rank will not be 
fed with the maximum number. The master mode mod- 
ule works as an original module as discussed in previ- 
ous Sections. 

There are two cascading styles of the basic module, 
one is for more QoSs per port, the other is for more 
ATM ports. Both cascading styles are shown in Figs. 
11 and 12. The basic modules can be cascaded by shar- 
ing the output bus, priority bus, normal control signal, 
and cascading the sorters to realise a large system for 
more QoS numbers per port. In this cascading style, 
shown in Fig. 11, only one module is set to master 
mode, the others are in slave mode. The system for 
more ATM ports can be realised by sharing the output 
bus and using a decoder to set the corresponding 
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Fig. 11 Block diagram of cascading QoS management systems 

module to master mode and the others are in slave 
mode as shown in Fig. 12. A more complex system 
with a larger QoS number and I/O ports can be realised 
by using these two cascading styles simultaneously. 

Compared with the Chao and Uzun approach [7] 
which uses similar architecture in a hardware sorter to 
serve a single output port, our approach can serve a 
whole system instead of a single port. The hardware 
efficiency of our approach is higher than their design. 
The comparison between these two approaches is given 
in Table 2. 

Table 2: Comparison between Chao's and the present 
authors' approaches 

Chao Present authors 

Sorting algorithm hardware insertion hardware insertion 

Shared by  1 port whole switch 

Priority processor processor su btractor 

Cascading static structure cascadable 
capa bi I ity 

sort sort 

structure 

Although the example of our architecture described 
in this paper uses a subtractor to process the priority 
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value, it can be replaced by another processing element 
to provide a more complex priority policy if necessary. 
The word length of priority value and cost value is a 
trade-off between hardware cost and precision in prior- 
ity assignment. The number of QoSs is limited by the 
word length of cost value, and the word length of pri- 
ority value must be large enough to prevent finite-pre- 
cision problem during computing priority values. If the 
word length of priority value and cost value are 
increased, the memory word length of priority sorter 
and priority pool will have to be increased too. 

6 Conclusion 

A novel architecture for ATM QoS management has 
been proposed. It provides a high-speed, cost-effective 
and cascadable solution for ATM QoS management. 
The throughput of this architecture is estimated to 
reach 50M output requests per second in 1 . 2 ~  
CMOS. Complex QoS problems can be solved by cas- 
cading QoS modules to form a more powerful system. 
In addition, this architecture can be shared by whole 
switch system, making it very suitable to be used in 
centralised switch architecture (such as shared buffer 
ATM switch). 

The OD1 sorter based architecture is very suitable to 
realise the priority queue. In applications like the ATM 
QoS manager that needs high-speed priority arbitration 
and flexible priority assignment, the OD1 architecture 
does provide a good solution. Currently a test chip 
based on the proposed architecture is under design and 
will be integrated into our shared-buffer ATM switch 
demo system. 
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9 Appendix 

9.7 
I** port P is selected to output **I 
schedule (int p); 
(struct priority-element 

C-like description for proposed algorithm 

{ int priority-value; I* priority value */ 
int cost; /* cost *I 
cell ‘“cellptr; I* cell pointer *I 

1; 
I** define N ports priority pool, each port has m 

delay QoSs **I 
struct priority-element priority-POOL[N] [m]; 
I* priority-POOL [p] [m-1] contain the queue has the 
highest priority *I 
cell-output(priority-POOL[p] [m-l].cellptr); 
I* cost-function0 reassigns the priority value through 
cost **I 
priority-POOL[p] [m-l].priority-value= 
cost-function(priority-POOL[p] [m-l].priority-value, 
priority-POOL [p] [m-l].cost); 
/** check if the normalisation function is necessary to 
be processed **I 
if (underflow(priority-POOL [p] [m-l].priority-value)~~ 
overflow(priority-POOL [p] [m-l].priority value)) 

sort (priority-POOL b]); 
1 
1” end of algorithm description *I 

9.2 Proof of eqns. I and 2 
A p-bit integer is used to represent priority value and a 
q-bit integer to represent cost value. Suppose there are 
N queues in an output port, the cost values of them are 
D1, Dz, ..., D,, respectively. For a certain time period, 
due to the normalised mechanism, suppose the output 
times of a certain queue, is equal to UID,, where U is 
a large integer. Total output times of this port is equal 
to UID,. For a certain queue, the bandwidth is 
equal to 

normalise(priority-POOL [p]); 

1 
Dln - Dm 

( 3 )  ~~ - 
N N 

x = l  x=1 
E &  

The maximum number which can be represented by a 
p-bit integer is 2 p  - 1. For a certain queue, the maxi- 
mum output time before normalisation is ( 2 p  - l)/D,. 
The maximum cell delay occurs when the priority value 
of the queue with lowest priority is closed to a normal- 
ised threshold and the other queues’ priority values are 
all less than the maximum value. Thus 

TANENBAUk: A.S.: ‘Modern operating systems’ (Prentice- 
Hall, 1992) 
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