
ar cture for AT

J .-M. Tsai
C.-Y. Lee

Indexing terms: ATM system, ISDN, Quality of service, Scheduling

Abstract: A novel architecture and an enhanced
approach to a flexible, starvation-free ATM QoS
managing function is proposed. To meet the
stringent timing constraint of the delay QoSs,
both high-speed sorter and subtractor are
exploited to sort the priority value as well as to
process the priority value. The subtractive policy
is used to prevent starvation and to assign the
priority of each output queue. In addition, to
prevent underflow of priority value and to
process the empty queue situation, both
renormalisation circuit and empty flag are
exploited to perform the normalisation function.
Simulation results show that the throughput of
the enhanced architecture is more than 50M
output requests per second (21.2Gbith for ATM
cells) by using a 1 . 2 p CMOS process. The
proposed architecture can be cascadable, making
it very suitable for complex QoS management.

1 Introduction

Broadband ISDN or B-ISDN will become one of the
most important communication styles. By using an
ATM technique, B-ISDN allows various applications
to share a high-bandwidth transmission channel. One
can predict that the applications on ATM networks
will become more and more complex and the network
system will provide more Quality of Services (QoSs) to
satisfy those applications. Most of today’s ATM sys-
tems [3-61 provide more than four QoSs. The input
packets are usually classified into corresponding queues
by their different delay and cell loss rate requirements.
In some cases [6], more QoSs are provided by ATM
systems to meet application needs. For example, multi-
cast cells, best effort cells. and some OAM cells can be
formed into individual QoSs to improve system effi-
ciency.

The priority policy of an ATM system can be set by
two parameters, one is timing or delay, the other is
protection or cell loss rate. In a real ATM system,
there is more time to process the priority policy on cell
loss rate, because one can set the warning logic to
detect the buffer utilisation. And when the monitor cir-
0 IEE, 1997
IEE Proceedings online no. 19971685
Paper fnst received 15th July 1996 and in revised form 25th April 1997
The authors are with the National Chiao Tung University, Department of
Electronics Engineering, 1001 University Road, Hsinchu, Taiwan,
Republic of Chma

412

cuit indicates that the buffer will overflow, one can first
drop the low-priority cells and use the back-pressure
signals to inform input ports for ongoing services. In a
real ATM system such a situation will not occur twice
in only a few cell times, so there is a longer reaction
time to deal with the cell loss rate priority. However,
the processes of delay priority are more critical in an
ATM system. Whenever the output port is ready and
there are cells in output queues, the ATM switch con-
troller must decide which nonempty queue can access
the output port. If the output circuits are shared by
many output ports like the architectures of most
shared-buffer ATM switches, the output circuits only
have several cycles to select one queue among all delay
QoSs of a certain output port.

For this reason most ATM switches [3, 51 serve the
highest priority ATM cells unless the highest priority
queues are empty and then cells with lower priority can
be served. The scheduling algorithm among delay QoSs
is static. Starvation occurs when continuing higher pri-
ority cells arrive. To prevent starvation the scheduling
algorithm can be modified by using the ageing tech-
nique [8] to increase the priority of suspended cells per
certain time period. To achieve the ageing function,
one can modify the controller of ATM switch to proc-
ess the lower delay priority ATM cell queues once per
certain period. However, one can predict that there are
more kinds of applications that will be provided by
ATM networks resulting from the fact that the ATM
system provides more different QoSs and schedules all
the different QoSs to share network bandwidth. As
with the history of resource scheduling policies in com-
puter systems, it will need a general-purpose, flexible,
and powerful scheduling engine to solve all the schedul-
ing problems.

Chao and Uzun [7] proposed an architecture based
on a hardware sorter to provide a general-purpose
scheduling function. By using a high-speed hardware
sorter, this architecture can achieve a performance five
times more than needed. Indeed, the architecture pro-
vided by them is used to perform the scheduling func-
tion for a single port, but seems to be an overkill. We
propose a novel architecture based on a newly devel-
oped high-speed sorter [l, 21 to provide a high-speed,
flexible scheduling function to aid the QoS manage-
ment of an ATM switch controller. By modifying the
structure of the hardware insertion sorter, the proposed
architecture can be shared by all output ports to
enhance overall hardware efficiency.

2 Algorithm

In this Section we first present an algorithm to manage
QoSs based on sorting concept. Then an example is

IEE Proc -Commun, Vol 144, No 6, December 1997

given to see how the proposed QoS manager works to
solve the starvation problem. In addition, we discuss
the key parameters needed in the algorithm.

2.7 00s management approach based on
sorting concept
There are usually several output queues (for each QoS)
per output port in real ATM switches, and some out-
put ports may use the same set of output circuits to
reduce hardware cost [3]. Indeed, the output circuits
are shared by all output ports in most shared-buffer
ATM switches. If there is a high-speed hardware sorter
which can meet speed requirement, one can use only
one set of priority process circuit, i.e. it can be shared
by all output ports. The data flow diagram of the pro-
posed QoS management approach is shown in Fig. 1.

cell input

priority pool

priority data of
other queues in

same port

r

-T
output candidate

cell input

priority
processor to

change
priority value

new priority value Y
I sort I
I I

I new priority orders of
this port

Fig. 1 Block diagram of proposed QoS management algorithm

A priority pool can be used to store priority data of
all ports. Each element of the priority data pool stores
all QoS data for a certain port. Except the cell pointer
and other related messages, each queue of a port needs
a priority value and a cost to perform the scheduling
function. The QoS data within the same entry are
sorted by priority value.

As the output request arrives, the ATM cell queue
with the highest priority will be sent to the output stage
while the others will be sent into the sorter with their
associated ranks. The priority data and cost of each
output queue (supposing the larger priority value repre-
sents higher priority) will be sent to the priority
processing element to generate a new priority value.

The priority value of each output candidate is gener-
ated by a priority processor using an old priority value
and its corresponding cost. The new priority value is
sent to the sorter to determine its new rank. After sort-
ing, the queues of this port have been sorted based on
priority value and written back to the priority pool
until the next output request arrives. To further illus-
trate the proposed scheduling algorithm, a C-like
description is given in the Appendix (Section 9.1).

The structure of the priority pool is shown in Fig. 2.
Each entry of the pool stores all queues and their cor-
responding messages. The cost is used to control the

IEE Proc.-Commun., Vol. 144, No. 6, December 1997

accessed frequency of all queues. Because of the finite-
word-length effect, it needs a renormalisation process
to prevent underflow or overflow.

port 1

Fig.2

. . .
Structure of priority pool

By choosing a good cost function and appropriate
cost values, a starvation-free and efficient scheduling
policy can be realised.

2.2 Example
Because the substraction scheme is easy to implement
and provides an ageing function inherently, the cost
function is chosen for the priority processor in this
example.

Each queue is assigned to a smaller cost value for a
higher priority (higher access frequency) cell, because
the small cost value implies a slow decay rate on prior-
ity value. If we set all costs larger than 0, all priority
values in the same port will decay continuously, so the
queue with the lowest priority will become the output
candidate after a certain time. Starvation can be pre-
vented by setting all cost values larger than 0.

Because the priority value of each queue will be sub-
tracted by a cost value that is equal to or larger than
zero, the renormalisation function is required to pre-
vent underflow of the stored priority values. Renormal-
isation of the priority values is very simple in this
example. When a new priority value is generated, the
new value will be compared with the associated cost
value. If the priority value is less than the correspond-
ing cost value, the priority value of this queue will
become underflow next time, so the QoS data need to
be renormalised. The renormalisation function can be
done by setting the MSB of all priority values of the
same port to 1. Because the output candidate is always
with the highest priority value, the cost value must be
selected less than 2p-2 (priority value is a P-bit integer)
to ensure that all priority values in this output port are
less than 2 x 2p-2 = 2p-1 wh en renormalisation occured.
Then the MSBs of all priority values are equal to 0,
implying that the priority rank of each queue still
remains unchanged.

MSB + LSE

I
empty normalise 1 flag 1 bit 1 priority value other information

I I to be compared

Data format of input bus to sorter Fig.3

After the switch is initialised, or the last cell of a
queue has been sent to the output stage, the queue
becomes empty. No matter what priority the empty
queue is, if there are no cell in those queues, it is not
necessary to consider their output priorities. For this
reason, an empty flag is set to the MSB of the input

413

data in the sorter. Whenever the output stage finds a
queue is empty, the priority value will bypass the sub-
tractor and the empty flag will be set to 0. For those
queues that are not empty, their empty flags are equal
to 1, and they have higher priority than other empty
queues. The data format of the input bus to the sorter
for this example is shown in Fig. 3.

When a new cell is inserted into an empty queue
there are two methods to update its priority value. One
method is to copy the highest priority value and insert
this queue into the highest priority rank, and set its
empty flag to 1. The other method is to use a routing
network to copy the priority value of a certain rank
and insert the queue to a dedicated rank. The former
method is easy to implement but may give preference
to short queues (queue which is usually empty), while
the latter may result in extra hardware cost. With the
former method, the first cell of an empty queue will get
the highest priority. If the queue is usually empty the
input cells of this queue will have higher service quality
than they should have.

Suppose an ATM system has four delay QoSs. The
corresponding cost values and cell numbers of all QoSs
in a certain output port are as follows:
(1) delay sensitive (ds): cost value is five, the queue has
eight cells
(2) delay nonsensitive (dns): cost value is ten, the queue
has nine cells
(3) multicast cells (mc): cost value is two, the queue has
five cells
(4) OAM cells (OAM): cost value is one, the queue has
four cells
Suppose this system uses a six-bit integer to represent
the priority value and a four-bit integer to represent the
cost value; the initial priority value of each queue is
assigned to 16. The detailed priority variation of this
output port is shown in Table 1. From the Table, one
can see the proposed algorithm can provide a flexible
QoS managing function and prevent starvation without
increasing extra computations.

Table 1: Data of certain output port in QoS pool for the
given example

Rank 2 Rank 3 Rank 4
Clock Rank1
cycle (output cell)

TO OAM:16:4 mc:16:5 ds:16:8 dns:16:9

T I mc:16:5 ds:16:8 dns:16:9 OAM:15:3

T2 ds:16:8 dns:16:9 OAM:15:3 mc:14:4

T3 dns: 16:9 OAM:15:3 mc:14:4 ds:11:7

T4 OAM:15:3 mc:14:4 ds:l1:7 dns:6:8

T5 OAM:14:2 mc:'E4:4 ds:11:7 dns:6:8

T6 mc:14:4 OAM:13:1 ds:l1:7 dns:6:8

T7 OAM:13:1 mc:12:3 ds:11:7 dns:6:8

T8 mc: 12:3 ds:11:7 dns:6:8 OAM:13:0

T9 ds:11:7 mc:10:2 dns:6:8 OAM:13:0

Data format is 00s name: priorityva1ue:cell number.
Empty flag is set to zero when queue is empty.

2.3 Parameters assignment
According to the example, one sees that the subtraction
is a simple and efficient function. Indeed, every strict
monotonic decreasing or increasing function can be an
efficient starvation-free cost function for our proposed

414

algorithm. To discuss parameter assignment for this
algorithm we use subtraction to be the target cost func-
tion for easy illustration.

The major parameters of this algorithm are cost
value and priority value of each queue. Suppose we use
a p-bit integer to represent priority value and a q-bit
integer to represent cost value. As described in Section
2.2, q must be less than p - 2 to ensure that the renor-
malisation function can be performed correctly. The
values of both p and q must be set as small as possible
to save the size of priority pool.

The analysis on cost-value assignment based on sub-
traction is as follows:

Suppose there are N queues in an output port, the
cost values of them are D1, D2, ..., D,, respectively. If
all queues are not empty, the bandwidth of a certain
queue, (1 5 m I n) is obtained as

2

bandwzdth, = Lb-.- N (1)
E&

x=1

The maximum delay of a certain queue, is given by
N / - D

delay,,, =
x = l , x # m

The proof of these equations is shown in the Appendix
(Section 9.2). From these equations, we define suitable
decrementors (or costs) for the ATM switch system.

Because the cost values of each output port are
stored individually, a different cost value can be
assigned to different output ports, i.e. we apply differ-
ent QoS policies to different ports. Thus the proposed
algorithm provides high flexibility to ATM QoS man-
agement. Although one can use another cost function
to perform QoS management cost function, simulation
results show that the performance obtained from using
subtraction is good enough in many cases.

3 Architecture

To realise the algorithm discussed in Section 2, we have
proposed a VLSI architecture based on high-speed
sorter to perform the QoS management function. Due
to the advantages of subtraction discussed, we choose
the subtractor to be the priority processor. In this Sec-
tion, we first discuss the basic architecture of this high-
speed sorter and then show how to map the proposed
algorithm onto the basic architecture.

input comparator I controller I I comparator 1
data

control
signal

register register w
controller

register

rank sdect .Ay-x--j
output data

Fig. 4 Architecrure of high-speed sorter

IEE Proc.-Commun., Vol. 144, No. 6, Decembev 1997

3. I High-speed sorter based on insert-and-
delete concept
Insertion sort is a well known software sorting algo-
rithm, but suffers from high algorithm complexity. It
needs (N - 1)(N ~ 2)/2 times of compares and moves to
sort N inputs. By using semisystolic array architecture,
we propose a high-speed hardware architecture [l, 21
that can sort N inputs in N cycles and the hardware
complexity is only proportional to specified input
length. The high-speed sorter architecture, which is
named ODI sorter here, is shown in Fig. 4.

The high-speed sorter uses comparators to perform
the parallel compare function between the data stored
in each shift register and the input data applied to the
common input bus. It uses the control circuit to gener-
ate shift-right, shift-left and load signals. These shift
registers are controlled by the signals generated from
corresponding controllers to perform shift right, shift
left or load. Using this mechanism as described, the
input data can be routed to its corresponding rank in
one cycle. The delete function can be performed by the
same mechanism according to different control signal
modes.

This high-speed sorter can insert or delete an item
during a single cycle, and can be cascaded to sort more
items. For this reason, it is very suitable for implemen-
tation of the priority queue mentioned.

3.2 QoS management architecture based on
OD1 sorter
A block diagram of the proposed architecture is shown
in Fig. 5 . The key component of a complete QoS man-
agement system is the hardware sorter. We select the
OD1 sorter discussed to be the basic sorter architecture
to provide a cost-effective solution. By using the OD1
sorter to sort the priority values, the performance of
the proposed algorithm can meet the requirements of a
modern ATM system.

cell input

output stage

priority value

decrementor +-
modified

OD1 sorter

new QoS data of port

vput

new priority value
Fig. 5 Block drkgrum o j ODI-bused QoS management architecture

To be shared by all output ports the original OD1
sorter must be modified to add the load function. By
using the load function, each PE of the OD1 sorter can
load the initial value in parallel from the priority pool.
After the new priority of each output queue has been
generated by the subtractor, it is inserted to high-speed
sorter and routed to a suitable rank. It costs an extra

data bus and some control logic to provide a load func-
tion for each PE. The comparison between the original
and the modified PE is shown in Fig. 6 .

common
input
bus 7)

comparator

controller . :
.

i shift
i registers

input from output from
priority pool priority pool

common
input ..
bus

input &put iniut ouiput
bus bus bus bus

a b
Comparison between original and modified PE Fig.6

a PE of original OD1 sorter
b PE of modified OD1 sorter

data in 1 data in 2

input
data

processor
control
(insert/
delete/ shift shift
load)

I I

....
comparator

controller

shift
registers

data in N

comparator

controller

shift
register

I normalise
control normalise circuit

J
output data

Fig.7 Block diugrum of modified ODI sorter

The renormalised function can be achieved by setting
the normalisation bit to ‘1’ which can be realised by a
normalisation network before the priority values are
restored to priority pool. The block diagram of the
modified OD1 sorter is shown in Fig. 7.

Whenever an output request arrives, the correspond-
ing priority data of the output port is read out from
the priority pool. The output queue with the highest
priority is sent to output stage, and its priority value
and cost value processed by the subtractor. The prior-
ity values and corresponding information of other
queues are loaded into a modified OD1 sorter. The PE
with the highest rank of ODI sorter must be fed with
the maximum number when load signal is turned on. It
causes the contents of this PE to be shifted out during
the sorting stage and the proper ranks of queues can be
preserved. After loading, the new priority value of out-
put queue generated by subtractor will be inserted into
the hardware sorter, and the new links among queues
can be generated and restored to the priority pool.

Indeed, the ODI sorter can route input data to its
corresponding rank during a single cycle. By adding the
load function it can achieve the priority sorting func-
tion of an output port every two cycles (first cycle for
load, the second for sort). Clock rate of the original
OD1 sorter can reach 5OMHz in 1 . 2 ~ CMOS. It is
expected that the throughput of the modified OD1

415 IEE Proc-Commun., Vol. 144, No. 6, December 1997

sorter can reach more than 25 M output requests per
second (lO.GGbit/s, if each port outputs a 53-byte
ATM cell) by using the same CMOS process. This per-
formance is fast enough for modern ATM systems.

The priority pool can be implemented by using
embedded memory. If the system clock is 50MHz, a
single-port SRAM architecture can meet the speed
requirement of the high-speed sorter. In many cases,
the output candidates are determined port by port.
Therefore we can use a FIFO to realise the priority
pool.

The subtractor and other peripheral circuits can eas-
ily be realised by cell-based design. They are not a crit-
ical part of the complete system.

4 Improved method

As the discussion in Section 3.2, the modified OD1
sorter need two stages to process a sort function. The
timing bottleneck of this architecture lies in that the
priority data must be loaded into shifter registers first
and then read out to compare with input value on glo-
bal input bus. The read-after-write procedure of prior-
ity data makes it difficult to add a pipeline register. It
needs at least two cycles to perform a priority sort. In
addition, the synchronous shift operations in shift reg-
isters will also result in a larger peak current and power
consumption.

We propose another architecture to break the timing
bottleneck of the ODI-based architecture. By reorganis-
ing the data flow and using multiplexers for the data
routing function performed by shift registers in OD1
architecture, a faster priority sorter can be obtained as
shown in Fig. 8.

data In 1 datain 2 A data in N

input
data
from

priority
processor

control
signal
(insert/
delete/
load)

, -

..
comparator

- 1

I..

g i

MUX

_c

I I
normalise

control normalise circuit

output data
Fig. 8 Block diagram of multiplexer bused ODI sorter

The priority data in this architecture is applied to the
comparator directly. The new priority value of the out-
put candidate is applied to the global input bus to com-
pare with those priority data. Instead of using shift
registers, the priority data is provided by the output
bus of priority pool. It reduces one clock cycle because
loading priority data into shift registers can be avoided.
The sorting of priority values can be done in one single
cycle. In addition, pipeline registers can be added in A ,
B, C or D (as shown in Fig. 8) to enhance the system
performance.

The PE structure is shown in Fig. 9. The shift regis-
ters are omitted, and three tristate buffer sets form the
multiplexer to perform the data routing function. The
chip area and power consumption can be reduced
greatly by removing the register cells and their synchro-
nous shift operations. It is estimated that the system
performance of this enhanced architecture is double
than the architecture proposed in Section 3.2. Based on
previous research [I], for ATM systems with less then
64 delay QoSs, the estimated throughput of this
enhanced architecture is more than 50 M output
requests per second (21.2 Gbitis) by using the same
1 . 2 ~ CMOS process.

from priority FIFO

global input bus - - - -

comparator
to right PE

to right PE

output data

Fig.9 Structure of multiplexer based ODIsortevS PE

5 Discussion

The QoS management algorithm and its corresponding
VLSI architectures proposed deal with the queue level
priority management function of the ATM switch. If
the internal buffer of the ATM switch system is small,
it is possible to provide the priority managing function
of each cell in a reasonable hardware cost. For such
architecture, one must provide a priority sorter for
each output port. By providing the priority managing
function at cell level, each connection is assigned to dif-
ferent priority values in a more flexible way.

external master/
input slave

priority

to output
stage

from left moduk sorter to right module

Fig. 10 Structure of cuscuduble QoS management module

416 IEE Proc.-Commun., Vol. 144, No. 6, December 1997

The basic QoS management architecture can be
expanded to a cascadable version easily. Both priority
pool and OD1 sorter are cascadable inherently. The
whole system only needs a priority processor (substrac-
tor) to process the priority value of the output candi-
date. We use two sets of tristate buffers controlled by
the mastedslave control signal to enable/disable the pri-
ority processor of QoS management module. The struc-
ture of the cascadable QoS management module is
shown in Fig. 10. The slave mode module will disable
the priority processor by turning off the tristate buffers
and the PE of sorter with the highest rank will not be
fed with the maximum number. The master mode mod-
ule works as an original module as discussed in previ-
ous Sections.

There are two cascading styles of the basic module,
one is for more QoSs per port, the other is for more
ATM ports. Both cascading styles are shown in Figs.
11 and 12. The basic modules can be cascaded by shar-
ing the output bus, priority bus, normal control signal,
and cascading the sorters to realise a large system for
more QoS numbers per port. In this cascading style,
shown in Fig. 11, only one module is set to master
mode, the others are in slave mode. The system for
more ATM ports can be realised by sharing the output
bus and using a decoder to set the corresponding

external input slave external input slave

, ... 1 I ; J ~ I ; ,
I outputstagebus 1 outputstagebus I
i i i

i i
I new priority I new priority I

value bus valuebus
j i
L--------- , :
I from left I from left !
i module ! module

4 p to right j to right j

module ; module 1 ; j i i normalise control I normalise control 1
C - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - l i

!

1 .

Fig. 11 Block diagram of cascading QoS management systems

module to master mode and the others are in slave
mode as shown in Fig. 12. A more complex system
with a larger QoS number and I/O ports can be realised
by using these two cascading styles simultaneously.

Compared with the Chao and Uzun approach [7]
which uses similar architecture in a hardware sorter to
serve a single output port, our approach can serve a
whole system instead of a single port. The hardware
efficiency of our approach is higher than their design.
The comparison between these two approaches is given
in Table 2.

Table 2: Comparison between Chao's and the present
authors' approaches

Chao Present authors

Sorting algorithm hardware insertion hardware insertion

Shared by 1 port whole switch

Priority processor processor su btractor

Cascading static structure cascadable
capa bi I ity

sort sort

structure

Although the example of our architecture described
in this paper uses a subtractor to process the priority

external input master

. . . .
newpriority I +I
value bus I

?

!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

from left i
module
--f

to right !
module

normalise control ----------------~------'
j

external input

decoder

I

I output stage bus output stage bus j a.......I....<

new priority
value bus

new priority
value bus

.................................
from left
module

__t

: normalise control
,

... ...
Fig. 12 Block diagram of cascading style for more ATMports

external input I

....................................... output stage
output stage bus

new priority
value bus

...............................
from left
module

--* -;
to right module i

normdiae Control i
............................... I C -

.......................................

IEE Proc.-Commun., Vol. 144, No. 6, December 1997 411

value, it can be replaced by another processing element
to provide a more complex priority policy if necessary.
The word length of priority value and cost value is a
trade-off between hardware cost and precision in prior-
ity assignment. The number of QoSs is limited by the
word length of cost value, and the word length of pri-
ority value must be large enough to prevent finite-pre-
cision problem during computing priority values. If the
word length of priority value and cost value are
increased, the memory word length of priority sorter
and priority pool will have to be increased too.

6 Conclusion

A novel architecture for ATM QoS management has
been proposed. It provides a high-speed, cost-effective
and cascadable solution for ATM QoS management.
The throughput of this architecture is estimated to
reach 50M output requests per second in 1 . 2 ~
CMOS. Complex QoS problems can be solved by cas-
cading QoS modules to form a more powerful system.
In addition, this architecture can be shared by whole
switch system, making it very suitable to be used in
centralised switch architecture (such as shared buffer
ATM switch).

The OD1 sorter based architecture is very suitable to
realise the priority queue. In applications like the ATM
QoS manager that needs high-speed priority arbitration
and flexible priority assignment, the OD1 architecture
does provide a good solution. Currently a test chip
based on the proposed architecture is under design and
will be integrated into our shared-buffer ATM switch
demo system.

7 Acknowledgment

The authors acknowledge the financial support from
both NSC (NSCS6-2221 -E009-020) and Telecommuni-
cation Laboratories (TL-86-7401) of Chunghwa Tele-
com.

References

LEE, C.Y., HSIEH, P.W., and TSAI, J.M.: ‘High-speed median
filter designs using shiftable content-addressable memory’, ZEEE
Trans. Circuits Syst. Video TechnoL, 1994, 4, (6) , pp. 544-549
TSAI, J.M.: ‘Shift register array architectures for high-speed data
sorting’. Master’s thesis, National Chiao Tung University, June
1993
KOZAKI, T.: ‘32 x 32 shared buffer type ATM switch VLSI’s for
B-ISDN’s’, IEEE J. Sel. Areas Commun., 1991, 9, (8), pp. 1239-
1247
ITOH, A., TAKAHASHI, W., NAGANO, H., KURI-
SAKA, M., and IWASAKI, S.: ‘Practical implementation and
packaging technologies for a large scale ATM switching system’,
ZEEE J. Sel. Areas Commun., 1991, 9, (8), pp. 1280-1288
GIACOPELLI, J.N., HICKEY, J.J., MARCUS, W.S., and SIN-
COSKIE. W.D.: ‘A hiph-performance self-routing broadband
packet switch architecture’, ZEEE J. Sel. Areas Commun., 1991. 9,
(8), pp. 1289-1298
McDYSAN, D.E.: and SPOHN, D.L.: ‘ATM theory and appllica-
tion’ (McGraw-Hill, 1995), chap. 10
CHAO, H.J., and U”, N.: ‘A VLSI sequencer chip for ATM
traffic shaper and queue manager’, ZEEE .I. Solid-State Circuits,
1992. 27. (11). UP. 16361643

9 Appendix

9.7
I** port P is selected to output **I
schedule (int p);
(struct priority-element

C-like description for proposed algorithm

{ int priority-value; I* priority value */
int cost; /* cost *I
cell ‘“cellptr; I* cell pointer *I

1;
I** define N ports priority pool, each port has m

delay QoSs **I
struct priority-element priority-POOL[N] [m];
I* priority-POOL [p] [m-1] contain the queue has the
highest priority *I
cell-output(priority-POOL[p] [m-l].cellptr);
I* cost-function0 reassigns the priority value through
cost **I
priority-POOL[p] [m-l].priority-value=
cost-function(priority-POOL[p] [m-l].priority-value,
priority-POOL [p] [m-l].cost);
/** check if the normalisation function is necessary to
be processed **I
if (underflow(priority-POOL [p] [m-l].priority-value)~~
overflow(priority-POOL [p] [m-l].priority value))

sort (priority-POOL b]);
1
1” end of algorithm description *I

9.2 Proof of eqns. I and 2
A p-bit integer is used to represent priority value and a
q-bit integer to represent cost value. Suppose there are
N queues in an output port, the cost values of them are
D1, Dz, ..., D,, respectively. For a certain time period,
due to the normalised mechanism, suppose the output
times of a certain queue, is equal to UID,, where U is
a large integer. Total output times of this port is equal
to UID,. For a certain queue, the bandwidth is
equal to

normalise(priority-POOL [p]);

1
Dln - Dm

(3) ~~ -
N N

x = l x=1
E &

The maximum number which can be represented by a
p-bit integer is 2 p - 1. For a certain queue, the maxi-
mum output time before normalisation is (2 p - l)/D,.
The maximum cell delay occurs when the priority value
of the queue with lowest priority is closed to a normal-
ised threshold and the other queues’ priority values are
all less than the maximum value. Thus

TANENBAUk: A.S.: ‘Modern operating systems’ (Prentice-
Hall, 1992)

418 IEE Proc.-Commun., Vol. 144, No. 6, December 1997

