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SUMMARY 

Clements’ introduced a method for calculating the esti- 
mators of two classical process capability indices (PCI), 
C, and C , for non-normal Pearsonian populations. Pearn 

mation estimators of PCIs for non-normal populations to 
the two more advanced PCIs, C,, and C,,, developed by 
Chan et a/.’ and Pearn et aL4 In this paper, we consider 
a different approach for calculating the estimators of the 
four PCIs. The new approach may be viewed as a modifi- 
cation of Clements’ method. Comparisons between Clem- 
ents’ and the proposed new methods are also provided. 
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1 .  INTRODUCTION 

Process capability indices (PCIs), whose purpose is to 
determine whether a manufacturing process is capable of 
producing items within a specified tolerance, have 
received substantial research attention in recent years. 
Several capability indices have been proposed to assess 
process performance. Examples include the two widely 
used indices in manufacturing industries, c, and c p k ,  and 
the two more advanced indices, C,, and Cpmk. Dis- 
cussions and analysis of these indices on estimation and 
construction of confidence intervals have been the focus of 
many statisticians and quality researchers (see References 
3-6, and many others). Most of the investigations, how- 
ever, depend heavily on the assumption of normal varia- 
bility. 

In a pioneering paper, Clements’ proposed a method 
for calculating the estimators of two classical process capa- 
bility indices (PCI), c, and Cpk,  for non-normal Pearson- 
ian populations. The method is essentially based on a set 
of available sample data for a well in-control process using 
estimates of the mean, standard deviation, skewness and 
kurtosis. Under the assumption that these four parameters 
determine the type of the Pearson distribution curve, 
Clements’ used the tables provided by Gruska et al.’ for 
percentages of the family of Pearson curves as a function 
of skewness and kurtosis. In this paper, we investigate 
Clements’ method, and propose another approach for 
calculating the estimators of PCIs. The new method may 
be viewed as a modification of Clements’. Numerical 
examples are provided to compare Clements’ and the 
proposed new methods. 

2. CLEMENTS’ METHOD 

To estimate the value of the index C, = (USL - LSL)/ 
6u, where USL and LSL are upper and lower specification 
limits, and u is the standard deviation of the process, 
Clements replaced 6u by Up - L ,  where Up is the 99465 
percentile and L ,  is the 0.135 percentile determined from 
Gruska et a1.k table’ for the particular values of skewness 
and kurtosis which are calculated from the sample data. 
The idea behind such replacements is to mimic the prop- 
erty of the normal distribution for which the tail prob- 

ability outside the * 3 u  limits from c~ is 0-27 per cent thus 
ensuring that if the calculated value of C, = 1 (assuming 
that the process is well-centred) the probability that the 
process is outside the specification limits (LSL, USL) will 
be negligibly small. The same approach is used for the 
index c p k ,  = minimum { (USL - p ) / 3 u ,  ( p  - LSL)/3u} 
where p is the process mean estimated by the median, 
M, and the two 3uare estimated by Up - M and M - Lp 
for the right-hand and left-hand sides, respectively. Clem- 
ents’ estimators for C, and c p k  are thus defined as 

USL - LSL c, = 
UP - LP 

USL - M M - LSL 
U p - M ’  M - L ,  c p k  = minimum 

Pearn and Kotz’ applied Clements’ method to obtain 
estimators of process capabilities for non-normal Pearson- 
ian populations to the two more advanced capability indi- 
ces, cpm3 and CP,,,~.~ Those estimators are 

USL - LSL 
cpm = 6d{ [( Up - L,)/6I2 + ( M  - T)’} 

USL - M 
{ 3 d { [ ( U p -  M ) / 3 ] ‘ + ( M -  T)’}’ 

Cpmk = minimum 

M - LSL 1 
3 d { [ ( M  - L,)/3]’ + ( M  - T)’}J 

The corresponding Vannman’s superstructures for the 
above four estimators may be written as 

USL - LSL 
6d{ [ ( Up - L,)/6]’ + v ( M  - T ) 2 }  

t , ( U ,  v )  = ( 1  - u )  

USL - M 
+ u x min { 3 d { [ ( U P - M ) / 3 ] ’ + v ( M -  T)’}’ 

M - LSL 
3 d { [ ( M - L P ) / 3 ] ’ + v ( M -  T)’} 

It is easy to verify that 

Although cases with a centred target (T = (USL + 
LSL)/2 ) are quite common in practical situations, there 
are other situations in which the target does not fall on 
the midpoint of the specification interval (the target is 
uncentred). For such cases, Vannman’s superstructure* 
can be easily generalized to the following: 

ti(,, v )  = 

min { USL - T ,  T - LSL} + 
(’ - ’ )  3 d {  [( Up + L,)/6I2 + v ( M  - T)’} 

(USL - T )  - I M  - 7l { 3 d { [ ( U ,  - M)/3]’ + v ( M  - T)’}’ 
u x min 

( T -  LSL) - JM - 4 
3 d { [ ( M  - L,)/3I2 + v ( M  - T)’} 

Consequently, by setting u = 0 and 1, v = 0 and 
1, we obtain the following four estimators for the 
indices, Cp, Cpk,  C,, and Cpmk, respectively: 
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minimum { USL - T, T - LSL} 
CE(0,O) = 

(UP - L,)/2 
(USL - T )  - IM - q C;(I, 0) = minimum 7 

1 (T-LSL)-IM-T[1 
M - L, 

minimum { USL - T, T - LSL} 
CE(0,l) = 

q(l,l) = 

3 m u p  - LP)/612 + ( M  - T)’} 

(T-LSL)-IM- 7l 
3V{ [ (M - L,/3]’ + (M - T)’} 

3 .  A NEW ESTIMATING METHOD 

In this section, we consider a new estimation method 
to obtain estimators of C and c p k  for non-normal 
Pearsonian populations. fnstead of estimating the 
two 3 a  by Up - M and M - L,, respectively, we 
replace the two 3a by (Up - L,)/2. The new esti- 
mators of C, and c p k  can be written as 

- USL-LSL c, = 
UP - LP 

min{USL - M, M - LSL} 
dipk = 

Applying the same method to the two more 
advanced (second and third generations) of PCIs, 
C,, and Cpmk, we obtain 

USL - LSL 
cpm = 6 d {  [( Up - L,)/6]’ + (M - T)’} 

minimum{ USL - M ,  M - LSL} 
Cpmk = 3 d {  [ ( Up - L,)/6I2 + (M - T)’} 

The corresponding Vannman’s superstructure8 of 
these new estimators follows immediately: 

d - ulM - ml 
6V{ [ ( Up - L,)/6]’ + v (M - T)’} Cp(u, v) = 

It is easy to verify that 

In the case where the target is uncentred, 
Vannman’s superstructure can be easily generalized 
to the following: 

min { USL - T, T - LSL} - ulM - 7l 
3d{ [( Up - LP)/6]’ + v (M - T)’} G(u, v )  = 

Consequently, by setting u = 0 and 1, v = 0 and 
1, we obtain the following four estimators for the 
indices, C,, Cpk, C,, and Cpmk, respectively: 

q, = C(0,l) 
- minimum { USL - T, T - LSL} - 

3 d {  [ ( Up - L,)/6]’ + (M - T)’} 
G m k  = c:(1, 1) 

- minimum { USL - T, T - LSL} - IM - q - 
3V{ [ ( Up - L,)/6]’ + (M - T)’} 

LSL Target USL 

10 12 14 16 18 

A 14-00 11.00 12.00 2.00 1-33 0-33 0.32 
B 16.00 13.00 14.00 2.00 2-67 2-00 2-67 
C 18.00 15.00 16@0 1 .00 1.33 0.32 0.32 

Figure 1. An example of non-normal populations with a centered target 
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A 18.00 12.00 14.00 1.00 1.17 1.00 1.17 
B 18.00 15.00 16-00 1.00 1.00 0.25 0.24 
C 18.00 16-50 17-00 1 -00 0.67 0.06 0-06 

Figure 2. An example of non-normal populations with an unentered target 

4. COMPARISONS 
To compare the new estimating method with Clem- 
ents’, we consider the examples depicted in Figure 
1 and Figure 2. Figure 1 presents an example of 
three different non-normal populations with a 
centred target. The upper specification USL = 18, 
the lower specification LSL = 10. The target value 
T for this particular product is preset ot 14. Figure 
2 presents an example of three different non-normal 
populations with an uncentred target. The upper 
specification USL = 18, the lower specification 
LSL = 10.5. The target value T for this particular 
product is also preset to 14. The worksheet provided 
by Clements (Figure 3 of Reference 1) for calculat- 
ing the estimators of the capability indices may be 
used to compute the values of those indices. 

In Figure 1 we note that all three processes have 
same variabilities. Therefore, the quality of process 
B (which is on-target) is considered to be better 
than those of processes A and C (which are off- 
target). Clements’ estimator, t p k ,  in this case, shows 
no sensitivity to the target at all ( t p k  = 2.00 j o r  
processes A and B). But, the new estimator, Cpk, 
clearly differentiates process B (which is on-target) 
from processes A and C (which are off-target). 

In Figure 2, the quality of process A is considered 
to be better than that of process B. Similarly, the 
quality of process B is considered to be better than 
that of process C. Clements’ estimator, e once 
again, shows no sensitivity to the target at aylin this 
particular case ( t p k  = 1 . 0 ~  for all three processes). 
But, the new estimator, Cpk, clearly differentiates 
process A (which is on-target) from processes B 
and C (which are off-target). 

5. CONCLUSIONS 
In this paper, we first investigated Clements’ method 
for calculating the estimators of the four capability 
indices, Cp, Cpk, Cp, and Cpmk for non-normal 
populations. Then, we considered a new estimating 
method to calculate estimators of the four capability 
indices for non-normal Pearsonian populations. 
Both cases with centred and uncentred targets are 
investigated. Superstructures for those estimators 

were also obtained for centred and uncentred cases. 
The analysis showed that the estimators calculated 
from the proposed new method can differentiate 
on-target processes from off-target processes better 
than those obtained by applying Clements’ method. 
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