
A Micro-architecture Simulator for Multimedia
Stream Processor

Fang-Ju Lin and Herming Chiueh
Department of Communication Engineering,

College of Electrical and Computer Engineering,
National Chiao Tung University, Hsin-Chu 30050, Taiwan

maggie.cm92g@nctu.edu.tw, chiueh@mail.nctu.edu.tw

Abstract— Recent research has proposed using stream
processors for media applications. Since a programmable
Stream Processor could utilize various hardware micro-
architectures for diverse media applications, decision on a
suitable micro-architectures to achieve efficiencies and
hardware cost is critical. In this paper, a micro-architecture
simulator for stream processor is implemented. The simulator
evaluate the performance of media application executed on
various micro-architectures, and then to analyze the utility
rate of hardware and consumption of memory. By comparing
the performance of media application executed on diverse
micro-architectures, the optimized hardware micro-
architecture can be determined for specific application and
suitable micro-architecture of Stream Processor can be
implemented on later VLSI for different targeting systems.

I. INTRODUCTION

Media applications are characterized by large available
parallelism [1], little data reuse and a high computation of
memory access ratio [2]. While these characteristics are
poorly matched to conventional micro processor micro-
architectures, recent research has proposed using streaming
micro-architecture by fit modern VLSI technology with lots
of ALUs on a single chip with hierarchical communication
bandwidth design to provide a leap in media applications.
Relative topics of recent research are Image Stream
Processor [3], Smart Memories [4], and Processing-In-
Memory [5].

In order to achieve computation rates, current media
processor often uses special-purpose [6], fixed-function
hardware tailored to one specific application. However,
special-purpose solutions lack of the flexibility to work
effectively on a wide application space. The demand for
flexibility in media processing motivates the use of
programmable processors [6]. To bridge the gap between
inflexible special special-purpose solutions and current
programmable micro-architectures, stream processor
architecture has been proposed [1] which directly exploit the
parallelism and locality exposed by the stream programming
model [7] to achieve high performance. Figure 1 illustrates a
stream processor block diagram.

Since, various stream micro-architecture with different
ALU clusters are suitable for media applications, mapping
multimedia applications to adequate stream programming
model becomes essential. This paper proposed a “micro-
architecture simulator” as a software solution to evaluate the
number of hardware needed for dedicated application. The
proposed solution simulates performance on different virtual
stream micro-architectures and compares the performance
between the architectures. By doing so, the best hardware
organization, which has to fully optimize the usage of the
hardware resources and reach better performance, is
obtained.

Figure 2 Stream processor block diagram

As shown in Figure 3, for different micro-architecture,
application can be mapped into binary stream programming
codes according to the ISA and instruction format of
different functional units. Stream programming codes can be
put into simulator to simulate the operation of which in
stream processors, then the simulation result will be
generated, which can be used to compare to the simulation
result of other organization of micro-architectures and adjust
the parameters that will affect the organization of stream
micro-architecture till the optimal organization of micro-
architecture is discovered. On the other hand, simulation
result can also be used to verify the correctness of the stream
programming codes. The simulation results will show: (1)
Utilization rate of functional units (2) Utilization rate of
memory hierarchies. (3) CPU time of specific application.

This research was partially supported by national Science Council, Taiwan
(Contract number: NSC95-2219-E-009-018, 95-2220-E-009-002) and
Ministry of Education, Taiwan (MoE ATU Program).

1-4244-0395-2/06/$20.00 ©2006 IEEE. 768

Architecture
decision

Stream
programming codeISA

Memory
capacity

Cluster #

FU #

simulator

Simulation
result

Performance
evaluation correctness

Figure 3 Role of the micro-architecture simulator

Up to now, the stream micro-architecture has been
widely explored to many media applications and explicitly
demonstrated in many references, such as 3-D polygon
rendering [8], MPEG-2 encoding [3], stereo depth extraction
[9], and fast Fourier transform (FFT). In this paper, the FFT
[10] is choose as the benchmark to simulate the performance
for specific hardware micro-architecture and evaluate the
performance and circuitry complexity tradeoff from different
micro-architectures.

The remainder of this paper is organized as following: In
Section II, the design methodology is presented. In Section
III, experimental results are provided and a comparison to
conventional micro-architecture is presented. Finally, future
work and conclusions are presented in Section IV.

II. MICRO-ARCHITECTURE SIMULATOR

Micro-simulator is composed of a controller, many
arithmetic clusters where the number of the clusters will
differ from diverse application, three-tiered memory
hierarchy (SRF, SP, and LRF), and instruction memory. It
should be noted that the number of the components in the
simulator is not fixed. It would depend on the demands of
diverse media applications.

Micro-architecture simulator is used to simulate the
operation of the stream processor and the performance of the
hardware micro-architecture. As shown in the flow of
Figure 4, first, a multimedia application and then its
hardware micro-architecture, including the number hardware
and the memory size have to be chosen. Then, this
application is translated into the stream programming model,
including kernel and stream, respectively. In addition, the
data being processed must be transformed into cluster
instructions (stream) and then translate the cluster
instructions into binary expression according to the
instruction format defined by hardware. Cluster instructions
will be copied to instruction memory through File I/O.
Controller will fetch instruction from instruction memory
and equally distribute these cluster instructions to cluster for
executing. Three kinds of registers, SRF, SP, and LRF, are
used to save temporary results during computation process.

Figure 4 Simulation flow

A. Cluster
Cluster includes two ALU units, two MUL units, one

DIV unit, and one 64 32-bit register, which is used to save
data exchange between different units in the same cluster.
The size of SP register could vary according to the demands
of diverse applications. The main function of the component
Cluster is to divide the received cluster instruction into
multiple instructions that are processable by function units
according to the number of functional units.

B. ALU, MUL, DIV
Main spirits for designing ALU, MUL, and DIV are

basically the same. The only difference between these three
components is the bit of “Opcode” needed for expressing the
operation in the instruction format.

• ALU is a two stage pipeline computation unit. The
function of ALU unit could be cataloged into three
parts: data read, calculate, and write back. Since
ALU requires more diverse operations, it demands
4-bits to express.

• MUL is a four-stage pipeline computation unit. The
way MUL Unit deal with instruction is the same as
that of ALU. The only difference is that MUL Unit
just deal with one operation “multiple”.

• DIV is a six stage pipeline computation unit. Again,
the way DIV Unit treats instruction is the same as
that of ALU. The only difference lies in the
operations executed by DIV Unit and ALU Unit.

C. Memory hierarchy
• Instruction memory: Vary with different instruction

number and cluster length.
• SRF, SP, LRF: Assume each SRF, SP, and LRF is a

sixty-four 32-bit register. It could vary with the
demands of diverse media applications.

D. Mechanism of the micro-architecture simulator
The performance simulation flow of media application in

micro-architecture simulator should be delineated in this
section. In this paper, FFT is selected as the simulation
benchmark.

769

The application of Simulator can be roughly classified
into two stages: (1) Determination of the simulation micro-
architecture of the application. This step contains a number
of parameters setups. (2) Plugging cluster instruction
(stream) into simulator for simulating, and performance
estimation.

• Parameter definition: The number of ALU, MUL,
and DIV in a cluster, the number of cluster, the
number of SRF, SP, and LRF and the consumed
clock cycles executed by every functional unit
should be decided from hardware design, in this case
is the timing information from EDA tools from
matching micro-architecture.

• Map application into dedicated binary stream
programming codes: Based on the parameter
definition stage, ISA of the micro-architecture and
the instruction format of different mirco-architecture
is decided. As shown in Figure 5, a compiler or
hand-coding can used to scheduling the instructions
of the application according into cluster instructions,
then the cluster instructions is mapping into stream
programming codes that can be executed on the
stream processor.

• Simulation: The final stage is to load the code and
simulate in the simulator, which contain following
stages: (1) Load the cluster instructions saved in the
files into instruction memory using File I/O. (2)
Controller would fetch the cluster instructions in the
instruction memory, and then equally distribute these
instructions to clusters for dealing with instruction.
(3) Cluster is used to divide the cluster instruction
into instructions of the same number as the number
of functional unit in the cluster, and then submit
these instructions into ALU/MUL/DIV for
executing. (5) Finally estimating performance
including CPU Time, memory access times and the
amount of each memory hierarchy level being used.

III. PERFORMANCE EVALUATION
In the paper, 32-point Fast Fourier Transform (FFT) is

selected for the benchmark and translated as application into
stream programming model to evaluate the performance of
the micro-architecture defined.

A. Benchmark
The formulation of selected benchmark is shown in

Equation 1. FFT algorism has to be mapped into stream
programming model. By casting media applications as
stream programs, hardware is able to take advantage of the
abundant parallelism, computational intensity, and locality in
media applications.

Nj
N

kn
N

N

n

eW

NkWnxkX

/2

1

0
10,][][

π⋅−

−

=

=

−≤≤⋅=∑
 (1)

Figure 5 Map the application into stream programming code

B. Experimental set-up
• Parameter definition: Before simulating FFT on

simulator, a couple of parameters for determining
stream micro-architecture have to be defined,
including number of function unit in a cluster,
cluster number and required clock cycles for
functional unit executing operation.

• Translate FFT algorism into stream code: As the
simulation flow illustrated in Figure 4 shows, the
selected media application is mapped into stream
programming model. Therefore, FFT is translated
into stream code for the convenience of simulating
on simulator.

• Data loading from main memory: In addition to
determining parameters mentioned above, simulator
will in advance load the necessary memory data into
SRF, and LRF. the memories that data consumes
when performing FFT, i.e., the thirty-two x[n] in
DFT, have been loaded on SRF in advance, and a
number of indispensable parameters during
computation have been loaded on LRF in advance,
as well. As an example, during operation of FFT,
there are many mathematical formulae regarding sin
and cosine being used. Thus, a couple of
corresponding values of sin and cosine will be
loaded into LRF in advance. After the necessary
parameters and loading for memory data are
determined, the simulator is ready to evaluate the
performance.

C. Performance Evaluation

Figure 6 shows the analysis chart of 32-point FFT
performance evaluation. The x-axis represents different
stream micro-architectures, including 1-cluster, 2-cluster, 4-
cluster, and 8-cluster; while the y-axis denotes performance.

Since the number of accessing memory hierarchy is fixed
when executing FFT, the number of SRF being used
increases proportionally with the number of clusters, which
linearly increases from one to four. However, the number of
consumed LRF shows linear decrease. In addition, when
increasing the number of cluster from 4 to 8, the number of
accessing SRF suddenly doubles and the number of
accessing LRF show noticeable decrease, which represents

770

that data exchange between clusters, i.e., utilizing SRF to
exchange data, becomes frequent. On the other hand, the
number of data exchange inside every cluster, i.e., using LRF
to do data exchange, would decrease.

From 1-cluster, 2-cluster, to 4-cluster micro-architecture,
the performance all doubly increases. However, the
performance only shows little improvement from 4-cluster to
8-cluster micro-architecture. It cause huge data exchange
from high-bandwidth LRF to low-bandwidth SRF since the
bandwidth of LRF > SP > SRF. In this case, the advance in
performance does not follow that in expensive hardware.

 Figure 7 shows the memory usage, where x-axis
represents different level of memory hierarchy, while y-axis
denotes memory usage in every level. The demand for
memory in every level does not hold close relationship
between performances.

The demands for SRF usage in 1-cluster, 2-cluster, 4-
cluster, and 8-cluster micro-architecture are roughly the
same. It does not increase with the number of clusters. The
capacity of SP usage for four micro-architectures is quite
different. However, it does not positive relation with the
number of cluster. The capacity of LRF would linearly
increase with the number of cluster. In the 3-tiered memory
hierarchy, only the demand of LRF holds positive relation
with cluster number.

It could be observed that when the number of cluster
increase from 1 to 2 and 2 to 4, CPU Time would double,
and the number of SRF being used shows “linear” increase
while the that of LRF present linear decrease. However,
when the cluster number of the simulator goes from 4-cluster
to 8-cluster, the progress of CPU Time is limited and causes
large amount of SRF being used, i.e., huge data exchange
between clusters. The design of stream processor is trying to
have data calculated inside cluster as possible. When
necessary, data would be exchanged between clusters
through SRF. However, the simulation results of 8-cluster
micro-architecture do not fit our expectation.

Therefore, 4-cluster micro-architecture has been chosen
as the most suitable one for executing FFT in stream
processor. In addition, the usage of memory hierarchy is
SRF : SP : LRF = 64 : 20 : 212, respectively.

Figure 7 Performance of FFT on different micro-architecture

Figure 8 Memory capacity of memory hierarchy

IV. CONCLUSION
This paper presented a micro-architecture simulator for

stream processor. The simulator evaluate the performance of
media application executed on various micro-architectures,
and then to analyze the utility rate of hardware and
consumption of memory. By comparing the performance of
media application executed on diverse micro-architectures,
the optimized hardware micro-architecture can be
determined for specific application and its tradeoff to
different VLSI implementation can be evaluate before the
costly circuitry prototype implementation.

REFERENCES
[1] Rixner, Scott, et al., “A Bandwidth-Efficient Micro-architecture for

Media Processing,” In Proceedings of the International Symposium
on Micromicro-architecture (December 1998), pp. 3-13.

[2] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles,
“Stream scheduling,” Concurrent VLSI Micro-architecture Tech
Report 122, Stanford University, Computer Systems Laboratory,
March 2002.

[3] U.J, Kapasi et al., "Programmable Stream Processors," Computer,
August 2003, pp. 54-62

[4] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, M. Horowitz,
“Smart Memories: A Modular Reconfigurable Micro-architecture,”
Computer Micro-architecture, 2000, Proceedings of the 27th
International Symposium on 2000, Pages161-171.

[5] J. Draper, et al, "The Micro-architecture of the DIVA Processing-in-
Memory Chip," to appear at International Conference on
Supercomputing, June 2002.

[6] Brucek Khailany, “The VLSI Implementation and Evaluation of
Area- and Energy-Efficient Streaming Media Processors,” PhD
thesis, Stanford University, June 2003.

[7] Dally W. J. et al., "Stream processors programmability with
efficiency," ACM QUEUE, March 2004.

[8] Owens JD, Dally WJ, Kapasi UJ, Rixner S, Mattson P, Mowery B,
“Polygon rendering on a stream micro-architecture,” In: Proc, of the
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2000.
23~32.

[9] William Dally et al, "Stream Processors: Programmability with
Efficiency," ACM Queue, March 2004, pp. 52-62.

[10] Ujval J, Kapasi, William J, Dally, Scott Rixner, John D, Owens, and
Brucek Khailany, "The Imagine Stream Processor," Proceedings of
the International Conference on Computer Design, Sep. 2002.

[11] http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/
fft.html

771

