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.Abstract – This work describes a vision-based 
approach to recognize scene in the indoor environment. 
The proposed method represents each scene captured 
by a Pan-Tilt-Zoom (PTZ) camera with a blob model 
using spatial probabilistic modeling. Although the 
details of the scene covered by the camera are lost, this 
model is efficient in memorizing the scene 
characteristics and is robust against image distortions. 
Furthermore, multi-view recognition is studied to 
increase the precision of scene cognition via a partial 
knowledge of the scene. The images captured in the 
same location with different view angles are collected to 
extract the scene characteristics in order to decrease 
the memory storage size for each location. The 
effectiveness of the method is demonstrated by 
experiments in an unstructured indoor environment.  

Index Terms – characteristic view, Gaussian mixture 
model, probabilistic modeling, scene cognition

I. INTRODUCTION

Scene cognition is a fundamental problem in mobile 
robot localization. It is one of the common ability of 
human but is difficult in the field of computer vision. In 
the past, many researches for mobile robot localization 
have been studied and they mainly differ in the internal 
representation of the environment. First, a geometrical 
representation of space is adopted to provide the path to be 
followed by a robot via different degrees of detail, varying 
from a complete CAD model of the environment to a 
simple graph of interconnections or interrelationships 
between the elements in the environment [1][2]. These 
geometrical approaches are based on either map matching 
or landmark detection. Most map matching systems rely on 
a good estimation of the robot location and are not suitable 
in the populated environment where the robot may collide 
with humans or other obstacles. As for the landmark 
localization systems, either artificial or natural landmarks 
are utilized to localize the robot location. However, they 
are not easy to be applied to different environments. 
Second, a topological representation of space is utilized to 
describe the environment as an adjacency graph, where the 
node of the graph corresponds to the robot’s location 
[3][4]. Although topological maps are less accurate than 

                                                          

geometrical maps, they are also less complex and easier to 
be generated and maintained than geometrical maps. 

In order to provide rich information to distinguish 
adjacent locations, the color vision camera is often adopted 
to build up the topological maps. The PTZ camera and 
omni-directional camera are two alternates used in 
capturing scenes. Although the omni-directional camera 
has a 360o view angle, it suffers from image distortion and 
occlusion. For PTZ camera, the view angle limitation 
decreases the covered area but the ability of pan and tilt 
allows the robot to capture multi scenes around a position 
to overcome the influences caused from occlusion. 
However, the dimension of the incoming sensor 
information from either omni-directional camera or PTZ 
camera is very high and needs enormous memory storage.  

Principal component analysis (PCA) is a general 
approach to reduce the dimensionality of the data space by 
describing the captured image with a feature vector that 
containing only a limited number of linear PCA features 
[5][6]. In this work, a probabilistic spatial model of the 
captured image, called a blob model, is proposed to reduce 
the memory storage of scenes. Two approaches were taken 
in modeling the probabilistic representation: the first one is 
called parametric method, which uses single Gaussian 
distribution [7] or mixtures of Gaussian [8][9]; the second 
one is called non-parametric method, which uses the kernel 
function to estimate the density function [10][11]. 
Furthermore, the concept of characteristic view, which was 
first presented in the field of object recognition [12], was 
adopted to train the scene model of a position. It is 
convenient for the mobile robot to train and update the 
scene model. 

The novelty of this work is using the blob-model to 
represent the scene in the indoor environment and 
combining the blob models around a position to a compact 
set of scene model. It can decrease the memory storage of 
scene model and improve the flexibility and robustness of 
training the nodes of the topological maps. The rest of this 
paper is organized as follows. Section II describes the 
features and the statistical learning method used in the 
spatial probabilistic modeling. In Section III, the scene 
combinational algorithm is described and the value of the 
likelihood function calculated using the features from the 
captured image is used to recognize scene in the indoor 
environment. Subsequently, experimental results are 
shown to demonstrate the performance of the proposed  
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Fig. 1 Basic workflow of the proposed framework 
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Fig. 2 5D feature vector construction

method in scene cognition. A conclusion of this work is in 
Section V. Moreover, the basic workflow of the proposed 
framework is illustrated in Fig. 1. 

II. A PROBABILISTIC SCENE MODEL IN SPATIAL DOMAIN

While humans have no difficulty in extracting 
conceptual information regarding an image, computers 
have difficulties in doing the same thing. Methods for 
conceptual level background modeling were used to derive 
the image representation, such as histogram [13], the 
Gaussian Mixture Model (GMM), Kernel Density 
Estimation, and so on. Moreover, feature selection is a key 
source of difference between different applications using 
these methods. 

A. Feature Extraction 

Many features have been utilized to extract useful 
information from the captured image, such as edge, corner, 
texture, color and shape. Among these features, color 
involves the intuitive information to represent the 
conceptual idea of an image. Therefore, pixel color and 
pixel position are utilized in this work to extract the 
conceptual idea of an image. The color space used here is 
the RGB color space, which is common for most video 
devices. To enhance the regional information of an image, 
the position (x, y) feature is combined with RGB color 
information to be the feature vector. That is, each pixel 
contains a 5D feature vector (R, G, B, x, y), which is 
shown in Fig. 2.  

B. Modeling in the Spatial Domain 

This work applies GMM to model the region 

information in an image using the 5D feature vectors (R, 
G, B, x, y). It is assumed that the density function of the 
color and position features both have Gaussian 
distributions. First, each pixel x  is defined as a d-
dimensional vector at time t (In this work, d is defined as 
5). N Gaussian distributions are used to construct the 
GMM, which is described as follows:  

N
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Next, the parameters of GMM are calculated to enable 
the GMM to match the feature vector distribution with the 
least error. The most widespread method is the maximum 
likelihood (ML) estimation. The objective of ML 
estimation is to identify model parameters by maximizing 
the likelihood function of GMM obtained from the 
training feature vectors X . ML parameters can be derived 
iteratively using the expectation maximization (EM) 
algorithm [14]. Supposing there are m  feature vectors 

mxxx ,...,, 21 (In this work, m is defined as the image size, 
320x240=76800), then the maximum likelihood 
estimation of  can be calculated via equation (2). 
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The EM algorithm involves two steps; the parameters of 
GMM can be obtained by iteratively computing the 
following equations (equations (3)-(4)): 

Expectation step: (E step) 
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ji  means the posterior probability that the feature vector 

jx belongs to the ith  Gaussian component distribution.  
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The termination criteria of the EM algorithm are as 
follows: 

a. The increment between the new log-likelihood 
value and the last log-likelihood value is below a 
minimum increment threshold. 

b. The iterative count exceeds a maximum iterative 
count threshold. 

Unsupervised data clustering is used before the EM 
algorithm iterations to accelerate the convergence. This 
study uses the K-means algorithm [15] for the clustering. 
The number of cluster is defined and then the initial center 
of each cluster is selected randomly. The suitable center 
and variance of each cluster can be estimated iteratively 
via the K-means algorithm and applied to be the initial 
mean and variance of each Gaussian component of GMM. 

III. SCENE REPRESENTATION AND COGNITION 

Although the omni-directional camera has a 360o view 
angle, it suffers from image distortion and occlusion. In 
this work, PTZ camera is adopted to capture multi-
directional image at a position to overcome the influences 
caused from occlusion. First, different directional images 
are captured at one position to represent the scene of a 
position in the training phase. Besides, multi-views can be 
utilized to recognize the scene. However, the memory 
storage of these scene models is enormous. In this section, 
the concept of characteristic view, which was first 
presented in the field of object recognition [12], was 
adopted to extract the compact set of the scene model. 
Besides, it is convenient for the mobile to train and update 
the scene model. 

A. Scene Representation via Characteristic views  

While a large number of 2D views are collected by the 
mobile robot, the scene can be described more detailed, 
but the computing time to recognize the scene is 
consequently growing due to huge searching space. 

Therefore some methods are studied to extract a minimal 
set of object views. Extracting the characteristic views 
from these 2D views is a kind of approach to obtain a 
compact set of scene views. In our previous work [16], 
three kinds of similarity measures, 1-norm, 2-norm and K-
L distance, have been applied to extract the characteristic 
views with the proposed combinational algorithm. In this 
work, K-L distance is utilized to calculate the similarity 
between blob-models.  

Suppose 10 , pp  are two probability densities, the K-L 
distance is defined as 

L
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In this work, 0p and 1p  can be calculated from the blob 
model of each image via their Gaussian mixture model, 
which is described as equation (1).  

Suppose cN 2D views are captured at a position (the pan 
angle of the PTZ camera is between p and p , and the 
tilt angle of the PTZ camera is zero, but it is easily 
extended to include tilt motion)  to train the scene blob 
model. Then rN )( cr NN 2D views are extracted as the 
set of scene model using a combinational algorithm 
described in our previous work [16]. If S  positions in the 
environment are selected as the nodes of topological maps, 
the amount of overall blob models stored in the database 
can be described as tN , where  

S

i
rt iNN

1
)(                                                                    (6) 

where )(iNr denotes the amount of blob-model at the ith

position.  

B. Multi-view Scene Cognition via ML Values 

In order to increase the robustness of the result of scene 
cognition, multi-views are captured at a location by the 
PTZ camera. Three arbitrary images 

iI ( 31 i ) of 
different pan and tilt angles of the PTZ camera are utilized 
to calculate the Maximum Likelihood values of the tN blob 
models. The first three recognized results, having the first 
three minimum Maximum Likelihood values, estimated by 
comparing the test image and the database are selected as 
the candidates to be further processed.  
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(a)

(b) 

(c)
Fig. 4. The sample of the training image, blob model and conceptual description of each scene captured in the indoor environment (Fig. 3), (a) The 

sample of captured image at each location in the indoor environment (from left to right is the position 1,2,…,11), (b) The blob model of each sample of 
captured image in (a) with 12 Gaussian distribution, (c) The conceptual description of each sample of captured image in (a), which are calculated by 

comparing the original pixel values of each captured image with its blob model. 

Fig. 5. The 11 characteristic views at the 5th position in the indoor environment.  

(a)

(b) 
Fig. 6. The sample of test images captured from the 5th position in the indoor environment, (a) the test images captured with forward and backward 

direction, and the shifted distance is backward 50cm, backward 20cm, backward 15cm, backward 10cm, backward 5cm, 0cm, forward 5cm, forward 
10cm, forward 15cm, forward 20cm and forward 50cm respectively, (b) the test images captured with left and right direction, and the shifted distance is 

left 50cm, left 20cm, left 15cm, left 10cm, left 5cm, 0cm, right 5cm, right 10cm, right 15cm, right 20cm and right 50cm respectively.

Suppose V denotes the set of recognized result, then V is 
defined as follows: 

SvjivV ijij 1,31,31},{ ,
where  
i: the index of test image 
j: the index of the order of recognition result 

Moreover, three methods are proposed here to 
estimate the final result of scene cognition. The first result 

1R  is estimated only using one captured image and the 
first minimum ML value. The second result 2R  also uses 
one captured image but all the first three minimum ML 
values are utilized to improve the robustness of the 
recognition result. The third result 

3R  uses all the three 
captured images and all their first three minimum ML 
values. The descriptions of 1R , 2R  and 

3R  are described as 
equations (7)-(10): 
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Fig. 7. The mobile robot ER1 
where  

)max(arg pp Fm    , 31 p                                         (8) 
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IV. EXPERIMENTAL RESULTS

This section describes two experiments that 
demonstrate the effectiveness of the proposed method. 
Real image sequences are acquired with the Sony EVI- 
D30 PTZ camera that mounted on the mobile robot ER1.  
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TABLE I
THE ROBUST TEST VIA POSITION VARIATIONS

Recognition Rate 
(1.0000=100%) Shift Distance and Direction 

(The number of test image) 
R1 R2 R3

0 cm (61 pictures, self-test) 1.0000 1.0000 1.0000 
Forward (61 pictures) 1.0000 1.0000 1.0000 
Backward (61 pictures) 1.0000 0.9985 1.0000 
Left   (61 pictures) 1.0000 1.0000 1.0000 5 cm 

Right  (61 pictures) 1.0000 1.0000 1.0000 
Forward (61 pictures) 1.0000 1.0000 1.0000 
Backward (61 pictures) 1.0000 0.9985 1.0000 
Left   (61 pictures) 1.0000 0.9911 1.0000 10 cm 

Right  (61 pictures) 1.0000 1.0000 1.0000 
Forward (61 pictures) 1.0000 1.0000 1.0000 
Backward (61 pictures) 1.0000 0.9940 1.0000 
Left   (61 pictures) 0.9955 0.9777 1.0000 15 cm 

Right  (61 pictures) 0.9918 0.9787 0.9967 
Forward (61 pictures) 1.0000 1.0000 1.0000 
Backward (61 pictures) 1.0000 0.9926 1.0000 
Left   (61 pictures) 0.9747 0.9553 0.9821 20 cm 

Right  (60 pictures) 0.9762 0.9568 0.9836 
Forward (61 pictures) 0.8495 0.8495 0.8554 
Backward (61 pictures) 0.8972 0.8540 0.9344 
Left   (61 pictures) 0.7526 0.7481 0.7735 

50 cm 

Right  (61 pictures) 0.8271 0.7973 0.8525 

Fig. 7 illustrates the ER1 robot equipped with the PTZ 
camera. The size of the captured image is 320 by 240. For 
demonstration, only the images captured with the pan 
motion of the PTZ camera are utilized to extract the scene 
model. However, the proposed method can also be applied 
to a combined motion via more elaborate calculation. 
Training images of 11(S=11) locations in the environment 
(Fig. 3) are obtained by rotating the camera from -30 to 30 
degrees using 1 degree increments at each location. 
Therefore, 61 images are captured at each position 
and cN is then defined as 61. In this work, each scene 
model is established with 12 Gaussian distributions 
(N=12) with the 5D feature vectors described in section II. 
Besides, the characteristic views of the scene model at 
each position are extracted using the combinational 
algorithm in our previous work [16] and the amount of the 
characteristic views at each position are all below 13 after 
combination ( 111,13)( iiNr ). The sample of the 
training images, blob models and conceptual descriptions 
of each scene captured in the indoor environment (Fig. 3) 
are listed in Fig. 4. Besides, for the sake of illustration, the 
set of the characteristic views at the 5th position in the 
indoor environment is cited as an instance and is listed in 
Fig. 5. The experiments are segmented into 2 stages, 
described as below: 

A. Experiments for robustness via position variations 

In the first experiment, a self-test is first performed by 
testing the 61 training images with the extracted scene 
model tN . Then the mobile robot moves in four directions 
(forward, backward, left and right) with five different 
distances (5cm, 10cm, 15cm, 20cm and 50cm). At each 
position, 61 test images are captured by rotating the 
camera from -30 to 30 degrees using 1 degree increments 
with no occlusion in the scene. The samples of test images 

captured at the 5th position are listed in Fig. 6, where Fig. 
6(a) shows the test images captured with forward and 
backward direction and Fig. 6(b) shows the test images 
captured with left and right direction. In Table I, the three 
kinds of results, 1R , 2R  and 3R , are all listed to evaluate the 
performance.  

From the results listed in the Table I, the recognition 
rates of the three kinds of method are all above 95% when 
the position variations are below 20cm. Besides, the third 
method 3R  has the best performance than others. It makes 
sense to base the perceptual skills used for localization on 
vision, like humans do. When a person comes into an 
unknown place, multi-directional views are captured by 
the eyes to help to recall the memory of his/her past 
experience about the unknown place. In this work, the 
same strategy is adopted to increase the robustness of 
scene cognition. 

B. Experiments for robustness via position variations 
and different level of occlusion 

During the second stage, not only position variations 
but also different levels of occlusion are considered in this 
experiment. The position variations are the same as those 
in the first experiment, 4 different directions with 5 
different distances shifted from the original S positions. 
Different obstacles are put into the covered area of the 
PTZ camera to simulate the case of occlusion, where 5%, 
10%, 15%, 20% and 50% regions are different from the 
original test image captured in the first experiment. In 
Table II, the recognition rates are also above 95% when 
the level of occlusion is less than 20% and the position 
variations are below 20cm. Even though the level of 
occlusion arrives 50% and the position variations are 
50cm, the recognition rates are still above 50%.  Besides, 
the third method 3R  still has the best performance than 
others. 

V. CONCLUSIONS

This study proposes a vision-based approach to 
recognize scene in the indoor unstructed environment. The 
effectiveness of the method is demonstrated by 
experiments in an unstructured indoor environment. The 
robustness of the scene blob model is performed via 
recognizing those test images with different levels of 
position variations and occlusion. Furthermore, the 
memory storage of the cN  training images is decreased by 
replacing the original color images with only the 
parameters of the Gaussian mixture model and removing 
the redundant training images using the concept of 
characteristic view, which was first presented in the field 
of object recognition. Although the details of the scene 
covered by the camera are lost, this characteristic blob-
model is efficient in memorizing the scene characteristics. 
Moreover, multi-view recognition strategy is applied to 
increase the robustness of scene cognition.  

These advantages permit the proposed method to be 
used in situations with limited memory size and in the  
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TABLE II
THE ROBUST TEST VIA POSITION VARIATIONS AND DIFFERENT LEVEL OF OCCLUSION

Covering Rate (1.000=100%) 
5% 10% 15% 20% 50% 

Shift Distance 
(cm) and 
Direction R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

0 cm 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 0.769 0.817

Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.797 0.775 0.809 
Backward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.794 0.763 0.809 
Left  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.794 0.779 0.806 

5

Right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.791 0.754 0.818 
Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.796 0.784 0.802 
Backward 0.997 0.979 1.000 1.000 0.997 1.000 1.000 0.997 1.000 0.997 0.996 1.000 0.785 0.738 0.802 
Left  1.000 0.993 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000 0.993 1.000 0.796 0.772 0.805 

10

Right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.999 1.000 0.770 0.747 0.817 
Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.784 0.769 0.797 
Backward 1.000 0.996 1.000 1.000 0.993 1.000 0.997 0.988 1.000 0.994 0.987 1.000 0.763 0.726 0.781 
Left  0.997 0.979 1.000 0.997 0.979 1.000 0.997 0.979 1.000 0.994 0.975 1.000 0.779 0.736 0.794 

15

Right 0.992 0.982 0.997 0.992 0.977 0.997 0.992 0.979 0.997 0.992 0.977 0.997 0.726 0.705 0.757 
Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.765 0.751 0.782 
Backward 0.999 0.987 1.000 0.994 0.982 1.000 0.991 0.979 1.000 0.988 0.976 1.000 0.733 0.711 0.748 
Left  0.976 0.960 0.987 0.979 0.970 0.993 0.975 0.961 0.979 0.975 0.963 0.979 0.748 0.699 0.776 

20

Right 0.975 0.955 0.984 0.979 0.970 0.993 0.976 0.951 0.984 0.975 0.951 0.984 0.714 0.694 0.744 
Forward 0.845 0.838 0.854 0.845 0.844 0.849 0.842 0.829 0.845 0.832 0.815 0.839 0.508 0.503 0.523 
Backward 0.881 0.839 0.925 0.848 0.821 0.896 0.830 0.809 0.872 0.796 0.785 0.833 0.525 0.508 0.553 
Left  0.750 0.741 0.775 0.748 0.742 0.768 0.733 0.729 0.754 0.723 0.711 0.735 0.502 0.501 0.531 

50

Right 0.811 0.794 0.841 0.799 0.784 0.827 0.781 0.770 0.817 0.753 0.763 0.778 0.532 0.502 0.531 

populated or unstructed environment. Moreover, the 
computation requirement for the proposed method remains 
high especially when the number of Gaussian component 
used for the spatial probabilistic modeling increases. In 
this work, the feature vector of each pixel is adopted to 
calculated the similarity between the test view and views 
in the database in this work. Therefore, selecting the 
noticeable pixels is one way to reduce the computing time.  
However, the real-time issue is still the future work of this 
study. 
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