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Abstract— Recent research has proposed using stream 
processors for media applications. Since a programmable 
Stream Processor could utilize various hardware micro-
architectures for diverse media applications, decision on a 
suitable micro-architectures to achieve efficiencies and 
hardware cost is critical. In this paper, a micro-architecture 
simulator for stream processor is implemented. The simulator 
evaluate the performance of media application executed on 
various micro-architectures, and then to analyze the utility 
rate of hardware and consumption of memory. By comparing 
the performance of media application executed on diverse 
micro-architectures, the optimized hardware micro-
architecture can be determined for specific application and 
suitable micro-architecture of Stream Processor can be 
implemented on later VLSI for different targeting systems. 

I. INTRODUCTION  

Media applications are characterized by large available 
parallelism [1], little data reuse and a high computation of 
memory access ratio [2].  While these characteristics are 
poorly matched to conventional micro processor micro-
architectures, recent research has proposed using streaming 
micro-architecture by fit modern VLSI technology with lots 
of ALUs on a single chip with hierarchical communication 
bandwidth design to provide a leap in media applications.  
Relative topics of recent research are Image Stream 
Processor [3], Smart Memories [4], and Processing-In-
Memory [5]. 

In order to achieve computation rates, current media 
processor often uses special-purpose [6], fixed-function 
hardware tailored to one specific application. However, 
special-purpose solutions lack of the flexibility to work 
effectively on a wide application space. The demand for 
flexibility in media processing motivates the use of 
programmable processors [6]. To bridge the gap between 
inflexible special special-purpose solutions and current 
programmable micro-architectures, stream processor 
architecture has been proposed [1] which directly exploit the 
parallelism and locality exposed by the stream programming 
model [7] to achieve high performance. Figure 1 illustrates a 
stream processor block diagram.  

Since, various stream micro-architecture with different 
ALU clusters are suitable for media applications, mapping 
multimedia applications to adequate stream programming 
model becomes essential. This paper proposed a “micro-
architecture simulator” as a software solution to evaluate the 
number of hardware needed for dedicated application. The 
proposed solution simulates performance on different virtual 
stream micro-architectures and compares the performance 
between the architectures.  By doing so, the best hardware 
organization, which has to fully optimize the usage of the 
hardware resources and reach better performance, is 
obtained. 

 
Figure 2  Stream processor block diagram 

As shown in Figure 3, for different micro-architecture, 
application can be mapped into binary stream programming 
codes according to the ISA and instruction format of 
different functional units.  Stream programming codes can be 
put into simulator to simulate the operation of which in 
stream processors, then the simulation result will be 
generated, which can be used to compare to the simulation 
result of other organization of micro-architectures and adjust 
the parameters that will affect the  organization of stream 
micro-architecture till the optimal organization of micro-
architecture is discovered.  On the other hand, simulation 
result can also be used to verify the correctness of the stream 
programming codes. The simulation results will show: (1) 
Utilization rate of functional units (2) Utilization rate of 
memory hierarchies. (3) CPU time of specific application.  
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Figure 3  Role of the micro-architecture simulator 

Up to now, the stream micro-architecture has been 
widely explored to many media applications and explicitly 
demonstrated in many references, such as 3-D polygon 
rendering [8], MPEG-2 encoding [3], stereo depth extraction 
[9], and fast Fourier transform (FFT).  In this paper, the FFT 
[10] is choose as the benchmark to simulate the performance 
for specific hardware micro-architecture and evaluate the 
performance and circuitry complexity tradeoff from different 
micro-architectures. 

The remainder of this paper is organized as following: In 
Section II, the design methodology is presented. In Section 
III, experimental results are provided and a comparison to 
conventional micro-architecture is presented. Finally, future 
work and conclusions are presented in Section IV. 

II. MICRO-ARCHITECTURE SIMULATOR 

Micro-simulator is composed of a controller, many 
arithmetic clusters where the number of the clusters will 
differ from diverse application, three-tiered memory 
hierarchy (SRF, SP, and LRF), and instruction memory.  It 
should be noted that the number of the components in the 
simulator is not fixed.  It would depend on the demands of 
diverse media applications. 

Micro-architecture simulator is used to simulate the 
operation of the stream processor and the performance of the 
hardware micro-architecture.  As shown in the flow of 
Figure 4, first, a multimedia application and then its 
hardware micro-architecture, including the number hardware 
and the memory size have to be chosen. Then, this 
application is translated into the stream programming model, 
including kernel and stream, respectively. In addition, the 
data being processed must be transformed into cluster 
instructions (stream) and then translate the cluster 
instructions into binary expression according to the 
instruction format defined by hardware. Cluster instructions 
will be copied to instruction memory through File I/O. 
Controller will fetch instruction from instruction memory 
and equally distribute these cluster instructions to cluster for 
executing.  Three kinds of registers, SRF, SP, and LRF, are 
used to save temporary results during computation process. 

 
Figure 4  Simulation flow 

A. Cluster 
Cluster includes two ALU units, two MUL units, one 

DIV unit, and one 64 32-bit register, which is used to save 
data exchange between different units in the same cluster. 
The size of SP register could vary according to the demands 
of diverse applications. The main function of the component 
Cluster is to divide the received cluster instruction into 
multiple instructions that are processable by function units 
according to the number of functional units. 

B. ALU, MUL, DIV 
Main spirits for designing ALU, MUL, and DIV are 

basically the same. The only difference between these three 
components is the bit of “Opcode” needed for expressing the 
operation in the instruction format. 

• ALU is a two stage pipeline computation unit. The 
function of ALU unit could be cataloged into three 
parts: data read, calculate, and write back. Since 
ALU requires more diverse operations, it demands 
4-bits to express. 

• MUL is a four-stage pipeline computation unit.  The 
way MUL Unit deal with instruction is the same as 
that of ALU.  The only difference is that MUL Unit 
just deal with one operation “multiple”. 

• DIV is a six stage pipeline computation unit. Again, 
the way DIV Unit treats instruction is the same as 
that of ALU. The only difference lies in the 
operations executed by DIV Unit and ALU Unit. 

C. Memory hierarchy 
• Instruction memory:  Vary with different instruction 

number and cluster length. 
• SRF, SP, LRF:  Assume each SRF, SP, and LRF is a 

sixty-four 32-bit register.  It could vary with the 
demands of diverse media applications. 

D. Mechanism of the micro-architecture simulator 
The performance simulation flow of media application in 

micro-architecture simulator should be delineated in this 
section. In this paper, FFT is selected as the simulation 
benchmark.  
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The application of Simulator can be roughly classified 
into two stages: (1) Determination of the simulation micro-
architecture of the application. This step contains a number 
of parameters setups. (2) Plugging cluster instruction 
(stream) into simulator for simulating, and performance 
estimation. 

• Parameter definition:  The number of ALU, MUL, 
and DIV in a cluster, the number of cluster, the 
number of SRF, SP, and LRF and the consumed 
clock cycles executed by every functional unit 
should be decided from hardware design, in this case 
is the timing information from EDA tools from 
matching micro-architecture. 

• Map application into dedicated binary stream 
programming codes: Based on the parameter 
definition stage, ISA of the micro-architecture and 
the instruction format of different mirco-architecture 
is decided.  As shown in Figure 5, a compiler or 
hand-coding can used to  scheduling the instructions 
of the application according  into cluster instructions, 
then the cluster instructions is mapping into stream 
programming codes that can be executed on the 
stream processor. 

• Simulation: The final stage is to load the code and 
simulate in the simulator, which contain following 
stages: (1) Load the cluster instructions saved in the 
files into instruction memory using File I/O. (2) 
Controller would fetch the cluster instructions in the 
instruction memory, and then equally distribute these 
instructions to clusters for dealing with instruction. 
(3) Cluster is used to divide the cluster instruction 
into instructions of the same number as the number 
of functional unit in the cluster, and then submit 
these instructions into ALU/MUL/DIV for 
executing. (5) Finally estimating performance 
including CPU Time, memory access times and the 
amount of each memory hierarchy level being used. 

III. PERFORMANCE EVALUATION  
In the paper, 32-point Fast Fourier Transform (FFT) is 

selected for the benchmark and translated as application into 
stream programming model to evaluate the performance of 
the micro-architecture defined.  

A. Benchmark 
The formulation of selected benchmark is shown in 

Equation 1. FFT algorism has to be mapped into stream 
programming model.  By casting media applications as 
stream programs, hardware is able to take advantage of the 
abundant parallelism, computational intensity, and locality in 
media applications. 
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Figure 5  Map the application into stream programming code 

B. Experimental set-up 
• Parameter definition:  Before simulating FFT on 

simulator, a couple of parameters for determining 
stream micro-architecture have to be defined, 
including number of function unit in a cluster, 
cluster number and required clock cycles for 
functional unit executing operation. 

• Translate FFT algorism into stream code:  As the 
simulation flow illustrated in Figure 4 shows, the 
selected media application is mapped into stream 
programming model. Therefore, FFT is translated 
into stream code for the convenience of simulating 
on simulator.  

• Data loading from main memory:  In addition to 
determining parameters mentioned above, simulator 
will in advance load the necessary memory data into 
SRF, and LRF. the memories that data consumes 
when performing FFT, i.e., the thirty-two x[n] in 
DFT, have been loaded on SRF in advance, and a 
number of indispensable parameters during 
computation have been loaded on LRF in advance, 
as well.  As an example, during operation of FFT, 
there are many mathematical formulae regarding sin 
and cosine being used.  Thus, a couple of 
corresponding values of sin and cosine will be 
loaded into LRF in advance. After the necessary 
parameters and loading for memory data are 
determined, the simulator is ready to evaluate the 
performance. 

C. Performance Evaluation  

Figure 6 shows the analysis chart of 32-point FFT 
performance evaluation.  The x-axis represents different 
stream micro-architectures, including 1-cluster, 2-cluster, 4-
cluster, and 8-cluster; while the y-axis denotes performance.  

Since the number of accessing memory hierarchy is fixed 
when executing FFT, the number of SRF being used 
increases proportionally with the number of clusters, which 
linearly increases from one to four.  However, the number of 
consumed LRF shows linear decrease.  In addition, when 
increasing the number of cluster from 4 to 8, the number of 
accessing SRF suddenly doubles and the number of 
accessing LRF show noticeable decrease, which represents 
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that data exchange between clusters, i.e., utilizing SRF to 
exchange data, becomes frequent.  On the other hand, the 
number of data exchange inside every cluster, i.e., using LRF 
to do data exchange, would decrease.  

From 1-cluster, 2-cluster, to 4-cluster micro-architecture, 
the performance all doubly increases.  However, the 
performance only shows little improvement from 4-cluster to 
8-cluster micro-architecture.  It cause huge data exchange 
from high-bandwidth LRF to low-bandwidth SRF since the 
bandwidth of LRF > SP > SRF.  In this case, the advance in 
performance does not follow that in expensive hardware. 

 Figure 7 shows the memory usage, where x-axis 
represents different level of memory hierarchy, while y-axis 
denotes memory usage in every level.  The demand for 
memory in every level does not hold close relationship 
between performances. 

The demands for SRF usage in 1-cluster, 2-cluster, 4-
cluster, and 8-cluster micro-architecture are roughly the 
same.  It does not increase with the number of clusters.  The 
capacity of SP usage for four micro-architectures is quite 
different.  However, it does not positive relation with the 
number of cluster.  The capacity of LRF would linearly 
increase with the number of cluster.  In the 3-tiered memory 
hierarchy, only the demand of LRF holds positive relation 
with cluster number. 

It could be  observed that when the number of cluster 
increase from 1 to 2 and 2 to 4, CPU Time would double, 
and the number of SRF being used shows “linear” increase 
while the that of LRF present linear decrease.  However, 
when the cluster number of the simulator goes from 4-cluster 
to 8-cluster, the progress of CPU Time is limited and causes 
large amount of SRF being used, i.e., huge data exchange 
between clusters.  The design of stream processor is trying to 
have data calculated inside cluster as possible.  When 
necessary, data would be exchanged between clusters 
through SRF.  However, the simulation results of 8-cluster 
micro-architecture do not fit our expectation.  

Therefore, 4-cluster micro-architecture has been chosen 
as the most suitable one for executing FFT in stream 
processor.  In addition, the usage of memory hierarchy is 
SRF : SP : LRF = 64 : 20 : 212, respectively. 

 
Figure 7  Performance of FFT on different micro-architecture 

 
Figure 8  Memory capacity of memory hierarchy 

IV. CONCLUSION  
This paper presented a micro-architecture simulator for 

stream processor. The simulator evaluate the performance of 
media application executed on various micro-architectures, 
and then to analyze the utility rate of hardware and 
consumption of memory. By comparing the performance of 
media application executed on diverse micro-architectures, 
the optimized hardware micro-architecture can be 
determined for specific application and its tradeoff to 
different VLSI implementation can be evaluate before the 
costly circuitry prototype implementation. 
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