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Abstract- This paper investigates the least-squares (LS) estimation of 

unknown deterministic parameters from a standard linear model 

characterized by a class of block-circulant-with-circulant-block (BCCB) 

matrix. We propose a method for designing the BCCB system matrix 

coefficients to minimize the mean square error incurred by the LS estimate, 

under certain equality and inequality constraints. By exploiting the 

eigenvalue characteristic of BCCB matrices, precise analysis is undertaken 

to derive a closed-form solution. The considered optimization problem 

arises in the study of blind channel estimation for single-carrier block 

transmission with cyclic prefix; the presented analysis reveals several key 

features associated with the BCCB family, and shows an original 

investigation of the BCCB matrix structure for facilitating linear optimal 

parameter estimation. 

Index Terms: Least squares; parameter estimation; circulant matrix; block 

circulant matrix with circulant blocks; blind channel estimation.

I. INTRODUCTION 

  The estimation of linearly mixed parameters subject to 

additive white Gaussian measurement noise has been addressed 

in diverse fields in science and engineering. Mathematically, 

this problem is formulated through the linear model 

                                        = +y Ax v ,                                     (1.1) 

where y  is the observed data vector, x  is the unknown signal 

of interest, A  is a known matrix of full column rank, and 
2( , )v kv 0 I , where kI  denotes the k k×  identity matrix 

for some k. There have been many criteria for reliably 

estimating x  based on (1), depending on the priori knowledge 

known about x  [8], [14]. When x  is treated as deterministic, 

one popular solution scheme is the least-squares (LS) estimate, 

namely, 

                                ( )
1

ˆ : H H
LS =x A A A y .                          (1.2) 

Despite its simplicity, the LS solution is attractive for it 

produces the optimal linear unbiased estimate under white 

noise assumption [8], [12]. To assess the performance of ˆLSx ,

one commonly used metric is the mean square error (MSE), 

namely, { }22ˆLSE x x , where {}E  is the expectation 

operator. By equivalently rewriting ˆLSx  in (1.2) as 

                               ( )
1

ˆ H H
LS = +x x A A A v                       (1.3) 

and since 2( , )vv 0 I , it is straightforward to show 

                       { } ( )
12 2

2
ˆ H
LS vE Tr=x x A A ,              (1.4) 

where [ ]Tr  denotes the trace. The performance of the LS 

solution thus depends crucially on the matrix A . In many 

situations it is plausible to judiciously choose A  to improve 

the utmost solution reliability, e.g., in training based channel 

estimation the matrix A  contains the pilot symbols and are 

designed to minimize the MSE in (1.4) under a total transmit 

power constraint [9], [11]. 

  In this paper, we focus on a special class of linear model, 

wherein the matrix A  is described by 

                                             =A QT ,                                      (1.5) 

in which T  contains an arbitrary column subset of the 
2 2N N×  identity matrix, Q  is a block-circulant-with- 

circulant-blocks (BCCB) matrix [3, p-184] of dimension 
2 2N N× :

2 2 2 2 2 1

2 1 2 2 3 2 2

2 2 2 3 2 2

2 2 2 2 1 2
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N

N N N
N

N

N
N

p p p N p N

p N p p N p N

p p p p

p p p N p

=

I J J J

J I J J

Q

J J I J

J J J I

                                                                                            (1.6) 

where ( )p n , 0 1n N , are some positive real numbers, 

and N N×J  is the circulant permutation matrix defined by 

                              
1 ( 1)

1 ( 1) 1

1
:

N

N N

×

×

=
0

J
I 0

.                         (1.7) 

We will seek for the optimal ( )p n  which minimizes 

                           ( )
12: H H

vMSE Tr= T Q QT ,                  (1.8) 

subject to the following two design constraints 

                                    
1

2

0

( )
N

n

p n N
=

= ,                                    (1.9) 

                   min 2 ( )p n  for some 0 1< < .              (1.10) 

Such a problem arises in the study of blind channel estimation 

for single-carrier transmission with cyclic prefix [5], [16] and 

also the related multi-antenna system with space-time block 

coding [2], [17]. By exploiting the eigen-structure of the BCCB 

matrix Q , in this paper we propose a method for constructing a 

closed-form optimal ( )p n . Block circulant matrices (not 

necessarily with circulant blocks) have found important 

applications in computational reduction [4], [13], [15], and in 

the study of spectral distribution for Toeplitz matrices [1]. The 

presented study in this paper brings out the nice features of the 

block circulant family in optimal linear parameter estimation. 

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

8461­4244­0504­1/06/$20.00 ©2006 IEEE



II. PROPOSED OPTIMAL SOLUTION 

A. Design Approach 

  Minimization of the cost function of the form (1.8) has been 

considered in [9], [11]. The reported solution approach therein 

is via the following inequality: since H H
T Q QT  are positive 

definite, it follows 

                  ( )
1 1

,

H H H H

i i
i

Tr T Q QT T Q QT ,           (2.1) 

and equality holds whenever H H
T Q QT  is diagonal [10, 

p-1041]. If equality (1.9) is the only design concern, it is easy to 

check that the impulse sequence 

               2( )p m N= , and 2( ) 0p n =  for n m ,           (2.2) 

where 0 1m N  is fixed but arbitrary, diagonalizes 

H H
T Q QT  and is thus the minimizing solution. However, 

given the additional threshold requirement (1.10), one cannot 

rely on this principle for finding a solution since, subject to the 

BCCB structure of Q  and 2( ) 0p n > , it is impossible to 

choose ( )p n  to render H H
T Q QT  diagonal. Another possible 

solution scheme would be via numerical search techniques. 

However, as the cost function in (1.8) are non-convex in ( )p n ,

there do not seem to have efficient methods for finding the 

global optimum. In what follows, we propose an alternative 

strategy to address the considered optimization problem. Our 

approach is grounded on a key fact shown in the next lemma, 

which as we show below will facilitate the exploitation of the 

BCCB property of Q  to derive a closed-form solution. 

Lemma 2.1: Let M  be a square nonsingular matrix, and M  be 

constructed from M  by deleting an arbitrary subset of its 

columns. Then 

                       ( ) ( )
1 1H HTr TrM M M M .

[Proof]: Without loss of generality we assume M  is split as 

d
=M M M , in which 

d
M  contains the columns to be 

deleted; otherwise we can multiply M  from the right by a 

permutation matrix to put it in this partition. It thus follows 
H H H

dH

dH H H

d d d d

= =
M M M M M

M M M M
M M M M M

.          (2.3) 

Since M  is nonsingular, H
M M  is positive definite. By the 

inversion lemma for block matrix [8, p-572], we have 

( )

( )( )

( )( )

1

11

11

H

H H H H
d d d d

H H H H
d d d d

=

×

×

M M

M M M M M M M M

M M M M M M M M

   (2.4) 

in which the notation “×” stands for the block off-diagonal 

submatrices irrelevant to the proof procedures. From (2.4), we 

have 

( ) ( )( )

( )( )

11 1

11
                 

H H H H H

d d d d

H H H H

d d d d

Tr Tr

Tr

=

+

M M M M M M M M M M

M M M M M M M M

   (2.5) 

Since ( )
1HM M  is positive definite, so are its principle 

submatrices and (2.5) implies 

( ) ( )( )
111H H H H H

d d d d
Tr TrM M M M M M M M M M .

                                                                                            (2.6) 

Using the matrix inversion lemma [8, p-571], inequality (2.6) 

can be further expanded into 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1

11 1 1 1

11 1 1

H H H H H
d d d d

H H H H H H H H H
d d d d d d

H H H H H H H H H
d d d d d d

Tr Tr

Tr

Tr Tr

= +

= +

M M M M M M M M M M

M M M M M M M M M MM M M M M MM M

M M M M M M M M M MM M M M M MM M
1

                                                                                           (2.7) 

Since ( )( )
11H H H H

d d d d
M M M M M M M M  is a principle 

submatrix of ( )
1HM M  (cf. (2.4)), it is positive definite and so 

is ( ) ( )( ) ( )
11 1 1H H H H H H H H

d d d d d d
M M M M M M M M M M M M M M M M .

The result then follows from (2.7).                                                

  As QT  contains a column subset of Q , Lemma 2.1 asserts 

that ( )
1H HTr T Q QT  is upper bounded by ( )

1HTr Q Q .

This thus suggests a suboptimal, but would be more simple and 

efficient, way of designing ( )p n : we can simply choose ( )p n

to minimize 

                                    ( )
1

: HJ Tr= Q Q ,                              (2.8) 

since ( )
1H HTr T Q QT  would in turn be kept small. The 

main advantage of the proposed design formulation is that we 

can directly take advantage of the BCCB structure of Q  to 

derive a closed-form solution. Toward this end, we shall first 

express the cost function J  in (2.8) in a more tractable form. 

Since ( )
1HTr Q Q  is the sum of the 2N  eigenvalues 

associated with ( )
1H

Q Q  [6, p-42], we propose to rewrite J

in terms of such spectral characteristics; this is specified next 

and will lay the foundation for subsequent analytic design. 

B. Eigen-Structure of BCCB Matrix 

  The eigen-property of the BCCB matrix family has been 

studied in [3]. A distinctive feature of the BCCB matrices is 

that they are diagonalizable by FFT based operations. This is 

pinned down via the following lemma; the result will be used 

for explicitly computing the eigenvalues of the matrix Q .
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  We will hereafter denote by 
,N N

BCCB  the set of all 

2 2N N×  block circulant matrices with circulant blocks, each 

characterized by N  circulant matrices of dimension N N× ,

F  the N N×  FFT matrix, and  the Kronecker product [7, 

p-243]. 

Lemma 2.2 [3, p-185]: If 
,N N

BCCBX , then X  can be 

diagonalized by F F . More precisely, let { }, ,
0 1N
C C  be 

the set of N N×  circulant matrices on the top row block of X ,

and let n  be the diagonal matrix containing the eigenvalues 

of nC . Then we have  

                ( ) ( )
1

1 1

0

N
n

nN
n=

=X F F F F ,        (2.9) 

with { }      2 1: 1
TN

N
diag= , : exp( 2 / )j N= .

Conversely, any matrix of the form ( ) ( )1 1F F F F  for 

some diagonal  belongs to 
,N N

BCCB .                                    

  Based on Lemma 2.2, we can determine the eigenvalues of the 

matrix Q  in (1.6). Observe that, despite its BCCB structure, 

the circulant block submatrices of Q  are further characterized 

by n
J : this will lead to very elegant eigenvalue characteristics. 

Roughly speaking, if we define the vector 

           2 2 2: [ (0) (1) ( 1) ]T Np p p N=p ,       (2.10) 

then the 2N  eigenvalues of Q  is completely determined by 

the N  eigenvalues associated with the N N×  circulant 

matrix with Tp  as the first row. More precisely, we have the 

following theorem (see Appendix A for a proof). 

Theorem 2.3: Let F  be the N N×  FFT matrix; also, 

associated with the vector p  in (2.10) we define the 

polynomial 

          
( 1)2 2 1 2( ) : (0) (1) ( 1)
N

z p p z p N z= + + +p .      (2.11) 

Then the 2N  eigenvalues of the matrix Q  defined in (1.6) are 

exactly given by the N  replicas of the N-tuple 

{ }, , , 1(1) ( ) ( )Np p p .                                                                 

  Based on Theorem 2.3, it follows immediately that the 

eigenvalues of HQ Q  are N  replicas of the N-tuple 

{ }, , , 
22 2 1(1) ( ) ( )Np p p ; the objective function J

in (2.8) is thus 

                          ( )
11

2
0 | ( ) |

N
H

k
k

N
J Tr

=

= =Q Q
p

.       (2.12) 

Equation (2.12) rewrites ( )
1HTr Q Q  in terms of the 

“frequency responses” ( )np ’s in a rather simple way: it is 

just a scaled sum of 2| ( ) |k
p  over 0 1k N . The 

derivation of the optimal ( )p n  is based on equation (2.12) and 

is shown below. 

C. Optimal Solution 

  The first step toward a solution is to transform the two 

constraints (1.9) and (1.10) in terms of ( )np . With (1.9) and 

(2.11), it is easy to check that, for 0k = ,

                     
1

0 2

0

( ) (1) ( )
N

n

p n N
=

= = =p p .                     (2.13) 

The following lemma provides an upper bound on ( )kp  for 

1 1k N ; the result is crucial for deriving the optimal 

solution (see Appendix B for a proof). 

Lemma 2.4: For any ( )p n  satisfying (1.9) and (1.10), we have 

            ( ) (1 )k Np  for all 1 1k N .           (2.14) 

                                                                                                

  With (2.13) and (2.14), the optimal ( )p n  is shown in the next 

theorem. 

Theorem 2.5: The optimal ( )p n  minimizing ( )
1HTr Q Q ,

subject to constraints (1.9) and (1.10), is given by the following 

the two-level form solution: for a fixed but arbitrary 

0 1m N ,

2( ) ( 1)p m N N= , and 2( )p n =  for n m ,    (2.15) 

leading to 

                                 min 2

( 1)1

(1 )

N
J

N N
= + .                    (2.16) 

[Proof]: We claim that i) ( )
1

min
HTr JQ Q  for any ( )p n

satisfying (1.9) and (1.10), and ii) equality is attained by the 

two-level scheme (2.15); the theorem thus follows. To show 

claim i), we observe form (2.12) and (2.13) that 

( )
11

2
0

1 1

2 2 2
1 1

| ( ) |

1
                

| (1) | | ( ) | | ( ) |

N
H

k
k

N N

k k
k k

N
Tr

N N N

N

=

= =

=

= + = +

Q Q
p

p p p

                                                                                          (2.17) 

From (2.14), it follows  

                    
2

2 2

1
( )

(1 )

k

N
p , 1 1k N ,    (2.18) 

With (2.17) and (2.18), we have 

( )
11

22
1

1 1 1

(1 )| ( ) |

N
H

k
k

N N
Tr

N N N=

= + +Q Q
p

,  (2.19) 

which proves claim i). To show claim ii), it is noted that the 

two-level solution (2.15) yields, for any 0k ,

{ }

{ } { } ,

1 2
0

1

0

( ) ( ) ( 1)

       (1 ) (1 )

Nk kn km kn

n
n m

Nkm kn km

n

p n N N

N N

=

=

= = +

= + =

p

                                                                                          (2.20) 

where the last equality in (2.20) follows since 
1

0
0

N kn

n=
=  for any 0k . Equations (2.13) and (2.20) 

show (1) N=p  and ( ) (1 )k N=p  for 1 1k N ;

hence the two-level scheme (2.15) attains minJ  in (2.16).
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  Recall that the impulse sequence (2.2) is optimal whenever 

(1.9) is the only design concern. When an additional threshold 

on the magnitude of ( )p n  is imposed as in (1.10), it turns out 

that the best choice is the “impulse-like” two-level solution 

(2.15). With (2.16), the minimal minJ  is seen to decrease 

whenever  is decreased. It is noted that two-level solution 

(2.15) minimizes ( )
1HTr Q Q , but its optimality with respect 

to ( )
1H HTr T Q QT  appears intractable to verify. Our 

simulation results indicate that it indeed seems to be the 

minimizing solution, irrespective of the choices of T .

III. CONCLUSION 

  In this paper we investigate the optimal LS estimation from a 

class of BCCB linear model, which is encountered in our recent 

study in blind channel estimation problems. We show a method 

for designing the system matrix coefficients to minimize MSE 

under certain equality and inequality constraints. The proposed 

approach minimizes an upper bound on MSE, and exploits the 

BCCB system matrix structure as well as the associated spectral 

characteristics. The frequency-domain-based formulation in 

terms of eigenvalues nicely tackles the inequality constraint, 

allows precise analysis procedures, and eventually leads to an 

appealing simple closed-form solution. We will try to 

generalize the results to less restricted families like block 

circulant matrices or matrices with circulant blocks; this would 

find potential applications in channel estimation for MIMO 

cyclic prefix based single- (multi-) carrier block transmission. 

APPENDIX A: PROOF OF THEOREM 2.3 

  The matrix Q  in (1.6) is characterized by the N  circulant 

matrices { }, , , 2 2 2 1(0) (1) ( 1) N

N
p p p NI J J  on its top row 

block. Let N
nu  be the vector containing the eigenvalues 

of the matrix 2( ) np n J , 0 1n N . We then have [3, 

p-73], for 0 1n N ,

                                     1 T
n nN=u F r ,                             (A.1) 

where nr  denotes the first row of 2( ) np n J . By definition of J

in (1.7), it can be deduced that, for 1 1n N ,

2
0 1

(0) Tp=r e  and 2
1

( ) T
n N n
p n

+
=r e ,          (A.2) 

where 
l
e  denotes the l th unit standard vector in N . From 

(A.1) and (A.2), it follows that, for 1 1n N ,

         2
0 0

(0)N p=u f  and 2( )n N n
N p n=u f ,       (A.3) 

where 

   1 2 ( 2) ( 1): [1 ]n n N n N n T
n N=f  (A.4) 

is the ( 1)n + th column of 1
F , 0 1n N . By Lemma 

2.1, the eigenvalues of Q  are given by the diagonal entries of 

the matrix 
1

0

N
n

nN
n=

, where { }n ndiag= u . Since 

{ }n
nN

N diag= f  (this follows by definition of 
N

 and 

from (A.4)), the eigenvalues of Q  can simply be computed as 

entries of the vector 
1

0

N

n n

n

N
=

f u . From (A.3) and (A.4), 

it can be seen that 

            2
0 0 0 0 0

(0) [ ]T T T Tp=f u f f f ,                     (A.5) 

and, for 1 1n N ,

2 ( 1)( ) [ ]T n T N n T T
n n N n N n N n

p n=f u f f f .  (A.6) 

From (A.5) and (A.6), the vector 
1

0

N

n nn
N

=
f u  can be 

computed as 
1

2 2
0

1
1

1
12 2

0
1

1 1
1

2 ( 1) 2
0

1

(0) ( )

(0) ( )

(0) ( )

N

N n

n

N
n

NN n
n

N
N N

N n
N n

n

p p n

p p n
N N

p p n

=

=

=

+

+
=

+

f f
F p

F pf f

F p

f f

                                                                                           (A.7) 

where p  is given in (2.10) and N N×  is the Hankel 

matrix with [1 0 0]T  as the first column and [0 1 0 0]  as 

the last row. It can be checked by definition that 
1 1( )n T n

N
=F J F  and hence 

1 1( )n T n

N
N N=F p J F p , 0 1n N .  (A.8) 

From (A.7) and (A.8) we can see that, for 2 i N , the 

entries of the i th N -dimensional block of 
1

0

N

n n

n

N
=

f u

are simply a permuted version of those in the first one, namely, 
1N F p . As a result, the 2N  eigenvalues of Q  thus 

assume N distinct values only. Since 2= F  [3, p-33], we 

have 1N N=F p Fp . The assertion thus follows by 

definition of F .                                                                                  

APPENDIX B: PROOF OF LEMMA 2.4 

  The assertion relies on the following key observation: any 

given ( )p n  satisfying (1.9) and (1.10) can be constructed by 

“squeezing” the peak value at n m=  of the two-level solution 

(2.15) so that the ground values at other n’s are “raised” to the 

prescribed levels. More precisely, let ( )p n  be an admissible 

sequence such that 2( ) ( 1)p n N N< <  for n ,

where the index set  is a subset of { } { }, ,0 1 \N m .

Then ( )p n  can be expressed as 

                     2( ) ( 1) n

n

p m N N= ,                (B.1) 

2( ) np n = +  for n , and 2( )p n =  for n ,

                                                                                           (B.2) 
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where 0n >  models the excessive power over the ground 

level  for n . The sequence of the form (B.1) and (B.2) 

satisfies the constraints (1.9) and (1.10); in particular, since 
2( )p m  is required, we can infer from (B.1) that 

                                 (1 )n

n

N .                           (B.3) 

We assume for the moment that 0m = ; as one will see, the 

result for the 1 1m N  case easily follows. Associated 

with ( )p n  in (B.1) and (B.2), we have, for 1 1k N ,

( )

1
2

0

( ) ( )

( 1)

N
k kn

n

kn kn
n n

n n n

p n

N N

=

=

= + + +

p

1

0

(1 ) ( 1)

0

kn kn kn
n

n n n

N
kn

n

N

=

= + + + +

==

(1 ) ( 1) .kn
n

n

N= +                                                   (B.4) 

Define the nonnegative number 

                           : (1 ) n

n

d N= ,                         (B.5) 

Since cos sinkn

k k
n j n= , where : 2 /

k
k N= , and 

with (B.5), it follows from (B.4) that 
2 2

2
( ) cos sink

n nk k
n n

d n n= + +p

2

2

2

2 cos cos

  sin .

n k n k

n n

n k

n

d d n n

n

= + +

+

               (B.6) 

Observe that 
2 2

2

,

cos sin

2 (cos cos sin sin )
ml

ml

n nk k
n n

n n n m ml k k l k k
n n n

n n

n n n n

+

= + +

2

,

2

2

,

2 cos( )  

 2 ,

l m

l m

l m

l m

n n n l m k

n n n

n n n n

n n n n

n n= +

+ =

               (B.7) 

and that 

                2 cos 2n nk
n n

d n d .                  (B.8) 

From (B.7) and (B.8), 
2

( )kp  in (B.6) is upper bounded as 

2
2 2( )  2k

n n
n n

d d+ +p

2

2 2       (1 ) ,n
n

d N= + =                                 (B.9) 

in which the last equality follows from the definition of d  in 

(B.5). This thus proves the lemma, under the assumption 

0m =  in (B.1). For 1 1m N , equation (B.4) is then 

accordingly modified as 

( )( ) (1 ) ( 1)k k m n mn
n

n

N= +p .        (B.10) 

By going through the same procedures as in (B.5)~(B.8) the 

conclusion (B.9) will follow.                                                    
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