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Abstract— Multi-Input Multi-Output (MIMO) transmission
has become a popular technique to increase spectral efficiency.
Meanwhile, the design of cost-effective receivers for MIMO
channels remains a challenging task. Maximum-Likelihood (ML)
detector can achieve superb performance, yet the computational
complexity is enormously high. Receivers based on sphere decod-
ing (SD) reach the performance of ML detectors, and potentially
a great deal of computational cost can be saved. In this paper,
a practical sphere-decoding algorithm is proposed. It utilizes a
simple and effective way to set the initial radius which plays
a decisive role in determining the computational complexity.
Furthermore, a pseudo-antenna augmentation scheme is em-
ployed such that SD can be applied where the number of receive
antennas is less than that of transmit antennas; thus enhance the
applicability of this powerful algorithm.

I. INTRODUCTION

Sphere Decoding has recently been applied to signal de-
tection problem for Multiple-Input Multiple-Output (MIMO)
systems [1]–[4]. It is a reduced search algorithm for doing ML
detection. Notice that brute-force ML detection has computa-
tional complexity that is exponentially growing in the number
of sub-streams, the constellation size, and the number of trans-
mit antennas; as a result, it is not feasible for practical systems.
Indeed, SD holds the potential of significantly reducing the
computational cost while maintaining the superb performance
of an ML detector and therefore is compared favorably with
other sub-optimal detectors proposed for MIMO systems.

Some noteworthy detection algorithms for MIMO systems
are reviewed in the following.

1) Linear detection methods: The linear detection method
first estimates the channel matrix then tries to compensate
(inverse) the channel effect by another matrix. The inverse
matrix is usually based on Zero Forcing (ZF) or Minimum
Mean Square Error (MMSE) criterion. This method requires
very low computational complexity, but results in significant
performance degradation.

2) Successive Interference Cancellation (SIC): Successive
interference cancellation peels the transmission signal apart
one data stream at a time. It decodes and cancels the data
stream iteratively until all transmitted streams are resolved.
If sorting is done to determine the decoding order from the
highest to the lowest SNR, it is called ordered successive
interference cancellation (OSIC). An example is the so-called
Vertical Bell-laboratory LAyered Space-Time (V-BLAST) re-

ceiver [5]. OSIC has a slightly better performance than SIC
does, but is still suboptimal and suffers from error propagation.

3) Brute-Force Maximum Likelihood(ML) Detection: As-
suming that the transmitted data sequence is i.i.d., the max-
imum likelihood detector for a MIMO system performs the
operation:

ŝML = arg min
s∈ONT

∥∥y −Hs
∥∥2

= arg min
s∈ONT

(y −Hs)H(y −Hs)
(1)

where y is the observed vector signal, H is the channel
matrix whose size is NR × NT , ONT is the entire set of
possible transmitted vector symbols, O is the complex-valued
modulating constellation, and (·)H means Hermitian transpose.
The ML detector is optimal in terms of symbol error rate, but
the computational complexity can be prohibitively high if it is
implemented by exhaustively searching over ONT .

4) Sphere Decoding: In 1985, U. Fincke and M. Phost
proposed an algorithm named Fincke-Phost algorithm [6] (or
SD algorithm) which offers a large reduction in computational
complexity for the class of computationally-hard combinato-
rial problems, for instance, the aforementioned ML detection
problem. SD algorithm used for resolving MIMO channel was
presented in [1]–[4] and was shown to reduce the complexity
of ML detector significantly [1], [7], [8]. The enormous
computational complexity of ML detector arises from the huge
number of vector symbols to be compared in order to find the
solution in (1). The main idea of SD algorithm is to use a
highly efficient method to reduce the number of candidate
vector symbols before the actual comparison happens. For
more on the efficiency of SD, please refer to [1], [7], [8].

Let D be a sphere centered at the received vector y, and the
radius d of D is properly defined such that only a small number
of vector symbols fall inside D after being transformed by the
channel matrix. The search of the closest transformed vector
symbol to y can be conducted among these candidates in D
rather than the entire setONT . A well-designed sphere decoder
would have performance equal to that of an ML detector. For
example, it can reach full diversity while V-BLAST can only
reach NR −NT + 1 [9].

Two questions need to be addressed for an effective sphere
decoder to be constructed:
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1. How to choose the radius d such that the number of
candidates is well limited?

2. How to determine efficiently if a channel symbol actually
lies inside the hypersphere D?

In this paper, a simple yet effective method to set the radius
of the hypersphere D is proposed. A pseudo-antenna augmen-
tation scheme is also proposed such that SD can efficiently
determine the position of a lattice point relative to D in the
case where the number of transmit antennas is larger than
the number of receive antennas, thus expand the applicability
of SD. Compared to existing literatures which handle rank-
deficient channel matrices [10]–[12], our method is more
intuitive and straightforward, and it enjoys a computational
complexity in polynomial when SNR is sufficiently high, while
methods in [10], [11] have a complexity growing exponentially
in (NT −NR).

The rest of this paper is organized as follows. The MIMO
system model and basic formulations are laid out in Section
II. The radius-setting method and the pseudo-antenna augmen-
tation scheme are described in Section III. Simulation results
are presented in Section IV, and finally, a brief conclusion in
Section V.

II. SYSTEM MODEL AND BASIC SD

The MIMO system model is as follow. Assume NT transmit
antennas and NR receive antennas, the received signal is given
by

y = Hs + n (2)

where y ∈ CNR is the received signal vector, H ∈ CNR×NT is
the Rayleigh flat fading channel matrix, s is the transmitted
vector symbol in RNT or CNT depending on the modulation
scheme, and the entries of n is the additive i.i.d. zero mean
circularly symmetric complex Gaussian (ZMCSCG) noise with
variance of σ2, i.e., nk ∼ CN(0, σ2), k = 1, ..., NR. The
lattice point Hs lies inside the hypersphere D of radius d if
and only if

d2 ≥ ∥∥y −Hs
∥∥2

. (3)

Assume that H is column-independent (i.e. NR ≥ NT ) and
H, y, s and n are real-valued, then H can be QR-factorized
[13] as

H = QR

=
[
Q1 Q2

] [
R′

0

]
(4)

where Q ∈ RNR×NR is an orthonormal matrix, R ∈
RNR×NT is an upper triangular matrix, and R′ is an NT ×NT

upper triangular matrix of R. The matrices Q1 and Q2 consist
of the first NT and last NR−NT orthonormal columns of Q
respectively. ¿From (3) and (4), we have

d2 − ∥∥Q2
Hy

∥∥2 ≥ ∥∥Q1
H −Rs

∥∥2
. (5)

Define d′2 = d2−‖Q2
Hy‖2 and z = Q1

Hy, and (5) becomes

d′2 ≥
NT∑

i=1


zi −

NT∑

j=i

ri,jsj




2

, (6)

b
1

b
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Fig. 1. The diagram shows the idea of finding a proper radius. Assume
BPSK and a 2× 2 channel matrix for simplicity.

which is the primary working equation in SD to decide
whether a lattice point falls inside D and hence is qualified as
a candidate. Next, the set of all candidates is searched and the
one closed to the received signal vector is chosen to generate
the decoding result [1], [3], [9], [14].

If H, y, s, and n are complex-valued, they can be written
as

H =
[<{H} −={H}
={H} <{H}

]

Y =
[<{y}
={y}

]

S =
[<{s}
={s}

]
(7)

where <{·} and ={·} represents the real part and image part
respectively. Then we can use (7) in substitution for H, y, and
s in (3) and (4). Other modification schemes exist for complex
values in certain modulation schemes [4], [15]; our proposed
SD algorithm should work well with these alternatives.

III. THE PROPOSED SD ALGORITHM

To make the SD algorithm a practical choice for MIMO
receiver design, two important modifications are proposed. The
first is for finding a proper value for d and the second is a
pseudo-antenna augmentation scheme to expand the applica-
ble scope of SD. These modifications are discussed in the
following two subsections.

A. Setting the Radius d

In drawing the decision regions for an ML detector, the
decision boundaries lie on the mid-lines between neighboring
lattice points. If the shortest decision distance is used as the
initial value of d, it is most likely that the SD algorithm finds
one and only one candidate in the hypersphere D when the
noise is small enough that no decision errors occur (this is the
case for most of the time).
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The shortest decision distance can be easily calculated for
certain highly regular modulation constellations. For instance,
the shortest decision distance in a square lattice is

min
i 6=j

1
2

∥∥∥(Hsi −Hsj)
∥∥∥ (8)

where si and sj ∈ ONT are the transmitted symbol vectors.
For square QAM, the minimum decision distance can be found
as

min
ki,li

1
2

∥∥∥
NT∑

i=1

[
(−1)ki − (−1)li

]
(H)i

∥∥∥ (9)

where (H)i denotes the i-th column of H, ki and li takes on
the value 0 or 1, and the vector [k1, ..., kNT

] 6= [l1, ..., lNT
].

The expression of minimum distance can be further simplified
as

min
k∈(1,··· ,3NT −1)

∥∥∥
NT∑

i=1

ck i(H)i

∥∥∥ (10)

where [ck 1, · · · , ck NT ] represents all possible non-zero vec-
tors whose elements take on values from {0, 1,−1}. Therefore,
to find the minimum decision distance is to find the minimum
norm over a set of random vectors with complex Gaussian
elements.

To find the minimum norm in (10) is straightforward;
nevertheless, it can take a long time if the problem di-
mension is large. Notice that among these random vectors,
(H)1, · · · , (H)NT have the smallest expected norm. As a
result, when NT is large, the minimum norm will likely occur
as the norm of some vector in {(H)1, · · · , (H)NT

}. Therefore,
it is proposed that, instead of the minimum decision distance,
the minimum column norm in (11) is used as the initial value
of d. If no candidate point is found inside the hypersphere,
then a larger value will be adopted and the SD procedure is
repeated until a termination criterion is met. In short, we make

dinitial = min
i
‖(H)i‖, i = 1, ..., NT . (11)

Fig. 1 shows the concept with a simple example of a 2× 2
H. Solid points represent the transmitted QPSK symbols, and
circles are the received lattice points, i.e., the transmitted
symbols multiplied by the channel matrix. Line b1 and b2

represent the mid-lines between neighboring points, and c1 and
c2 are the two decision distances of Hs1. In this example, c1

and c2 are exactly the column norms of H, and c1 is chosen
as the initial radius of hypersphere D.

B. A Pseudo-Antenna Augmentation Scheme

Typical sphere decoders for MIMO channels can only han-
dle the case where NR ≥ NT [1]. These sphere decoders fail
when NT > NR because H does not have full column rank
and therefore cannot be QR-factorized. Here, a modification
is proposed to deal with the case NT > NR.

The idea is to augment H into a matrix with full column
rank. Let the augmented matrix be

H̃NT×NT
=

[
aI(NT−NR) 0(NT−NR)×NR

H

]
(12)

s1

s2
x

x

h1

h2

a

n

n

y

0

Fig. 2. The diagram of an augmented 2× 2 MIMO system.

in which the bottom NR rows comprise the original channel
matrix, I is the identity matrix, and a is either a small real or
complex number depending on the modulation scheme. The
pseudo received vector is defined as




as1

...
asNT−NR

NT∑

i=1

h1isi + n1

...
NT∑

i=1

hNR,isi + nNR




(13)

and the noise vector is augmented as

ñNT×1 =




−as1

...
−asNT−NR

n1

...
nNR




=
[
n′(NT−NR)×1

nNR×1

]

(14)

to make the final augmented received vector to be

ỹNT×1 =
[
0(NT−NR)×1

yNR×1

]

= H̃s + ñ.

(15)

By this augmentation, H̃ has full column rank and can be
decomposed via standard QR factorization algorithms. The
SD algorithm can now be applied with similar effectiveness
for the case NT > NR. This method is similar but more
straightforward than the method in [12] in which an augmented
diagonal matrix αI is added to the matrix HHH to make it
full-rank. More comparisons will be made when the effect of
a is analyzed.

The concept of pseudo-antenna augmentation is shown in
Fig. 2 where a simple 2 × 1 MIMO channel is augmented
to a 2 × 2 MIMO channel. Fig. 3 shows the space diagram
of the transmitted symbol vectors (top), the pseudo received
signals (middle), and the augmented received signals (bottom).
From (13) and (15), the smaller the value of a is , the closer
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as1

h1 1 2 2s +h s

(b1,a)(b2,a)

(b4,-a) (b3,-a)

s1

s2

h1 1 2 2s +h s

b1b4 b2b3

Fig. 3. The space diagram of the transmitted symbol vectors (top), the pseudo
received signal vectors (middle), and the augmented received signal vectors
(bottom) with the 2 × 1 MIMO channel. Assume BPSK and h1 > h2 > 0
for simplicity. Define b1 = h1 + h2, b2 = h1 − h2, b3 = −h1 + h2,
b4 = −h1 − h2 for convenience.

the augmented and pseudo received signals become. This
observation is also shown in Fig. 3.

The effect of the value taken by a can be further analyzed
as follows. The set of constellation points resulting in received
signals inside the hypersphere D is found as

sD =
{
x
∣∣∣d2 ≥ ∥∥ỹ − H̃x

∥∥2
}

. (16)

The inequality in (16) can be expanded to

d2 ≥ |a|2
NT−NR∑

i=1

|si|2 +
NR∑

i=1

∣∣∣
NT∑

j=1

hij(sj − xj) + ni

∣∣∣
2

. (17)

The lower bound of the radius d with which the correct symbol
s lies in the hypersphere, i.e., x = s ∈ sD, depends on the
noise condition and a. Assume QPSK for simplicity, then
|s1|2 = ... = |sNT−NR |2 = 2 and the lower bound in (17)
satisfies

d2
LB = 2(NT −NR)|a|2 +

NR∑

i=1

|ni|2. (18)

The expected lower bound is thus

E{d2
LB} = 2(NT −NR)|a|2 + NRσ2. (19)

As can be seen clearly in (18), if a is small, the lower bound
on the radius with which the correct symbol vector can be

as1

h1 1 2 2s +h s
p1

z1

z2

Fig. 4. The space diagram of the hypershpere D when a is very large.
Assume BPSK and a 2× 1 MIMO channel for simplicity.

included is essentially independent of a. But if a is large, the
radius needs to be large.

Fig. 4 shows the diagram of a simple example with a 2× 1
MIMO channel, BPSK, and a large a. Let point p1 be the
augmented received signal and z1 the pseudo received signal.
The total number of possible received points is 4. As is said
before, the radius of the sphere needs to be large. However,
when setting the radius, it is extremely difficult for the decoder
to find a radius barely large enough to include the lattice point
corresponding to the correct symbol while avoid including
wrong lattice points in the sphere simultaneously. In Fig. 4,
the sphere not only contains the correct point z1 but also z2. If
a more sophisticated modulation such as 64-QAM is used, and
the number of transmit antenna is larger, much more lattice
points will inevitably be included in the large hypershpere, and
the efficiency of SD will be greatly diminished. Therefore,
a should be as small as possible, as long as the numerical
stability is maintained in the computing process. With a small
a, the complexity of SD is essentially independent of a and
the same as that of usual SD algorithms, i.e., roughly O(NT

3)
when SNR is high [1]. The efficiency of the method in [12],
on the contrary, depends on the choice of α, and the optimal
choice of α depends on noise condition and is not easy to find.

IV. SIMULATION RESULTS

Fig. 5 shows the performance of SD compared to that of
ML receiver. The value of a is set to be very small and the
BER performance is equal to that of a brute-force ML receiver.

Fig. 6 shows the average number of candidates found in D
when different values of a and Eb

N0
and the proposed initial

radius are used. Notice that when a is getting smaller, say,
less than 0.1 + 0.1j, the number of candidates found in D
is essentially independent of a and is only function of SNR.
Also notice that when SNR is moderately large, e.g., in the
applications of spatial multiplexing, the number of candidates
is close to 1. This means the proposed SD algorithm is
operating in a very efficient manner.

505



0 2 4 6 8 10 12 14 16 18 20 22 24

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
E

R

ML
SDA

Fig. 5. The BER curves of SD and brute-force ML detector. Assume NT =
6, NR = 3, QPSK, spatial multiplexing, and a = 0.1 + 0.1j.
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Fig. 6. The average number of candidates inside sphere D with different
ralues of value of a and Eb
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. Assume NT = 6, NR = 3 and QPSK

modulation.

V. CONCLUSION

SD algorithm can significantly lower the computational cost
of ML detectors by reducing the number of possible candidates
before executing the final step of exhaustive search. In this
paper, two special features are introduced to enhance the
capability of SD. First, a radius-setting method is used to
keep the number of candidate lattice points consistently low.
Second, a pseudo-antenna augmentation scheme is employed
to cope with the situation where the number of transmit
antennas is large than that of receive antennas, which happens
often in real-world applications. In short, the modified SD
algorithm constitutes an attractive option for practical MIMO
receiver design.
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