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Abstract— In this paper, we propose two simulation based
maximum likelihood (ML) methods to estimate the direction
of arrival (DOA) by a novel combination of the Cross-Entropy
(CE) method and the polynomial parameterization scheme. The
CE method is an efficient stochastic approximation method for
solving both discrete and continuous optimization problems. We
bridge the ML approach and the stochastic search algorithm
by properly randomizing the desired parameters. Numerical
results show that the proposed CE-based algorithms yield highly
accurate DOA estimation with fast convergence rate while
requiring only linear processing complexity. Compared with
the conventional iterative quadratic maximization likelihood
(IQML) method, the proposed algorithms can alleviate the error
propagation effect in low signal to noise ratio (SNR) region and
asymptotically approach the Cramér-Rao bound in high SNR
region.

I. INTRODUCTION

The problem of DOA estimation has been extensively
investigated in the last few decades [1]. Among various
DOA estimation approaches, the class of maximum likelihood
(ML) methods is both unbiased and asymptotically efficient.
Moreover, the ML methods can alleviate the mutual can-
cellation effect caused by the coherent sources and provide
high estimation accuracy. However, the multi-dimensional
optimization nature of the ML methods also require high
computing complexity. Bresler and Macovski [2] suggested
a polynomial parameterization approach for conditional ML
estimation and applied iterative projection to reduce the
computation burden. The resulting ML algorithm, abbreviated
IQML, is an efficient and near-optimal solution. However,
IQML suffers from slow convergence rate in low SNR region
and it does not give satisfactory performance when the sample
size is small.

In this paper, we suggest two novel simulated-based opti-
mization approach to solve the ML DOA estimation problem.
The Cross-Entropy (CE) method developed by Rubinstein
[3] was originally aimed to solve the rare event simulation
problem. It was later proposed as an unified approach to
perform global search for combinatorial and continuous multi-
extremal optimization problems. Under the CE method frame-
work, deterministic signals or parameters, e.g. DOA in array
signal processing, are randomized according to some para-

metric distributions related with a set of dynamic parameters.
Through iteratively minimizing the Kullback-Leibler distance
(cross entropy) between the the parametric distribution and the
target distribution, we can update the set of parameters and
improved the estimate quality. Thanks to the accurate and
robust nature of the CE method [3], we are able to obtain
highly accurate ML DOA estimation and eliminate the error
propagation effect incurred by the iterative projection in the
conventional IQML algorithm.

To solve the complexity issue associated with the simulated
searching approach, we approximate source information by
sample covariance matrix and adopt the polynomial parame-
terization procedure used in the IQML algorithm to translate
the original problem into one that is a computational much
more efficient. In short, this paper presents a new estimate
method that not only links the conventional conditional ML
and the simulated approximation approaches but also suggest
a novel bridging procedure so that the advantages of both
approaches are preserved.

The organization of this paper is as follows. In Section II,
we describe the system model of array signal processing and
review the conventional IQML method. In Section III, we
describe the generic concept of the CE method. In Section
IV, we present the proposed maximum likelihood estimation
based on the CE method. In Section V, a polynomial param-
eterizing CE method is proposed to lower the computation
complexity. In Section VI, we provide some simulation ex-
amples and discuss the numerical behavior. Finally, in the
last Section, we give summary remarks on the proposed new
methods and suggest some future works.

II. SYSTEM MODEL AND IQML METHOD

A. System Model

Assume that D narrowband plane waves imping on an uni-
form linear array (ULA) equipped with M antenna elements.
At time instant n, the multi-dimensional received vector y(n)
of size M × 1, i.e., y(n) = [y1(n), y2(n), . . . , yM (n)]T , can
be modelled as

y(n) = Ax(n) + w(n) (1)
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where x(n) = [x1(n), x2(n), . . . , xD(n)]
T is a D× 1 source

vector, T being the transpose operator, and w(n) is an M ×1
noise vector with independent zero-mean Gaussian random
components and covariance matrix Kw = σ2

wI. Matrix A

denotes the array manifold matrix with D array manifold
vectors a(θi), i = 1, 2, · · · , D,

A = [a(θ1),a(θ2), · · · ,a(θD)] , (2)

where

a(θi) =
[
1, ejπsin(θi), · · · , ejπ(M−1)sin(θi)

]T

(3)

and θi is the DOA associated with the ith impinging plane
wave.

Stacking up Ns consecutive independent received vectors

and defining Y
def
= [y(1), · · · ,y(Ns)], X

def
= [x(1), · · · ,

x(Ns)], and W
def
= [w(1), · · · ,w(Ns)], we obtain

Y = AX + W, (4)

As W is Gaussian distributed, the conditional ML function
can be written as

f(Y|X,A) =

Ns∏
n=1

f(y(n)|x(n),A)

=
1

πMNs |Kw|Ns
e
−

∑ Ns
n=1 ‖y(n)−Ax(n)‖2

K
−1
w , (5)

where

‖x‖2
K−1

def
= xHK−1x (6)

denotes the generalized 2-norm of x, and H denotes the
conjugate transpose. From (5), the conditional ML estimate
can be written as

max
{θi,x}

(
−

Ns∑
n=1

‖y(n) − Ax(n)‖2
2

)
. (7)

The solution, though can be found by exhaustic search, is
computational intractable, especially when the array size M

and data block Ns are large. An alternative scheme is to
substitute the source vector x(n) by its least squared solution
for any fixed A, and transform (7) into

min
{θi}

Ns∑
n=1

‖y(n) − AA†y(n)‖2
2

= min
{θi}

Ns∑
n=1

yH(n)P⊥
Ay(n) (8)

= min
{θi}

Ns tr
(
P⊥

AR̂y

)
, (9)

where † denotes the matrix pseudoinverse operation, ⊥ the or-

thogonal projection, P⊥
A

def
= I−AA†, and R̂y

def
= 1

Ns
YYH

is the sample correlation matrix.

B. IQML method

Using the coefficients of the polynomial

b(z)
def
=

D∏
i=1

(z − zi) = b∗0 + b∗1z + . . . + b∗DzD (10)

where {zi
def
= ejπsin(θi)} are its roots and ∗ represents

complex conjugate, Bresler and Macowski [2] construct the
M × (M − D) Toeplitz matrix B

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

... b0

bD

...
. . .

bD

. . . b0

. . .
...

bD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

They further proved that P⊥
A = PB, and (8) is equivalent to

min
b

bH

(
Ns∑

n=1

YT (n)(BT B∗)−1Y∗(n)

)
b

def
= min

b
bHQb (12)

subject to: b0 = 1, (13)

where b = [b0, b1, . . . , bD]
T and Y(n) is the accumulated

data matrix

Y(n)
def
=

⎡
⎢⎣

yD+1(n) · · · y2(n) y1(n)
...

. . .
...

...
yM (n) · · · yM−D+1(n) yM−D(n)

⎤
⎥⎦ .

The constraint (13) is imposed to guarantee a non-trivial b.
Instead of optimizing (12) directly, [2] searches the solution
by iteratively projecting on the temporary solution space.

III. CROSS-ENTROPY METHOD

For convenience of reference, we give a brief review of
Rubinstein’s CE method. Let Θ be the domain of variable
θ, and S be the score function of θ defined on Θ. The CE
method attempts to solve the following optimization function

arg max
θ∈Θ

S(θ) (14)

by relating the above problem to a rare event simulation
problem. A popular approach to reduce the required sample
size for estimating the rare event probability is the so-called
importance sampling technique. To find the optimal impor-
tance sampling density within a class of densities f(θ;v), one
iteratively adapts the parameter v so that the Kullback-Leibler
distance (cross entropy) between the associated density and
the optimal importance sampling density is minimized. In
short, a generic CE method can be described by the following
two steps [3].
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1. Generate samples from the importance density specified
by the parameters from the previous iteration.

2. Update the parameters for next iteration according to the
order of the score values associated with new samples
and the CE criterion.

IV. ML DOA ESTIMATION BASED ON CE METHOD

The score function of (7) is the total sum of the negative
2-norm of the error vectors. To apply the CE method, we
have to include a set of important density functions over
the deterministic A and X. At the kth iteration, for BPSK
signals, a natural choice of density function for each element
{{x

(k)
i (n)}D

i=1}
Ns

n=1 in X(k) is the Bernoulli distribution, i.e.,
x

(k)
i (n) ∼ Ber(p

(k)
i,n), such that P (x

(k)
i (n) = 1) = 1 −

P (x
(k)
i (n) = −1) = p

(k)
i,n .

Besides, we have to model the D-dimensional DOA in-
formation in the continuous space [−π, π) for the manifold
matrix A(k). To be compatible with the results for spatially
distributed source [4][6], each element {sin(θ

(k)
i )}D

i=1 is mod-
elled as truncated Gaussian distributed, i.e.,

sin(θ
(k)
i ) ∼ N (µ

(k)
i , σ

(k)
i ) (15)

given the constraint

−1 ≤ sin(θ
(k)
i ) ≤ 1, for i = 1, 2, . . . , D. (16)

In order to sample {sin(θ
(k)
i )}D

i=1 in the constraint region,
we adopt the acceptance-rejection method described in [7].
By defining the approximated important density, the CE-ML
algorithm for DOA estimation is described in Table I in which
the following three recursive relations are used.

p
(k+1)
i,n = α ·

1∑U
u=1 I

{S(X
(k)
u ,A

(k)
u )≥γ(k)}

·
U∑

u=1

[
I
{S(X

(k)
u ,A

(k)
u )≥γ(k)}

I
{x

(k)
i,u

(n)=1}

]
+ (1 − α)p

(k)
i,n (17)

µ
(k+1)
i = α ·

1∑U
u=1 I

{S(X
(k)
u ,A

(k)
u )≥γ(k)}

·
U∑

u=1

[
I
{S(X

(k)
u ,A

(k)
u )≥γ(k)}

sin(θ
(k)
i,u )

]
+ (1 − α)µ

(k)
i (18)

(σ
(k+1)
i )2 = α ·

1∑U
u=1 I

{S(X
(k)
u ,A

(k)
u )≥γ(k)}

− 1

·
U∑

u=1

[
I
{S(X

(k)
u ,A

(k)
u )≥γ(k)}

(
sin(θ

(k)
i,u ) − µ

(k+1)
i

)2
]

+ (1 − α)(σ
(k)
i )2 (19)

While the algorithm iterates, the generated standard deviation
σ

(k)
i decreases to zero. When the algorithm converges, the

approximated important density degenerates to the impulse
function, i.e. N (θ∗i , 0), matching the important density of the
deterministic case in (7).

By sampling from the exact signal space, we obtain perfor-
mance superior to that of the conventional covariance matrix
based methods, which are corrupted by unknown signal phase.
However, when the data block is large, sampling over such a
high dimensional signal space of X(n) becomes impractical.

V. CE-PPML METHOD

To ease the computation burden of the pure CE method
given in section IV, we propose an alternative CE method that
does not generate samples from high dimensional X(n). We
use the information generated from least square projection of
the sample covariance matrix R̂y in (9). This approximation
greatly reduces the sampling complexity especially when the
block size, Ns, is much larger than the number of impinging
plane waves, D. Furthermore, we invoke the technique of
polynomial parameterization described in Section II-B to
simplify the calculation of PB = P⊥

A in (9). Since the matrix
(BHB) is a banded Hermitian matrix, its inverse can be
efficiently computed via the inverse of a D×D matrix rather
than an (M−D)×(M−D) matrix [8]. Although the required
inverse matrix size D ×D is the same as P⊥

A, we can avoid
calculating the cumbersome (M −1)D exponential functions
in A after applying polynomial parameterization, especially
when the array size M and the sample size U are large. The
resulting CE-PPML algorithm is given in Table II.

As the DOA information of the polynomial parameteri-
zation scheme is represented by b, the proposed CE-PPML
algorithm first generates a list of samples {bu}

U
u=1 from an

auxiliary phase distribution. Following the basic framework of
the CE method, we then replace the iterative projecting steps
of the IQML algorithm by the iterative important sampling
procedure in Table I. As will be proved by simulation, the
divergence phenomenon of the conventional IQML method is
greatly reduced by this method especially in low SNR region.

The main ideas of the proposed CE algorithm can be sum-
marized by the two design criteria: (i) minimizing the number
of target parameters by using deterministic signal processing
techniques with performance and complexity constraints; and
(ii) randomizing the desired parameters and applying the CE
method. By following the criteria we are able to take the
advantage of the global searching ability of the CE method
while maintaining linear computing complexity.

VI. SIMULATION RESULTS

We consider a standard ULA equipped with M = 10
antenna elements. Two adjacent elements of the ULA are
separated by half wavelength. A single signal source with
impinging arrival angle equal to sin(θ) = −0.3 is assumed.
The block number Ns is 10. The sample size used in CE-
based methods is 500 for all SNR regions and, except for
Fig. 3, the smooth parameter α is 0.6. Maximum iteration
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number is set to be 200. When the iteration number exceeds
200, the algorithm is regarded as being fail to converge.

Fig. 1 shows the root mean squared error (RMSE) per-
formance of the IQML and the proposed (CE-ML, and CE-
PPML) algorithms using a short block size. The stopping cri-
terion used in Table I and Table II is based on the convergence
of the score value in each iteration. The algorithms terminate
when the difference of the score values of five successive
iterations are within a predefined threshold, say η = 10−8. It
is clearly that the two proposed CE-based methods outperform
the IQML algorithm and the CE-ML algorithm yields the
best overall average performance. The Cramér-Rao bounds for
array systems with unknown complex and real signal source
using the conditional ML approach [5], [9]

CRBcomplex(ψ) =
6 · SNR−1

Ns(M2 − 1)Mπ2
, ψ = sin θ (20)

CRBreal(ψ) =
3 · SNR−1

Ns(M − 1)M(2M − 1)π2
(21)

are also included in the figure for comparison purpose.
Since signal sources are estimated by the sample correlation

matrix R̂y, the IQML and the proposed CE-PPML methods
can only achieve the bound for unknown phase (complex)
signal sources. On the other hand, the CE-ML method, having
drawn samples from the signal domain thus avoiding possible
phase error, can achieve the bound for known phase (real)
signal sources. This performance advantage is obtained at
the expense of increasing the required sample size for large
data blocks. In other words, when Ns is small, since the
sample covariance matrix R̂y is not good approximation of
its ensemble counterpart, the proposed CE-ML method gives
better performance than the covariance matrix based methods.

The large block size (Ns = 100) RMSE performance of the
CE-PPML and IQML algorithms are depicted in Fig. 2. Other
algorithmic parameters used are the same as the previous
example. By using a larger data block size, the sample
covariance matrix R̂y becomes a closer approximation of the
ensemble covariance matrix Ry and the performance of both
algorithms improves accordingly. The CE-PPML algorithm
still outperforms the IQML method for −10 ≤ SNR ≤ 10
dB. The convergence behavior comparison is given in Fig. 3.
Fig. 3 indicates that the average iteration numbers for the two
proposed CE methods remain relatively low while the IQML
solution tends to diverge in the low SNR region.

The computational complexity of the CE-based algorithm
is proportional to the product of iteration number and sample
size while that of the IQML algorithm is proportional to the
iteration number. Nevertheless, the required iteration number
of the latter is much larger than that of the former algorithms
in low SNR region. Furthermore, samples used in CE-based
algorithms can be generated in parallel and then the process-
ing delay will mainly depend on the iteration number.

VII. CONCLUSION

We present two CE-based methods to perform the maxi-
mum likelihood DOA estimation. Our first CE-based approach
searches the ML solution in the full signal and angle space.
It gives accurate DOA estimation even if the block size Ns is
small. However, when Ns is large, the algorithm is compu-
tational infeasible. To make the CE-based solution practical,
we introduce the covariance matrix approximation and the
polynomial parameterization scheme in our algorithm. The
resulting CE-PPML algorithm alleviates the error propagation
arose from the iterative projection process in the IQML
approach and is much more robust in the low SNR region.

Although we consider only the case when the impinging
plane waves have deterministic DOA, the proposed method
can be easily extended to solve DOA estimation problems
for spatially distributed source with arbitrary constellation by
including additional system parameters, e.g., angular spread.
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Fig. 1. Root Mean squared error (MSE) versus SNR: M = 10, Ns =
10, D = 1, α = 0.6, Trials = 500. The DOA is set at sin(θ) = −0.3.
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Fig. 2. Root Mean squared error (MSE) performance versus SNR: M =
10, Ns = 100, D = 1, α = 0.6, Trials = 1000. The true DOA is at
sin(θ) = −0.3.
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10, Ns = 10, D = 1, α = 0.9, Trial = 1000. AIR is defined as
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TABLE I

CE METHOD FOR MAXIMUM LIKELIHOOD DOA ESTIMATION

1. Initialize p
(0)
i,n = 0.5, µ

(0)
i = 0, and σ

(0)
i = 1. Set the

quantile parameter ρ, and define a smooth parameter
0 < α < 1.

2. Draw U samples x
(k)
i,u (n) ∼ Ber(p

(k)
i,n). Draw U

samples sin(θ
(k)
i,u ) ∼ N (µ

(k)
i,u , σ

(k)
i ) by rejecting the

samples that are outside the range [−1, 1]. Construct
{X

(k)
u }U

u=1, and {A
(k)
u }U

u=1 from the generated sam-
ples.

3. Calculate the score functions {S(X
(k)
u , A

(k)
u )} ac-

cording to (7).
4. Set a quantile parameter ρ, such that there is a γ(k)

satisfying γ(k) = arg maxγ P (S(Z) ≥ γ) ≥ ρ for
Z ∈ {X

(k)
u ,A

(k)
u }U

u=1.

5. Update the estimated Bernoulli parameter p
(k+1)
i,n for

x
(k+1)
i (n) based on (17).

6. Stop at iteration k = K if the pre-defined stopping
criterion is met. Output {µ(K+1)

i }D
i=1 as the estimate

of {sin(θi)}
D
i=1. Otherwise, let k = k + 1, update

µ
(k+1)
i , (σ

(k+1)
i )2 using (18), (19) and repeat Steps

2 − 4.

TABLE II

CE-PPML ALGORITHM

1. Initialize µ
(0)
i = 0, and σ

(0)
i = 1. Set the quantile

parameter ρ, and a smooth parameter 0 < α < 1.

2. Draw U samples sin(θ
(k)
i,u ) ∼ N (µ

(k)
i,u , σ

(k)
i ). Reject

samples outside the range [−1, 1]. Find b
(k)
u and

construct the corresponding B
(k)
u described in (11)

from the generated samples.
3. Calculate the score function{

S(b(k)
u )

def
= Nstr

(
P

(k)
Bu

R̂y

)}U

u=1

where P
(k)
Bu

def
= B

(k)
u (B

(k)
u

H
B

(k)
u )−1B

(k)
u

H
.

4. Set a quantile parameter ρ, such that there is a γ(k)

satisfying

γ(k) = arg max
γ

P (S(Z) ≥ γ) ≥ ρ

for Z ∈ {b
(k)
u }U

u=1.

5. Generate the estimated Gaussian parameter µ
(k+1)
i

and σ
(k+1)
i for next iteration according to (18) and

(19) with {X
(k)
u ,A

(k)
u } being replaced by {b

(k)
u }.

6. Stop at iteration k = K if the pre-defined stopping
criterion is met. Output {µ(K+1)

i }D
i=1 as the estimate

of {sin(θi)}D
i=1. Otherwise, set k = k+1, and repeat

Step 2 to Step 5.
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