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Abstract - This work describes a new 3D cone-shape
illumination model (CSIM) and a robust background subtraction
scheme involving shadow and highlight removal for indoor-
environmental surveillance. Foreground objects can be precisely
extracted for various post-processing procedures such as
recognition. Gaussian mixture model (GMM) is applied to
construct a color-based probabilistic background model (CBM)
that contains the short-term color-based background model
(STCBM) and the long-term color-based background model
(LTCBM). STCBM and LTCBM are then proposed to build the
gradient-based version of the probabilistic background model
(GBM) and the CSIM. In the CSIM, a new dynamic cone-shape
boundary in the RGB color space is proposed to distinguish
pixels among shadow, highlight and foreground. Furthermore,
CBM can be used to determine the threshold values of CSIM. A
novel scheme combining the CBM, GBM and CSIM is proposed
to determine the background. The effectiveness of the proposed
method is demonstrated via experiments in a complex indoor
environment.

Index Terms - background subtraction, Gaussian mixture
model, shadow removal, surveillance

I. INTRODUCTION

Background subtraction is an important technology that
can be applied in numerous applications, including
surveillance, robot vision, objected-based coding, image
database, and video teleconferencing. A reference image is
generally used to perform background subtraction. The
simplest means of obtaining a reference image is by averaging
a period of frames [1]. However, it is not suitable to apply
time averaging on the applications for the indoor environment.
A good background model must also handle the effects of
illumination variation, and the variation from background and
shadow detection. That is, a single model cannot represent the
distribution of pixels with twinkling values.

Two approaches were generally adopted to solve the
above problems. The first approach is termed the parametric
method, and uses single Gaussian [2] or mixtures of Gaussian
[3] to model the background image. The second approach is
called the non-parametric method, and uses the kernel
function to estimate the background density function [4].

Another important consideration is the shadows and
highlights. Numerous recent studies have attempted to detect
the shadows and highlights. Stockham [5] proposed that a

pixel contains both an intensity value and a reflection factor
and a decadent factor should be estimated to remove the
shadow. Rosin [6] proposed that shadow is equivalent to a
semi-transparent region, and uses two properties for shadow
detection. Moreover, Levine [7] tried to convert the RGB
color space to the rgb color space (chromaticity coordinate).
However, lightness information is lost in the rgb color space.
To overcome this problem, a lightness measure is used at each
pixel [7]. However, the static thresholds are unsuitable for
dynamic environment.

Indoor surveillance applications require solving
environmental changes and shadow effects. Despite the
existence of abundance of research on individual techniques,
as described above, few efforts have been made to investigate
the integration of environmental changes and shadow effects.
The contribution of this work is the cone-shape illumination
model (CSIM) and the scheme to combine the color-based
background model (CBM), gradient-based background model
(GBM) and CSIM. In CSIM, a new dynamic cone-shape
boundary in the RGB color space is proposed for efficiently
distinguishing a pixel from the foreground, shadow and
highlight. A selection rule combined with the short-term
color-based background model (STCBM) and long-term
color-based background model (LTCBM) is also proposed to
determine the parameters ofGBM and CSIM. Fig. 1 illustrates
the block diagram of the overall scheme.

The remainder of this paper is organized as follows.
Section II describes the statistical learning method used in the
probabilistic modeling and defines STCBM and LTCBM.
Section III then proposes CSIM using STCBM and LTCBM
to classify shadows and highlights efficiently. A hierarchical
background subtraction framework that combined with color-
based subtraction, gradient-based subtraction and shadow and
highlight removal was then described to extract the real
foreground of an image. Experimental results are presented to
demonstrate the performance of the proposed method in
complex indoor environments in section IV. Finally, Section
V presents conclusions.

II. BACKGROUND MODELING

Our previous investigation [8] studied a CBM to record
the activity history of a pixel via GMM. However, the
foreground regions generally suffer from rapid intensity
changes and require a period of time to recover themselves
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when objects leave the background. In this work, STCBM and
LTCBM are defined and applied to improve the flexibility of
the gradient-based subtraction that proposed by Javed et.al [9].
The features of images used in this work include color and
gradient. This study assumes that the density functions of the
color and gradient information are both Gaussian distributed.

A. Color-based Background Modeling
First, each pixel x is defined as a 3-dimensional vector

(R, G, B) at time t. N Gaussian distributions are used to
construct the GMM, which is described as follows:

N~~~~~~~~~~
f(x A)=w 1 exp(- (x- ) Z'(x H)) (1)F1(24 _i 2

where A represents the parameters ofGMM,
N

A= {wi,i,yi} ,i=1,2,...,Nandywi =1
i=l

The next step is calculating the GMM parameters A so
that the GMM can match the distribution of training feature
vectors with minimal errors. A common method for
calculating A is the expectation maximization (EM)
algorithm. Supposing a feature vector setx = {x1, 2,...XIX. is
gathered from m image frames, then the GMM parameters A
can be obtained by iteratively using the E-step equation and
M-step equation in the EM algorithm [8]. Moreover, this
study uses the K-means algorithm before the EM algorithm
iterations to accelerate the convergence.

B. Model Maintenance oJLTCBM andSTCBM
According to the above section, an initial color-based

probabilistic background model is created using the training
data with N Gaussian distributions. However, when the
history of background changes is recorded over time, it is not
flexible to model the background with exact N Gaussian
distributions. Kaew et al [3] proposed a method of sorting the
Gaussian distributions based on the fitness value wi I i

(i 2I ), and extracting a representative model with a

threshold value B0O To maintain the representative model and
improve the flexibility of the background model
simultaneously, LTCBM is defined with extra N new
Gaussian distributions (LTCBM contains 2N distributions), an
arrangement inspired by [3]. After sorting the first N Gaussian
distributions with fitness value, b ( b < N ) Gaussian
distributions are extracted with the following criterion:

b (3)B = argmin wj > Bo 3
b j=l

The first b Gaussian distributions are defined as the
ECBM to be the criterion to determine the background.
Meanwhile, the remainders (2N-b) of the Gaussian
distributions are defined as the CCBM for dealing with the
background changes. Finally, LTCBM is defined as the
combination of the ECBM and CCBM.

A new pixel value is considered as background when it
belongs to any Gaussian distribution in ECBM and has a
probability not exceeding 2.5 standard deviations away from
the corresponding distribution. If none of the b Gaussian
distributions match the new pixel value, a new test is
conducted by checking the new pixel value against the
Gaussian distributions in CCBM. The parameters of the
Gaussian distributions are updated via the following
equations:

w' = (1-a)wt + ap(wt Xi ) (4)
mi (1 p)m+pXi
t+(1 p)L+p(X + m )T (X m t+1)

p =ag(Xt+1 mt,t)

p and a are termed the learning rates, and determine

the update speed of LTCBM. Moreover, p(w t 1t+) results
from background subtraction which is set to 1 if a new pixel
value belongs to the ith Gaussian distribution. If a pixel value
does not belong to any of the Gaussian distributions in CCBM
and the number of Gaussian components in CCBM is below
(2N-b), a new Gaussian distribution is added with three
parameters: the current pixel value as the mean, a large
predefined value as the initial variance, and a low predefined
value as the weight. Otherwise, the (2N-b)th Gaussian
distribution in CCBM is replaced by the new one. After
updating the parameters of the Gaussian components, all
Gaussian distributions in CBM are resorted by recalculating
the fitness values.

Unlike LTCBM, STCBM is defined in this study to
record the background changes during a short period B1. First,
the corresponding Gaussian distribution of a new pixel is
estimated by testing the new pixel with LTCBM. Given a
pixel value set pV= {pl,P2 ...Pk, PB, collected during a

period B1 , the corresponding Gaussian distribution set

CG = 2g1..19B,, is calculated by comparing the pixel
value set with LTCBM. The histogram of CG is then given
using the following equation:
HCG (Z) Zk 8(Z gk))B (5)
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The order of the Gaussian distributions in LTCBM may
change after re-sorting. A transfer flag set FCG is defined for
adjusting the bin order in HCG (z) , as follows:

FCG = {F,j = 1,...,B,JF c {- 2N + 1,...,0,1,...2N - 11> (6)
After adjusting the order of the bins inHCG' the transfer

flag set FCG is reset until the next update is performed. When
the (2N),h Gaussian distribution is replaced with a new
Gaussian distribution, g1 is set to 2N, F. to 1 and HCG(2N)
to zero. A threshold value B2 is used to determine the short-
term tendency of background changes. In this work, B1 is
assigned a value of 300 frames and B2 is 0.8. If the value of
HCG (k) exceeds 0.8, k is used for the representative
background component in the STCBM, otherwise, STCBM
provides no further information on background selection.

C. Gradient-Based Background Modeling
Javed et.al [9] developed a hierarchical approach that

combines color and gradient information to solve the problem
about rapid intensity changes. The kth Gaussian component of
LTCBM is chosen to obtain the gradient information. Javed
et.al [9] proposed that the kth Gaussian component is the
highest weighted Gaussian distribution, which represents the
background color at time t. The choice of k in [9] is similar to
selecting k based only on ECBM and it leads to the loss of the
short term tendencies of background changes. When a new
Gaussian distribution is added into the background model, it is
not selected owing to its low weighting value. Consequently,
the accuracy of the gradient-based background model is
reduced for that the gradient information is not suitable for
representing the current gradient information.

To solve this problem, both STCBM and LTCBM are
considered in selecting the value of k for developing a more
robust gradient-based background model and maintaining the
sensitivity to short-term changes. When STCBM can provide
a representative background component (says the k th bin in
STCBM), k is set to k rather than the highest weighted
Gaussian distribution. The gradient-based background model
then can be defined as:

F (Am,Ad) 2Hk Am 1 2(1 (7)

where the details are described in [9].

III. BACKGROUND SUBTRACTION WITH SHADOW REMOVAL

This section describes shadows and highlights removal,
and proposes a framework that combines CBM, GBM, and
CSIM to improve background subtraction efficiency.

A. Color-based Background Modeling
Shadows and highlights are two important phenomenons

that should be considered in most cases. The regions
influenced by illumination changes are classified as the

foreground if shadow and highlight removal is not performed
after background subtraction.

Hoprasert [10] proposed a method of detecting highlight
and shadow by gathering statistics from collected images.
Brightness and chromaticity distortion are used with four
threshold values to classify pixels into four classes. The
method that used the mean value as the reference image in
[10] is not suitable for dynamic background. Furthermore, the
threshold values are estimated based on the histogram of
brightness distortion and chromaticity distortion with a given
detection rate, and are applied to all pixels regardless of the
pixel values. Therefore, it is possible to classify the darker
pixel value as shadow. Furthermore, it cannot record the
background history.

This paper proposes a 3D cone model (Fig.2) and
combines LTCBM and STCBM to solve the above problems.
In the RGB space, a Gaussian distribution in the LTCBM
becomes an ellipsoid whose center is the mean of the
Gaussian component, and the length of each principle axis
equals 2.5 standard deviations of the Gaussian component. A
new pixel I(R, G, B) is considered to belong to background if
it is located inside the ellipsoid. The chromaticities of the
pixels located outside the ellipsoid but inside the cone (formed
by the ellipsoid and the origin) resemble the chromaticity of
the background. The brightness difference is then applied to
classify the pixel as either highlight or shadow.

Hig gbli

Fig. 2 The proposed 3D cone model in the RGB color space

The threshold values alow and ahigh are applied to avoid

classifying the darker pixel value as shadow or the brighter
value as highlight, and can be selected based on the standard
deviation of the corresponding Gaussian distribution in CBM.
Because the standard deviations of the R, G and B color axes
are different, it is difficult to classify the pixel using the angles
in the 3D space. Therefore, the 3D cone is projected onto the
2D space to classify a pixel using the slope and the point of
tangency. Fig. 3 illustrates the projection onto the RG space.I~~~~~ R
Fig. 3 2D projection of the 3D cone model from RGB space onto RG space

Let a =2.5 * oR and b =2.5 *aG denote the lengths of
major and minor axis. The ellipse center is (P R fIG)P , and
the elliptical equation is described as the equation (8):
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(R -R)2 /a2+(G J) lb2 = 1 (8)
The line G = mR is assumed to be the tangent line of the
ellipse. Equation (8) can then be solved using the line
equation G = mR with the following equation:

(2uR IUG V(a2 2)2 4(2uRAG )(b I4) (9)
1,2 ~~2(a2 _ 4)
A matching result set is given by Fb = {fb, ,i = 1,2,3}

where fbi is the matching result of a specific 2D space. A pixel
vectorI = [IR IG ,IB] is then projected onto the 2D spaces of
R-G, G-B, and B-R. The pixel matching result is set to 1 when
the slope of the projected pixel vector is between ml and m22
Meanwhile, if the background mean vector is
E = [JIR JIUGJI,B ] , the brightness distortion a,b can be
calculated via the following equation

ab = cos(tan1( -tan'( /'G E (10)
FIR+IB CPR±LIB

The image pixel is classified as highlight, shadow or
foreground using the matching result setFb, the brightness
distortion ab and the following criteria:

F Shadow ZFb = 3 and rlow < ab <1 else
C(i) = IHighlight : Fb =3 and 1< ab <Thigh else

Foreground otherwise

When a pixel is a large standard deviation away from a
Gaussian distribution, the Gaussian distribution probability of
the pixel approximately equals to zero. It also means the pixel
does not belong to the Gaussian distribution. By using the
simple concept, rhigh and TO can be chosen using NG
standard deviation of the corresponding Gaussian distribution
in CBM and are described as

Thigh =1 + V(NG TR ) +(NG .UG )2 +(NG ( B ) * cosOr * L, (12)

0low = I-V(NG '7R ) +(NG UG ) +(NG CB ) * cosOr * L,
where

0,= 0E -S =tan-' JG ) tan'1( CG
V/R+ /1 75 + 07

L1 (=)2±R+(±)GY+±(u)2
B. Color-based Background Modeling

A hierarchical approach inspired by the method proposed
by Javed et.al [9] was proposed to extract the foreground
pixels. The difference between Javed et.al [9] and the
proposed method is that a pixel classifying procedure using
CSIM is applied before using the connected component
algorithm to group all the foreground pixels in C(I). The
robustness of background subtraction is enhanced due to the
better accuracy in aRa

Given a new image frame I, the 7color-based backgound
model is set to LTCBM and STCBM, and gradient-based
model is F k(A MAd). C(I) is defined as the result of color-

based background subtraction using CBM. G(I) is defined as
the result of gradient-based background subtraction. C(I) and

G(I) can be extracted by testing every pixel of frame I using
the LTCBM and Fk(Am ,Ad). Moreover, C(I) and G(I) are
both defined as a binary image, where 1 represents the
foreground pixel and 0 represents the background pixel. The
foreground pixels labeled in C(I) are further classified as
shadow, highlight and foreground by using the proposed 3D
cone model. C' (I) can then be obtained from C(I) after
transferring the the foreground pixels which have been labeled
as shadow and highlight in C(I) into the background pixel.
Moreover, the foreground pixels can be extracted using the
following equation
Z (ij)c8R, (VI(i, j)G(i, j)) / Ra J> PB (13)
where VI denotes the edges of image I and R]a represents
the number of boundary pixels of region R

IV. EXPERIMENTAL RESULTS

The video data for experiments was obtained using a
SONY DVI-D30 PTZ camera in an indoor environment. The
same threshold values were used for all experiment NG =15,
a = 0.002, PB =0.1I, Bo = 0.7, B1 = 300 and B2 =0.8 .
Meanwhile, the computational speed was around five frames
per second on a P4 2.8GHz PC, while the video had a frame
size of 320 x 240.

A. Experimentsfor Local Illumination Changes
The first experiment was performed to test the robustness

of the proposed method about the local illumination changes.
Local illumination changes resulting from desk lights occur
constantly in indoor environments. A video clip containing
several changes of desk light is collected to simulate local
illumination changes. Fig.4(a) shows 15 representative
samples of the video clip. Meanwhile, Fig.4(b) shows the
classified result of the foreground pixel and Fig.4(c) displays
the result of background subtraction to demonstrate the
robustness of the proposed method. The desk light was turned
on at the 476th frame and its brightness increased until the
1 000th frame. The overall picture becomes the foreground
regions of the corresponding frames in Fig.4(b) owing to the
lack of such information in CBM. However, the final result of
background subtraction of the corresponding frames in
Fig.4(c) is still good owing to the proposed scheme combining
CBM, CSIM and GBM. The desk light was then turned off at
the 1030th frame, and became darker until the 1300th frame.
The illumination changes are all modeled into LTCBM when
the background model records the background changes. A
new representative Gaussian distribution in ECBM is
constructed owing to that new background information
involved in the new collected frames between the 476th and
the 1000th frame became the dominant. Consequently, the area
of the red, blue and green regions reduces after the 1300th
frame.
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Fig. 4 The results of illumination changes with a desk light, B means the
background image and the number below the picture is the index of frame, (a)
original images, (b) The results of pixel classification, where red indicates the
shadow, green indicates the highlight and blue indicates the foreground, (c)

the results of background subtraction with shadow removal using the proposed
method, where dark indicates the background and white indicates the

foreground.
Table 1 compares the proposed scheme with the method

proposed in [10]. Comparison criteria are identified by
labeling the foreground regions of a frame manually. CSIM
can be constructed based on the appropriate representative
Gaussian distribution chosen from LTCBM and STCBM. The
ability to handle illumination variation and the accuracy of the
background subtraction are improved and the results are
shown in Table 1.

B. Experimentsfor Global Illumination Changes
The second experiment was performed to test the

robustness of the proposed method in terms of global
illumination changes. The image sequences consist of
illumination changes where a fluorescent lamp was turned on
at the 381th frame and more lamps were turned on at the 430th
frame. The illumination changes are then modeled into
LTCBM when the proposed background model recorded the
background changes. Notably the area of the red, blue and
green regions decreases at the 580th frame. When the third
daylight lamp is switched on in the 650th frame, it is clear that
less blue regions appear at the 845th frame owing to
illumination changes having been modeled in the LTCBM.
However, the final results of background subtraction shown in
Fig.5(c) are all better than those of pure color-based
background subtraction shown in Fig. 5(b). Table 2 shows the
comparison results between the proposed scheme and that
proposed in [10]. The comparison demonstrates that the
proposed scheme is robust to global illumination changes.

C. Experimentsfor Foreground Detection
In the third experiment, a person goes into the monitoring

area, and the foreground region can be effectively extracted

regardless of the influence of shadow and highlight in the
indoor environment. Owing to the captured video clip having
little illumination variation and dynamic background
variation, the comparison of the recognition rate of final
background subtraction between the proposed method and that
of Hoprasert [10] reveals that both methods are about the
same, as listed in Table 3.

D. Experimentsfor STCBM
The final experiment shows the advantage of adding

STCBM. Initially, the doll is regarded as foreground at the
360th frame, and at the 560th frame, the foreground region
becomes background owing to the LTCBM. Without adding
STCBM, when a hand is placed above the doll at the 590th
frame, the foreground regions at the 670th frame remain the
same as those at the 590th frame, as shown in Fig.7(b). This
experiment demonstrates the efficiency of STCBM that a
representative Gaussian component of CBM can be selected
by giving consideration to long-term tendency and short-term
tendency. Besides, the advantage of STCBM helps to reduce
the computing time used in GBM and increase the recognition
rate of foreground detection.

TABLE 1
THE ROBUSTNESS TEST BETWEEN THE PROPOSED METHOD AND THAT

PROPOSED BY HOPRASERT[ 12] VIA LOCAL ILLUMINATION CHANGES WITH A
YELLOW DESK LIGHT

Frame 476 480 500 580 650
P* Hoprasert* 100 194.1 99.8 136.4 99.9 22.5 99.9 15.4 83.9 123.4
Frame 750 900 1000 1030 1120
P* Hoprasert* 91.5 131.5 93.1 130.9 95.4 34.3 97.8 38.3 99.2 132.9
Frame 1150 1300 1330 1400 1600
P* IHoprasert* 93.8 150.7 99.9 199.8 93.3 192.4 96.2 113.0 99.3 134.7

*: The value in the table means the recognition rate that correct background
pixels in a frame divide total pixels in a frame(%). P means the method
proposed in this work and Hoprasert means the proposed used in [10].

(a)

580 650 700 845
(b)

910 1000 1050 1110

(c)
Fig. 5 The results of global illumination changes with fluorescent lamps, (a)

original images, (b) The results of pixel classification, (c) The results of
background subtraction with shadow removal using our proposed method
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TABLE 2
THE COMPARISON BETWEEN THE PROPOSED METHOD AND THAT IN [ 12] VIA

GLOBAL ILLUMINATION CHANGES WITH FLUORESCENT LAMPS
Frame 381 (1**) 385 (1**) 405 (1**) 430 (2**) 560 (2**)
P*|Hoprasert* 98.2 193.5 88.4 182.1 83.9 178.2 56.5 168.4 66.9 169.8
Frame 565 (2**) 570 (2**) 580 (2**) 650 (3**) 700 (3**)
P* Hoprasert* 79.9 169.3 96.9 169.7 99.1 |69.6 99.2 145.6 99.5 146.2
Frame 845 (3**) 910 (3**) 1000 (3**) 1050 (3**) 1110 (3**)
P*|Hoprasert* 99.6 146.2 99.4 153.6 99.9 157.9 99.9 160.8 99.6 160.3
*: the same as * in Table 1
**: The number inside the parentheses indicates the number of fluorescent
lamps that have turned on.

B 380 450 530 590 620

(a)

68() 70)0) 735 755 84)

B 380 450 530 590 620

(b)

680 700 735 755 840

B 380 450 53J 5Y9J 620

(c)

680 700 735 755 840
Fig. 6 The results of foreground detection, (a) original images, (b) The results
of pixel classification, (c) The results of background subtraction with shadow

removal using our proposed method.

TABLE 3
THE COMPARISON BETWEEN THE PROPOSED METHOD AND THAT PROPOSED

BY HOPRASERT[12] VIA FOREGROUND DETECTION
Frame 380 450 530 590 620
P* Hoprasert* 90.5 189.2 86.5 85.8 89.4 188.9 88.5 87.7 88.7 |88.8
Frame 680 700 735 755 840
P* |Hoprasert* 91.1 190.6 85.6 85.2 82.8 80.7 92.4 192.5 100 199.6
*: the same as * in Table 1

(c)
Fig. 7 The results of the advantage of STCBM, (a) original images, (b) The

results of background subtraction without STCBM, (c) The results of
background subtraction with STCBM.

V. CONCLUSIONS

This work addressed the problem of subtracting the
background from an input image using three models, namely
the color-based background model (CBM), gradient-based
background model (GBM) and cone-shape illumination model
(CSIM). In the CBM, the elected color-based background
model (ECBM) and candidate color-based model (CCBM) are
defined to increase the ability of recording a long period of
background changes. The short-term color-based background
model (STM) and long-term color-based background model
(LTM) are defined to improve the flexibility and robustness of
the gradient-based background subtraction. Most important,
CSIM is proposed to extract the shadow and highlight in this
paper with a 3D cone-shape boundary and combined with
CBM in the RGB color space. The threshold values Thigh and

Tiow of CSIM can be calculated automatically using the
standard deviation of the Gaussian distribution selected using
STCBM and LTCBM. The proposed 3D cone model is
compared with the nonparametric model in a complex indoor
environment. The experimental results show the effectiveness
of the proposed scheme for background subtraction with
shadow and highlight removal.
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