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A BS'I 'RA(' /I" 

T h e  goal of dy ,m m i (  h~shing is to design a funct ion and  a tile s t r u c t u r e  |.]I~L| 
allow the  address  space a lh)cated to the  tile to b(, in(:veased and  reduced wi thou t  
r(,.organizing the  whole tile. In tiffs pat>er, we l)rOl)OSe a new d y n a m i c  ha sh ing  
scheme (:ailed climbing hashzng, which requires  no index anti  has  the  g rowth  of a 
tile at a , a t e  of '~ ._~1 per  full exl)ansion,  where  -i, is the  n u m b e r  of pages of the  tile. 
as ( :ompared to a ra te  of two in li,mar h~Lnhing. In (:l imbing ha.siting, when  a split 
oc(:urs, the  re la t ive  posit ion of the  new page (in| o whi(:h a d a t a  ,ecord may move).  
to the  (:mr(mt page. (where  the  d a t a  re('ord is now), is t)rol)orl.ional to the  n u m b e r  
of flfll exl)mlsions. Therefor(~, it st.eros like the  d a t a  record is c l imbing  in the  tih,s. 
(Nole  t.hat a lcvc.l is det ined |ks the  n u m b e r  of full expa, ls ions t h a t  have  h a p p e n e d  
thus  far.) I:'rom our  pe r fo rmance  analysis ,  given a fixed load control ,  the  p roposed  
scheme can achieve near ly  961K. s torage  u t i l iza t ion  as corot)areal to 78(X s to rage  
u t i l i za t ion  by using l inear  h;mhing, which is also verified by a s imula t ion  study. 
Moreover.  the  proposed  schente can  be general ize  l.o have the  g rowth  of a tile 
ill. ~it ra te  of , ,+t-i per  full expans ion ,  where  t is an in teger  larger  them 1. As 

n 

t is increased,  th(: average mmlb(,r  of overflow pages per  home  page is reduced,  
r esu l t ing  m a (tecrea'~e of the  average nu ,nber  of disk accesses for d a t a  retr ieval .  

1. 1NTRODUC'FI( )N 

T h e  goa l  of d y n a m i c  h a s h i n g  is to  (h,sign a f 'un(: t ion a n d  a file s t r u c t u r ( '  

t h a t  c a n  a d a p t  in r e s p o n s e  to  la rge ,  u n p r e d i c t a b l o  c h a n g e s  in t h e  n u m b ( , r  

"This work was support(xt m |)rot by )h(, N~ttiomd Sci('n(:e (fount:i] o[" China und(:r 
,~l'ant NSC-82-040g-E- 110-135. 

INFORMA7"ION S(:IEN(:EN 86:77 !)9 (1!)!)5) 
@ Elsevier Science Iuc., 19!)5 
655 Avenue of the Alllt~ri(:as. New York, Nh' 10•)1(1 

002C)-0255/95/$9.5t) 
s s I.)I 0020-0255(95)00048-T 



78 YE-IN CHANG AND CHIEN-I LEE 

and distribution of keys while maintaining a fast retrieval t ime [1]. Tha t  is, 
the address space allocated to a file can be increased and re.duced without 
reorganizing the whole file. Over the past decade, many dynamic hashing 
schemes haw' been proposed. These dynamic h~shing scheines can be di- 
vided into two classes: one needs an index, the other one does not need an 
index. Extendible hashing [3, 12] and dynamic h~shing [4, 17 i belong to 
the first class. Linear hashing [2, 5--7, 9--11. 13-161 belongs to the second 
cbkss. 

Among these dynamic ha.shing schemes, linear hashing dispenses with 
the. use of an index at the cost of requiring overflow space. The first linear 
hashing scheme, w~s proposed by Litwin [11]. In linear hashing, a file is 
expanded by adding a new page at the end of the file when a split occurs 
and relocating some of the data  records in the split, page to the new page. by 
using a new hashing function. To maintain stable performance through file 
expansions in linear h~kshing, many strategies have been proposed. Among 
these strategies, linear hashing with partial expansions as first presented 
by Larson [5, 7] is a generalization of Litwin's linear hashing [11]. This 
method splits a number of buddy pages together at one time, and the data  
records in each of those buddy pages are redistributed into the. related old 
page and the new added page. 

In this paper, we propose a generalized approach for designing a class 
of dynamic hashing schemes that  require no index and have the growth 
of a file at a rate of ~..1 per full expansion, whe.re n is the number of 

71 

pages of the file, as compared to a rate of two in linear hashing. Since the 
growth rate of the proposed approach is smaller than that  of linear hashing, 
the proposed approach can maintain more. stable performance through file 
expansions arm bet ter  storage utilization than linear hashing. Based on 
this generalized approach, we derive a new dynamic hashing scheme called 
climbin9 hashing. In climbing hashing, when a split occurs, the relatiw'. 
position of the new page (into which a data  record may move), to the cur- 
rent page (where the data  record is now), is proportional to the number of 
full expansions. Therefore, it seems like the data record is climbing in the 
files. From our performance analysis, given a fixed load control, climbing 
hashing can achieve nearly 96%, as compared to 78% storage utilization 
using linear ha~shing, when the keys are unifornfly distributed. (Note that  
a load control denotes the upper bound of the number of new inserted 
records before the next split can occur.) Climbing hashing can have even 
nmch better  storage utilization than linear hashing, when the key are not 
uniformly distributed. Moreover, the proposed scheme can be generalized 
to set the growth of a file at a rate of ,~+t-_____! per full expansion, where t 

n 

is an integer larger than 1. As t is increased, the average number of over- 
flow pages per home page is reduced, resulting in a decrease of the average 
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number of disk accesses for data retrieval (while also d e c r e e i n g  storage 
utilization). 

The  rest of the paper is organized as follows. Section 2 presents the 
generalized approach and climbing ha,shing. Section 3 gives descriptions of 
climl)ing h~h ing .  Section 4 presents the per tormance analysis of climbing 
hashing. Section 5 discusses the simulation results of climbing hashing, 
linear hashing, and lin(,ar hashing with partial expansions. In Section 6, 
we generalize climbing bashing to have the growth of a file at a rate of 
n+t - 1 ,, pe.r full expansion. Finally, Section 7 contains a conclusion. 

2. A CLASS OF  D Y N A M I C  HASHING SCHEMES 

In this section, we first present st generalized approach for designing a 
cl~ss of dynamic  bashing schemes. Next, we derive a new dynamic  hashing 
scheme based on this approach.  

2.1. 771E GENERALIZED APPROA(71 

In a dynamic  hashing schenm without  using an index, the da ta  records 
are stored in chains of pages linked together.  A page split occurs under 
certain conditions, for (,xample. whenever tile numt)er of records exceeds a 
t)ositiw~ integer value denoted by L. Let each key be mapped into a str ing 
of binary bits bi first, i.e., H(key)  = ( b q . _  1 . . . . .  bl.bo) = c. Then,  this 
scheme addresses records by using a series of split fll.rmtions, ho. h i , . . . ,  hq, 
where, each function It, maps c to a nonnegative integer. Let a split pointer 
sp point to the next page to be. split, and initially, split pointer sp points 
to page 0. A full ea:tmTtsiolt occurs when a split occurs at a page next to 
which is a new added page [11]. A level is defined as the number  of fldl 
expansions tha t  haw~ happe.ned thus far. For each lewq d, hd or ha+l is 
used to locate a page depending on whether hd(c) "~ .sp or not. On each 
level d, the pages are split in the order from page 0 to the max imum index 
of pages ()n tha t  level. After all the pages on the current lewq d have been 
split, i.(,., after a full expansion, the value of level d is increased by 1 and 
the split t ing pro('ess starts  again from pag(, 0. 

Based on the above s t ra tegy to han(ll(~ file expansions, we can give a class 
of dynamic  hashing schemes with a growth rate of n~l pel" full expansion 
by defining the r(dationship among h~ in the following way. Let ho(c) be. 
tile function to load the file initially and h0:c  ---* {0 . . . . .  ,so - 1}, where 
so is the number  of pages of the file initially. Let w(i) be a function 
with w : i  ~ Z -- {0}, where Z denotes the set of integer numbers.  (Note 
tha t  w(i) denotes the distance frorn the current  page h,(c) to the new 
l)age hi+l(C). The res( of the split functions, hi,  t~2 . . . . .  h,. are defined as 
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follows: 

ho(c)  = c rood so; 

h , .  , ( . )  = ( h , ( . )  + , , , (~ / )b~)rood (.~0 + i + t ) .  

for i _> 0, where  b, is the value of the ith bit of  c: that  is, 0 _< hi+l(O) < 
i + 1 + h0 (c ) .  

From the above definitions of the relationshit)s between functions h~+l 
and h,, where i >_ 0, the address space returned from function h~+l is in the 
set of {0, 1 . . . . . .  so + i} ;  tha t  is, the file. size .s~+~ on level (i + 1) is (so + i +  1). 
Consequently,  the growth rate of a file is ,,+1 per full expansion, where n - 7 -  
is the number  of pages of the file. 

For example, given .so = 1 and w(i) -- 1, we have h, +. 1 (c) = h, (c) + b,. In 
this c~use, when an insertion causes a split on level i and .sp = k,  0 <_ k < i, 
the da ta  records in page k will be redistr ibuted to page k or page (k + 1) 
according to whether  the value of bit b, is 0 or 1, respectively, i.e., according 
to the value of h,+l(C). When  a split occurs on level i and sp = i, i.e., sp 
has pointed to the maximum inde.x of pages, then a new page (i ~ 1) is 
added at the end of the file and the da ta  records in page i are redistr ibuted 
to page i or page (i =- 1) according to whether  the value of bit bi is 0 or 
1. respectively. 

2.'2. (;'LIMITING f t A S I I I N G  

Based on the above proposed generalized at)proach, now we derive a 
st)ecilic dynamic  hashillg scheme called clirnbin 9 hash in  9. Let .so = 1 (i.e.. 
ho(c) = 0) and w(i) = i. then 

h0(c)  = 0, 

h~(c )  -= h o ( . )  + t~o. 

h , + ~ ( c )  = ( h , ( c )  + ib,) rood (i-~ "2). 

for i "_2 1. tha t  is, 0 <_ h , , l ( c )  < i ~ I. 
In general, when an insertion causes a split and sp = k ( k  <_ 1) on level 

d ( >  0), the da t a  records in page k will be redistr ibuted into page k or page 
(k  + d), according to whether  the value of t)it b~t is 0 or 1, respectively, as 
shown m Figure l(a).  Note tha t  0 _< hd(c) _< el, i.e., there are at most 
(el + 1) pages in the system when the (:urrent level = d. When  a split 
occurs in page k(2 <_ /," _< d), where (k t- d) luk~ exceeded the max imum 
index of pages on level d .t- 1 (i.e., (d + 1)), da ta  records in page k will be 
redistr ibuted into page (k - 2) [= (k + d) rood (d 4 2)] or still s tay in page 
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0 1 d 0 k d d+l 

t [,,,J I I I I l I I I I 
h d =0 ~ ~  b d = l ~  b d =0 

! t ] l 1::,,1 ] ! [ I 1 I ] 
d d ÷ l  k - 2  k 

(a)  , b I 

F i g ,  1. A s p l i t t i n g  o p ( a ' a t i ( m  m c l i m b i n g  h t k s h m g .  

k, a(:cording to wheth(,r the value of bd is 1 ()r 0. r(,sp(,(:tiveIy, as shown in 
Figure 1(t)). 

3. T H E  A L G ( ) I I I T H M S  

In this se(:tion, we give descript ions of address (:omt)utation, retrieval,  
insertion, file split, and fih" contract ion algori thms.  In these algorithnls.  
the following variables are used globally: (1) b: llw size of it home page in 
t e rms  of the  nmnber  of records; (2) u': the size of an overflow page in t e rms  
()f the number  of records: (3) .sp: the split pointer  with an initial value = 0: 
(-'1) d: the level with an initial value = 0. 

.'~.1. AI)I)I~ESS ( ,OMI'UT"ATION 

Let function H(key)  map  a key into r andom binary bit pa t t e rns  of length 
q. for q sufficiently large. Let function bi (c) re turn  the value of the  i th  bit of 
the b inary  pa t t e rn ,  which is denoted by c ( =  H (key)). To compu te  the final 
home page nuinb(,r after d full expansions,  function home-address  is shown 
in t"igure 2. In this functi(m, initially, all t, he. <lat, a records are m a p p e d  
into page 0 by h . (c)  -- 0 and hence, addr('..s,s - 0. Then,  the. tbr-loop 

funct~<m kome~Mdrc.-~(kcy)  ;:;'_cger, 
vat c : : : l~ger.  /* = i t ( k e ) )  *.,' 

i I I H C g u r .  "* :tR I l i d e x  *,,' 
a d d r e s s  ILte~e: 

L e g m  

end, 

c = l i (kc3)  
add ; e s s  == O, i "  i e . hu(c~ *" 
if  d > 0 then a,t:l:e~s = a : ld : e s s  ..- br,. 
for I = 1 tc (d - l )  do 

address  = ( address  4- :  x b , (c) )  m(,d (i + 2), 
i f  address  < sp teen a , id less  = (address  - d x be(c))  rood (d + ~2): 
ret : : : 'n (addr, 's>):  

F i g .  2 F u n c t i o n  h o m e _ a d d r e s s .  
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statement traces the home page number (denoted ,as address) ttlrough d 
full expansions. For the unfinished (d + 1)th full expansion, a page may 
have been split or not. Depending on whether or not address < sp, the 
final home page number is determined. 

3.2. OVERFLOW IIANDLING AND RETRIEVAL 

In il0], Larson applied separators [8] for home pages to linear hashing to 
guarantee that  any data record can bc retrieved in one disk access, where 
overflow records are distributed among the home pages. This method, 
separators, is based on hashing and makes use of a small in-core table, for 
each home page if needed, to direct the search. To understand what a 
separator is, let us define a probe sequence first [10]. Assume that all of the 
data records are stored in an external file consisting of n pages, and each 
of those n pages has a capacity of b records. For each data record with 
key = K, its probe sequence, p(K) = (pl(K),p.2(K), . . .  ,p,~(K)), (n >_ 1), 
defines the order in which the pages will be checked when inserting or 
retrieving the record. For each data record with key = K, its signature 
sequence, s(K)  = (Sl (K) ,s2(K)  . . . . .  sn(K)),  is a q-bit integer. When a 
data record with key = K probes page p*(K), the signature s ,(K) is used, 
1 < i _< n. Implementation of p(K) and s(K) are discussed in detailed 
in [8]. Consider a home page j to which r, r > b. records hash. In this 
case, at least (r - b) records must be moved out to their next pages in their 
probe sequences, respectively. Only at most b records are stored on their 
current signature.s, and records with low signatures are stored on the page 
whereas records with high signatures are moved out. A signature value that 
uniquely separates the two groups is called a separator, and is stored in a 
separator table. The value stored is the lowest signature occurring among 
those records that must be lnoved out. (Note that a separator table has 
two entries: one is a separator value and the other on(.' is a pointer to a 

page.) 
Since in [10] overftow records are distributed among tim home pages, 

tim costs of file-split, insertion, and maintaining separators will be expen- 
sive. "ib avoid this disadvantage and efficiently search a data record stored 
in overflow pages, climbing hashing also applies separators, but only for 
overflow pages. To apply separators to handle overflow pages in climb- 
ing hashing, we need the following modification. Assume that for each 
home page i, its overflow records are stored in an external file consisting 
of m pages, and that each of these 7n pages has a capacity of w records. 
For each overflow record of home page / with key = K, let its probe se- 
quence be p,(K) = (p,I(K) ,p ,2(K), . . . ,p~m(K))  " (1,2 . . . . .  m), m >_ 1. 
(Note that to increase storage utilization, we probe overflow page j until 
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funct ion  re t r ieva l (key)  : pointer:  
va t  i, j : in teger;  

b.egin 
= home .add re s s (key ) ;  

If d a t a  record is found m page i then r e tu rn (phys i ca l_add re s s ( i )  ); 
/*  funct ion ph.vsical_address returl:s the actual  physical  address  of  h o m e  page  : *,.' 
else 
begin 

for each entr~ .: :n tl:e -~'1 ara' .o: table, ~ ,!c, 
begin 

If s u [koy) < sel~atator,; " value th~n 
begin 

if d a t a  lecold is found :.n t,age pollate.'] by s~'..'~arator,j 1 [~oinier 
~.i:e:: letu;; l  (separa:or , :  1 poih:e:)  
-:~: : e t m n  (hi!), 

end; 
leUul~ ,'ai[). " :~1; den:,tes t}:a: tile :,:co:d I~ l:e,t f.':tmd * /  

en:l. 
elld. 

F ig .  3 F u n c t i o n  rv, trzeval.  

overflow page (j - 1) is full when a data  record is inserted.) For each over- 
flow record of home page i with key = K. let its sigrzatuT"e sequence be 
st(K) = (s~l(K), si.~(K) . . . . .  .s,,,,(K)). When an overflow record of home 
page i with key = K probes page p~3(K), the signature sij(K) is used, 
i _< j _< m. By using separators and the above modification, any da ta  
record can be found in at most  two disk accesses. 

As a file grows, the total size of separator tables of all the home pages 
(which have overflow pages) can be too large to be loaded into main memory  
at the same time. Moreover, to reduce the number  of disk accesses for 
loading a separator table for a certain home page that  has overflow pages, we 
store a separator table in each home page. A separator table is loaded into 
main memory  whenever its related home page is read into main memory.  
and it is wri t ten back to the disk whenever its home page is wri t ten back 
to the disk. In the case tha t  there is no change for the da ta  records in the 
home page but a da t a  insert ion/delet ion has caused da t a  record movements  
between overflow pages, the related home page still should be wri t ten back 
to the disk before it is removed from main memory. ~i'hat is, one more 
disk access is needed in this case, since the contents of the separator table 
has been changed. Therefore, we still can guarantee  tha t  the cost of da t a  
retrieval is at  most  two disk accesses. As shown in Figure. 3, the function 
retrieval(key) is used to locate the actual  physical address (either in a home 
page or one of its related overflow pages), where separatoT;j, 1 <_ j <_ m, 
represents the separator for the j t h  overflow page of home page i. 
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in this  f lmction,  home page i is searched first, wfiich is one disk access. 
If the  da t a  r(,cord ('allllOt b(' found in htJlll(, [)~ig(' i. its overflow pages are 
t.ried bv using ,separators. If the  da t a  record exists  in those ow~rflow pages,  
one more  disk access is needed:  otherwise,  0/1 more disk access is needed.  
"l'h(~r(,for(,, a t  most  two disk accesses are  lleede(]. 

.¢.,'~, INSERTION A NI) FILE SPLIT  

W h e n  a d a t a  record is inser ted,  its home page is sear(:hed first. If the. 
size of i ts home page h~s exceeded the  page size b. lhen  one of its re la ted  
overflow pages is searched according  to its probe sequf~nce.s. In the  case t h a t  
at d a t a  record illserl iOll (:auses re locat ions  of StJlll(, O[ her records  ill overflow 
pages,  re la ted  .s~epa'rator,s t ha t  are s to red  in the  home page may  also have | o  
lu, upda t ed .  In this  cluse, one more disk a('ce.ss is m,vded to wr i te  the  home 
page back to the  disk. since the  ,separator lab& is included in the  home 
page. 

W h e n e v e r  the  growth  of a file exceeds a split control  condi t ion ,  a spl i t  
occurs.  In this  case. d a t a  records in page .sp ( including its overflow page.s) 
have to b(' r ed i s t r ibu ted  to page sp or page ((sp-} d) rood ( d + 2 ) ) ,  accord ing  
Io whe the r  the  value of b,i is 0 or l .  ,espect ively.  If sp = d, d is increased 
by 1 and .sp is reset  to 0. The  resul ts  of the  abow'  ac t ions  are  equal  to 
u p d a t i n g  .sp (and d) first, and then  re inser t ing  lhose  d a t a  records  tha t  are 
in the  page where  tit(, old sp poin ts  by using the new hashing funct ion 

l i j  ~1. T h e  desc r ip lkm of procedure, file_split is showll in Figure 4. (Note 
t,hat to reduce the  l l | l lnher of disk  accesses, we us~, a buhrer lnech&llisnl to 

reduce the  overhead of re inser t ion.)  

,'¢.4. b'ILE CONTf¢AC'I ' ION 

Whe, lever  tit(' number  of de le t ions  of a fih' d rops  below a cont ro l  condi-  
t ion,  a con t rac t ion  occurs.  In c l imbing hashing,  we collect  the  d a t a  records  
t h a t  are  s to red  in page ( s p -  1) and page ( ( s p -  1 . - d +  1) m o d ( d + 2 ) )  
back to page (sp - 1), when sp > 0 and level -- d. If ap = 0 and level 
d, we collect the  d a t a  records t ha t  are  s tored  in page ( d -  1) and  page 
((d 1 + d) rood (d + 1)) ( = d  - 3) back to page (d - 1). T h e  desc r ip t ion  

of procedure  file_contraction is shown in F igure  5. 

4. PERFOIIMANCE ANALYSIS 

In all dynanfic hashing schemes without using ~lll index, a split occurs 
under a certain condition. There are t,wo kinds of strategies [1, 11]: uncon- 
trolh.'d and controlled splitting. Uncontrolled splitting means that a split 
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proc , ' du r , ,  f i l e . sp l i t  () .  

V a f  I .I i l l t e g l , r ;  

[)eg::~ 

l e a d  h o m e  p a g e  Sl, a n d  Its o'.,,rfi<,~ pa!:c~ ; : : : :  ;.ufi..: I~ 
a : , ]  lelea.~e t h e s e  paKes f r o n l  Ih(. dl~k 

s l, : Sl* - 1, 
I f s  I, ", d t l ,ml  
beg ; : :  

sp  m (,. 

d = ,{ .÷ i .  
i ' l ld,  
'.%r , a c h  r e : r : : d  ',vt:i: k , 'y  = I~ ::~ L~:ib.: I; !.. 
} ~'}',I;I 

t : hom,:=~d.:h, .ss: .  K'< 
if  h o m e  i , agc  I :.- no" fi:]l :!,,q; 

V , ' l : t e  {]!1> l l ' : , : l  ] ",% ]b ' , l lA '  I , , i}"  , 

O}>c 
!:,,Kt:~ 

i l l l ( !  / i l l  ~*:1[1~1 I : X  " U I I ; L i , : I o :  I , ! ! , . '  ! ! . ;  I L ; t :  " . : ) ,  i~ ' , > " !  : t l , t I  J: L, ~ \ ' , : i . ! ! '  . ' , l  

If t]le p;tg~" po ln t t ,d  by >c[:;!r:tt < , :  ] p : ,m: , . t  is I!lil LII,':: 

m o w  ~ult t i :e  ze(<,ld w h o , e  ke.', i> , 'q;;:: . t!¢.: ,:  " Vahl,. t(, Bulh ' l  B 
w : t t e  t h e  d a t a  r eco rd  w v k  k, '" :- ]( : , ,  : .: , .  ,',, [l! . ,w l ,a<c p o l m c d  
by s e p a r a t o r , ; "  p O l l l t e r ,  

upda t~ .d  >ep 'a:a 'or , :  7 v a l : w  :.r Iwc, .>~;c}.  
e l !d;  

el lCi  
c ; l l ! .  

!'11',I ~ 

F i g . . 1  l ' r - ( ' ~ , d u r e  i l l ,  . . ~pb t .  

occurs whenever a collision occurs. In controlled split.ring, a split occurs 

when the  l l l lnlber of inserted data records exceeds a load control  (L),  or 
when storage utilization exceeds a load filctor (A),  0 < A < 1. (Note  
t h a t  a load control denotes the  upper  bound of the  number  of new inserted 
records beR)re the next spli t  c~tI1 occur,  and a load factor is a storage uti- 
lization threshold.) In general, the controlled strategy can provide, bel ier 
st, or~tgc utilization than the uncontrolled strategy, which is w,rified in [11]. 
Moreover, when the load factor is used as the split control strategy, the 
syst.em will suffer more unstabh~ performance during a fllll expansion, as 
s t a t ed  in [5, 15]. Therefore ,  wc preDr  to use the  load control as the split 
control strategy, as in [15, 16]. 

In this section, we present the. t)m'fbrmanc( , ;malysis of climbing hashing 
under the split control of the h)ad co,~trol L. In this performance analysis 
model  [15]: we assume (hat the keys for data records are distributed Ulfi- 
R)rmly and independently to each other, {-tlld ttmt the page size is measured 
in terms of number of record slots. The size of a home page is denoted by 
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plocedure file_contraction(), 
var i..l integer;  

B buffel : 
begin 

l f sp  = : -  0 
then read home  page ~d - 1) and page (d - 3) including :elated overflow pages 

into buffet B and release these pages fi'om the disk 
elsie read home  page (sp - 1) and page ((sp - 3) rood (d + 2)) : n c l u d m g  :elate({ o~e:ficw l'.ages 

into buffer B and :elease these pages flora the disk; 
sp = sp - i. 
if si; < C the:: 
begin 

d = d -  I. 
sp : d. 

C11d. 
fo: v:uh leco:d ~ltl l  key = K In buffm B do 
I,~:gm 

i = l : cme-add tess ( I ( ) .  
If h o m e  page i Is not  full then 

wri te  tins lecotd to home page i 
else 
begin 

find an entry .i in separator table i such that s u ( l (  ) < s epa ra to : , j  ~ v~:iue do 
begin 

t[ the page pointed by separator u I . po in t e r  is full then 
move out the record whose key is separator u ] v a l u e  to Buffet B 

w:: te  "he data lecord with key = I': to the overflow page  pointed 
[,y sepalator,; l.pointer4 
u i ,da ' ed  sepa. 'a tor  u ] value ff necessary; 

eiid. 
end. 

end, 
end; 

Fig. 5. Funct ion  file_contractzon. 

b and the size of an overflow page is denoted by u,. We also assume that 
the number of overflow pages for each home page is a minimum. In other 
words, if a home page has k, k _> 0, overflow records, then there will be 
[~]  overflow pages for this home page. The overflow data records are 
handled by using separa tor s ,  as stated in Section 3.2. When the search 
cost is computed, all records are assumed to have the same probability of 

retrieval. 
Let so be the number of pages of a file initially and N be the nun> 

bet of data records inserted into the file. Given N,  we are able to de- 
rive information about the current state of the file, such as the num- 
ber of used home pages sp, the average retrieval cost, and the storage 
utilization; that is, we can analyze these properties of a file as a func- 
tion of N.  The various properties that we are interested in are discussed 

below. 
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The number of splits performed is given by 

ns (N)  = O, 0 <_ NsoL, 

n s ( N ) =  [ N L  -s°L], N > s o L .  

(Note that  to reduce the number of splits, we assume that  the first split 
is not started until the first so pages are filled with s o l  records in this 
performance analysis.) Since in climbing hashing, the growth rate of a file 

n + l  is --5- per full expansion, the number of home pages expanded (denoted 
by m) is given by 

So + (so + 1) + . . .  + (so + (,71.- 1)) 

_< ,~s(N) < so + (.~o + ]) + " "  + (so + m). 

The tirst page will be added after sp scans over So pages, the second 
page will be added after sp scans over (so + 1) pages, and so on; there- 

~"',  ,So + m -- 1 tbre. the ruth page is added to the file after ,__~=.~,, i splits. Therefore, 
48ns(N)+(2so- 1) ~ - 2 ` s . +  1 

I-~+2~,,-1),,, < ns(N)  and rn = k 2 ]. Then. the max- 
2 - -  • 

imum index of home pages for the file is .s(=(so + m - 1)), and sp is (ns (N)  
( m + 2 s , ,  - 1 ) m  

2 ) 
The load distribution for each home page is ditferent in climbing hashing, 

~s shown in Table 1. The value shown in the intersection position of level 
d and page number i is the number of records stored after d full expansions 
and is denoted by X~ ~, when there are '2 a data records whose keys are 

TABLI'; 1 
'['h(~ Variance of the I,oad Distribmion in 

Climbing H~hing" 

l , e v e l  P a g e  l m m b e r  l i) 

d 0 1 2 3 ,1 5 M e a n  V a r i a n c e  

1 1 i 1 0 

2 1 2 l ! 3 () .2 

3 2 2 2 2 2 0 

| 4 .1 2 .1 2 3 . 2  0 9 

5 6 S .1 .1 6 .1 5 . 3  1 .9  

d "M~.~, = (1/(d + 1)) X~,=o X,~(= ('#/(d+ l))). 
~',d (X d M ( , a n ) 2  V a r i a n c e  = ( 1 / ( d  + 1) )  ~-..-)=o ~ ' 
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uni lbrmly  dis t r ibuted.  Initially, we have X01 = 1, X~ = 1. When  d is 2, 
the vah,e of Xi 2 is X,l , the. value of X~ is (X~ + ,g~), and the vah,e of 
X,~ is X~. Moreover,  when (t > 2, the  value of X~i(0 < i < (d -  1)) is 

, f yd -  y , l - ,  ~ the  value of X f f _ ,  is t- ,1- l + X g - ' ) .  and the  value of .'r.:I ( X  d -  1 + "- ,+2 J, 
iS X'I t 1 

l,et P ( s p .  i . . s )  be the l)robability of a da ta  record hashed into home page 
i aff, er s full expansions  when the split pointer  points  to page sp.  In  g e n -  
eral, af ter  s full expanskms  in cl imbing hashing and sp  = 0, the probabi l i ty  
P(0,  i s) for home page i(0 < i < ( . s  1)) is p(0.i,.~ .l/~.r'(o,,+2,s-1) the  

probabi l i ty  P(0,  .s - 1, s) for home t)age (.s' - 1) is ,'(o.~..~- i}.~'(0..~- 1,,~.- t) 2 
and the  probabi l i ty  P(O,  s. s) for home page s is r(o.1,.~-1) During the  '2 
(s + 1)th full expansion,  after a split occurs ill home page 0 (i.e., sp = 
1) and all tilt.' da ta  records of home page 0 have been redis t r i tmted to 
home page 0 and home page s, the prot)at)ility P(1 , i , . s ) ,  0 _% i < s is 

t ' ( 0 , i , s )  l+v(0.0..~) and the probabi l i ty  P(1 s . s )  is *'(o,o,,,l+t'(o . . . .  ) ., ' 1~,'(o,o,,~) After  a spli t  
has occurred in home page 1 (i.e., sp -- 2) and all the. da ta  records of 
honle page 1 have been redis t r ibuted to home page 1 and a new added 
home page (i.e.. page (s + 1)), the probabi l i ty  P(2,  i , s ) (0  <_ i < s) is 

P(O,i,s) 1 ' (00 , s )+ t ' (O , s  s) 
l+P(0,o,~)+~'(o,t,.~)' the prol)at)ility P(2,  s , s )  is ,~ ;,(o,0..~)+_v(0.1,,)and the  

probabi l i ty  I"(2, .s+ l, s) for the new added page (s-} 1) is P(0,t,.~) 
l + P ( O , ( } , s ) +  P ( O . l , s )  " 

Moreover,  when 2 < .sp _< .s, the probal)il i ty l ' ( s p ,  i , .s)  of the  t)age 
to the left of page (.s t) - 2) (i.e., 0 < i < (.sp - 2)) is *'(o,,,s)+t'(o,i+')..~l 

-- 1+~2"=7 ,' t'(0,k.s) 
while the. t)robabili ty P ( s p ,  i , . s )  of the page to the right of page ( sp  - 2), 

r'(o,z,s) the  including page ( s p -  2) (i.e., ( s p -  2) _< i < s), is 1+?2;,,i~ P(0,k,.~)' 

probal)i l i ty t ' ( sp ,  s,,s) for home page .s' is v(o,o,.~)-,~'(o ..... ) and the  prob- 
i f~7,~" , l  P(O,k,~) 

abil i ty P(,sp, s ~ l , s )  for the new added home page (s + [) is 
P(O,l,s) 

i +E['L, ~ P(o.k,.~) " 

Froln the load dis t r ibut ion analysis,  we observe t ha t  (hiring the  (s + 1)th 
full ext)ansion, the  m a x i n m m  used index (n) of home pages is ,s. in climt)ing 
hashing when 0 .<_ .sp _< I and is (.s ~ 1) when '2 <_~ .sp < .s. Let  IV(t) 1)e 
a function to denote  the number  of overflow t)ages to a home page with t 
thtta records inserted and let it, be defined as follows: 

u , , ( t )  = 0.  

u ' ( t )  -.-: .j, 

O _ < t < b ,  

(b + ( j  - 1) , , ,  )- 1) < t < (b - - j , , , ) .  

Let Bin(t; N. P) denote the binomial distribution, i.e., Bin(t; N. P) = 
C [ , ' p t ( 1  .. p)N- t ) .  The probabilky that home page i(0 < i < n) contains 
t data records is Bin(t; N, P(sp, i, s ) ) .  Tile expected number of overflow 
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pages tot home page i is obtained is 

O P , ( N )  = Z ( W ( t ) B i n ( t :  N .  P(,s'p. i. s ) ) ) .  
t = ( I  

Then ,  the  aw,rage mnnber  of ow,rflow pages tier the  fih' af ter  inser t ing  
N d a t a  records  is given by 

( ) I - ' , (N)  
OP( , ' ¢ )  -- .--.,=0 

n t l  

and the  s torage  u t i l i za l ion  can be ob ta ined  as follows: 

U T I ( N )  .- 
N 

(,~ - l)(t, + , , , o p ( . . v ) )  

By using separators t0r handl ing  overflow r(,cords, tit(' ext)ected cost ()f 
an unsuccessful  search for home page i(0 < i < . )  in t e rms  of the  trencher 
of disk accesses is 

g:,b', = L. O P ,  - O. 

US,  = 2, O l  ), > l). 

'/'hell, the average mtmber  of disk access,,s to," au unsuccessful  search is 
given ])v 

t t  

c:,s'(:,,) = y ~ ( t : .% (N) i ' ( . ~ , .  i, .,)). 

For the  successful search,  we first consider  the  expec ted  number  of disk 
accesses fi)r ret.rieving all the  d a t a  records in home page i(0 <_ i < . )  plus 
its overflow pages,  which can be ob ta ined  by 

t?A, (N)  .- y ( t  Bin(t ,  "\:, P ( . s p .  i . .~) ) )  
1 : ( }  

.%" 

((t ~- (t -- b ) )B in ( t . . \ ' ,  l ' ( , sp ,  i, s ) ) ) .  
t .: b b 1 

Then .  the  average mmd)er  of disk access~,s ior a successful search can be 
ca lcu la ted  by 

V " "  
R A , ( N )  

SS(: \ . ' )  = ~ ' = '  
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For the average insertion cost, we fist consider the split cost at  the 
insertion of the t th (t _< N)  da ta  record, which is given by, 

SC(t) = 1 + O P ( t )  4-2(1 q- OP(t q-  1)), 

where a buffer mechanism is applied. Since a split occurs only when t is 
L, 2L . . . . .  ns(N)L(ns(N)L < N), the total split (:()st for N inserted da t a  
records can be obtained by 

TSC(N) = 

ns(N) 

Z SC(iL). 
l=[  

Then,  we (:onsider the average cost of inserting a da ta  recor(t when 
there are t da t a  records tha t  have been inse, rted. (Note tha t  given the 
number  of da t a  records t, we can obtain  the (:orresponding split pointer 
sp' and the number  of full expansion s '  ,as explained before.) Since it da ta  
insertion may cause the other  da ta  records to l)e rcinserted, the average 
number  of disk accesses tor inserting the (t + 1)th da ta  record in page i is 
i~s follows: 

ACdt) = 
2b(1 + op , ( t ) )  + > v ( o P ~ ( t )  + o P , ( t )  - 1 -~ . . . .  + 1) 

t, + wOPi(t)  

2t,(l  + OPt(t))  + w O P , ( t ) ( 1  + O l 5 ( t ) )  

b + . ,OP,(t)  

Then,  the average number  of disk accesses for inserting a da ta  record in 
any page i among  those ( J  + 1) t)ages is given by 

AC(t) = Z P(sp'. i, s')AC,(t). 
i=O 

Finally, we can obtain the average insertion (:()st. in the insertion process 
of N da ta  records (including the split cost), which is given by 

~ N -  t AC(t) TSC(N) + z-~t=o 
I N S ( N )  = N 

Table 2(a) shows the results de.rived from the above formulas, where 
so = l, N = l0 ~, b = 10,20,40,  and 80; w = 0.5b; L = 0.8b, and L = b and 
L - 1.2b in climbing hashing. From this table, we observe tha t  the storage 
util ization can be up to nearly 96c~. 
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TABLE 2 
Performance: (a) Analysis Results; (b) Simulation R.esults ~ 

P a r a m e t e r s  Analys is  Re, sui ts  Pa rame te r s  S inmla t ion  Resul t s  

b w L I N S  s s  u s  u t i  b It, L I N S  ,ss u s  ut~ 

10 5 08 
10 5 10 

10 5 12 

20 10 16 

20 10 20 

20 10 24 

,10 20 32 

40 20 40 

• 10 20 48 
so ,10 6,1 
~o 41) 80 

80 40 96 

6.6 1.932 1.934 0.!140 10 5 08 6.7 1.929 1.927 0.945 

6.4 1.938 2.0 0.958 10 5 10 6.5 1.939 1.855 0.950 

6.2 1.939 2.0 0.!159 10 5 12 6.1 1.939 1.855 0.959 

4.2 1.870 1.899 0.93,I 20 10 16 .1.2 1.879 1.855 0.934 

4.1 1.876 1.904 0.950 20 10 20 4.0 1.879 1.855 0.952 

:1.9 1.878 1.9(15 (I.962 20 10 24 3.9 1.879 1.855 0.961 

3.2 1.780 1.988 0.952 ,10 20 32 3.3 1.759 2.0 0.961 

3.2 1.785 2.0 0.!156 40 20 40 3.2 1.77!t 2.0 0.943 

3.1 1.803 2.0 0.958 ,10 20 ,18 3.2 1.799 2.0 0.943 
2.9 1.632 1.998 0.924 80 40 6,1 3.0 1.639 2.0 0 9 2 5  

2.8 1.650 2.0 0.943 80 40 80 2.9 1679 2.0 0.943 

2.8 1.728 2.0 0.947 80 40 96 2.!1 1.719 2.0 0.9,13 

(a) (b) 

~%: the size of a home page: w: the  size of an overflow page; L: load control:  IN, ' , ' :  

inser t ion cost: ss: sllccessful search cost: us:  IlllSllCCeSSfU] search cost; ut i :  s to rage  

u t i l iza t ion .  

5. SIMULATION RESULTS 

In this se(:tion, we show the simulation results of climbing hashing, 
linear h,~shing [11], and linear hashing with partial expansions [5] under 
two different split control strategies. In this simulation study, we assume 
that  N input data  records are unifornfly distributed [7 I. The environment 
control variables are the size of a home page. (b),the size of an ow~rflow 
page (w), and a load control (L) ior a load factor (A)]. Storage utiliza- 
tion, average insertion cost, average successflfl search cost, and average 
unsuccessful search cost are the main performance measures considered. 
These costs are measured in terms of the nurnber of disk accesses. More- 
over, ow.~rflow pages are handled by' separators m all three of these ap- 
proaches. 

Table 2(b) shows the simulation results of climbing hashing under the 
split control of the load control L, where N = 10 G, u, = (}.Sb and L = 0.8b, 
and L = b and L = 1.2b, respectively. Compared with the analysis results 
shown in Table 2(a), the simulation results shown in Table 2(b) are very 
close to those shown in Table 2(a). 

Sinmlation restllts of climbing hashing, linear h~hing,  linear hashing 
with two partial expansions per full expansion, and linear hashing with 
three partial expansions per flfll expansion under the split control of the 
load control L are shown in Tables 3(a), (b), (c) and (d), respectively, 
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' I ' A B L E  3 

S i m u l a t i o n  R e s u l t s  thMc," t h e  S p l i t  C o n t r o l  of  t he  l , oad  ( : o n t r o l  (L) :  (a)  

( ' . l imb ing  ] l a s h i n g :  (b) IAnear  H a s h i n g :  (c) IAnear  ll~Lshing w i t h  T w o  P a r t i a l  

E x p a n s i o n s ;  (d)  l , i ,mar  H ~ s h i n g  w i l h  'I 'hre(,  t ) a r / i a l  E x p a n s i o n s "  

I ' a ra ,ne te r s  (: l i ,nl)iug Hashing  Pa rame te r s  I , inear Hashing 

b w L I N N  s s  u.~ u t i  b w I. I N N  s s  u s  u t i  

10 5 0S 6 7  1.929 1.927 0.945 10 5 08 

10 5 10 6.5 1.939 1.855 0.950 10 5 10 

l0 5 12 6.1 1.939 1.855 0.959 l0 5 12 

20 10 16 -1.2 1.879 1.855 0.93'1 20 ll) lil 

20 10 20 ,1.0 1.S79 1.~55 0.952 211 l0 211 

20 l0  24 3.9 1.879 1.855 0.961 20 10 2 i  

40 20 32 3.3 1.759 2.(") 0.961 .10 2(I 32 

40 20 ,10 3.2 1.779 2.0 I).943 .10 20 40 

,10 20 48 3.2 1.799 2.0 0.943 .10 2(I ,lS 

80 ,10 6,1 3.0 1.639 3.0 0.925 hi) ,10 6.1 

80 40 80 2.9 1.679 2.0 0.9,13 80 ,10 80 

80 40 96 2.9 1.719 2.0 0 9 4 3  80 40 96 

l , inear  l l a sh ing  with Two 

Pa rame te r s  l ' a r t i a l  l_,;xpansions l 'aramet(u 's  

b u: L I N.S' s s  us  ut2 t~ ~, L 

111 5 08 3.1 1.1115 1.0,17 0.790 10 5 0S 

10 5 10 3.3 1.144 1.,145 11.858 10 5 10 

10 5 12 3.5 1.243 1.697 11.858 11) 5 13 

211 10 16 2.7 1.016 1.046 11.781 20 10 16 

20 111 20 2.9 1.153 1.43~ (}.784 311 10 20 

21") 10 2.1 3.1 1.2,11 1.689 0.78,'1 20 10 2-1 

40 20 32 3..I 1.011 1.031 0.781 ,10 20 32 

,i11 20 4(I 2.6 1.154 1.438 0.781 ,i0 20 ,111 

4(-) 2(I .18 2.8 1.2,15 1.686 0.781 .10 20 ,18 

80 ,10 64 2.3 1.000 1.000 0.781 80 ,10 6,1 

80 ,10 80 2.5 1.157 1.436 0.781 ~[1 40 80 

~0 40 96 2 7  1.247 1.686 0.781 80 40 96 

2.7 1.010 1.0.1(I 11.788 

2.!} 1.136 1.43,1 11.858 

3.1 1.2,13 1.699 0.858 

2.5 1.012 I.(134 0.781 

2.7 1.143 1.423 0.78,1 

2.8 1.2:/3 1.677 0.784 

2.3 1.(1(12 1.003 0.781 

3.5 1.145 1.407 0.781 

3.7 1.234 1.656 0.781 

2.2 1.001 1.003 11.757 

2..1 1.132 1.3711 0.781 

2.t'; 1.222 1.938 0.781 

(b) 

l,in(,ar t l a sh ing  with 'l'hre(~ 

Par t ia l  Expans ions  

1 : \ ' 5  s s  u s  u t i  

3.1 1.015 1.114 0.790 

3..1 1.136 1.445 (I.858 

3.5 1.243 1.610 0.863 

2.7 1.026 1.526 0.781 

2.9 1.1138 1.786 0.7~;4 

3.1 1.159 1.!157 0.784 

3.,1 1.025 1.656 0.781 

2.6 1.038 1.936 0.781 

2.8 1.160 2.0 0.781 
2.3 1.024 1.666 11.781 

2.5 1.038 1.958 11.781 

2.7 1.160 2.0 0.724 

(c) (,t) 
"b: the  size of a home page; w: the  size of an overflow page; L: load control;  IN,b': 

illsertitJll COSt: .'~.S: .SUCCt~Ssful search cost; us: illlSllCCesSflll SCal'ch cost; utz: s torage  

ut i l iza t ion.  

where N = 10 t;, w = 0.gb and L .... 0.8b, and L :-- b and L = 1.2b. 
From these tables,  c l imbing hashing has the highest storage ut i l izat ion 
among these four methods.  When  b ..... 40, u; = 20. and L = 40, c l imbing 
hashing can achieve 96% storage uti l izat ion,  as compared to 78% storage 
ut i l izat ion in linear hashing and in linear hashing with part ial  expansions  
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under  the  same condi t ions .  Under  a fixed N, as L is increased from 8 to 

96. the  number  of file spl i t s  is decreased,  which resul ts  in a decrease  of the  
average inser t ion cost  in all these  lh ree  methods .  Moreover,  the  ra t io  of 
the  avorage inse.rtion (:()st of c l imbing h~ushing to thal  of l inear  hashing  is 

( ; 7 ( ~ 2 . 5 )  t o  2'9g~1 1 de(:re~Lsed from ~ 2.--g,~ . . . .  ) when L is iucro~used. The  reason is 
t ha t  when L is increased,  the  ra t io  of the  lmmber  of newly added  pages 
of c l imbing hashing to t h a t  of l inear hashing is incro~Lsed under  a fixed N.  
(Note thal. th is  ra l io  is always smal ler  l.hall 1.) ()bviously,  since s torage  
u t i l i za t ion  and the  average inser t ion cost (and t, hc average re t r ieval  cost.) 
are  Mways a t rade-off ,  c l imbing hashing will lwed higher  average inse.rt.ioll 
(:()st, ~tll(l ~tvel'ag(-~ re t r ieval  (.:()st than  the  o ther  th ree  methods .  IIowev(,r, in 
the  next  sect ion,  we will ex tend  c l imbing hashing such t ha t  it can provide  
a lower a v e r a g e ,  i n s e r t  i o n  cost t han  l inear hashing at. the  cost of d(,creasing 
s to rage  ut i l iza t ion.  

Recal l  t h a t  the  growth  ra te  of c l imbing bas ing is " '__! per  full expan-  
~t 

sion, which is uol a cons tan t  since 7~ is changed dur ing  file growth,  where  
,z is the  cur ren t  size of the  file. To compare  the  average in se r t i on / r e t r i eva l  
cost  in l inear hashing and c l imbing hashing when bo th  a l )proaches  achieve 
t h e  Sitlll( '  storage, u t i l iza t ion,  we t ry  to rllll l inear hashing under  different 
choices of L. Table  .1 shows t ha t  s to rage  ul i l izat ion in li ,mar hashing  can lw 
increased as L is increased,  at  the  cost  of increas ing the  average retr ieval  
cost.  whero b = 40. , ,  20. and N -- 10". t hom this table ,  we obserw '  

'I'A [¢1,1'] -t 

The l{elalionship Between l 'erfornmnce 
and L in Linear Ha.~hing '' 

Load 
( ' o l l t  r o ]  [ N 5  ,~;,~ I 5 ¢: l l  

L .'10 2 5 3  1.1,15 1.,107 (I.78 

L := 50 2.76 1.256 1.717 0 7 S  

L = (ill 2.93 [ 325 l!)(}(i (17S 

L - 65 2 9 6  1.359 2O 0.7N 

L = 1[)0 3.03 1.51!) 2 0  ().~3 

L = 200 3.0'1 1.77!/ 2 o 0.93 

L = 225 3.0,1 1.7!/9 2 0  0.9-1 

L = 250 3.05 1.1~19 2.0 0.95 

L -- 300 3.[),1 1,s39 2.o 0.96 

l, 350 3.03 1.859 2.0 (1.97 

c l i m b i n g  3.27 1.779 2 0  0.94 

L = ,10 

"L; load control, I N N :  insertion cost; ss:  

,qllt'C(kssflll s e a r c h  c o s l  : It,'/': |II1NUC(~(.L'gSflI] St 'a l '¢h 

(:()st.: uti: storage util ization 
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TABLE 5 

Simulation Results Under the Split Control of the 
Load Factor (A) ~ 

Load Factor Climbing Ha.siting Linear Hashing 

A I N S  ss  u s  u t i  I N S  ss  u s  u t i  

0.50 104 1.196 1.189 0.498 2.62 1.0 1.0 0.500 
0.55 85 1.215 1.335 0.545 2.60 1.{) 1.0 0.549 
0.60 66 1.260 1.262 0.599 2.61 1.0 1.0 0.599 
0.65 52 1.321 1.496 0.647 2.66 1.0 1.0 0.649 
0.70 44 1.340 1.495 0.698 2.73 1.0 1.{) 0.699 
0.75 34 1.409 1.666 0.7,15 2.85 1.0 1.0 0.749 
0.80 27 1.470 1.720 0.800 3.0(1 1.032 1.(193 0.800 
(I.85 19 1.570 1.887 0.847 3.17 1.115 1.337 0.849 
0.90 7 1.764 1.926 (I.894 3.35 1.324 1.904 0.858 
0.95 5 1.939 1.855 0.950 3.28 1.671 2.(1 0.892 

%: the size of a home page; w: the size of an overflow page; A: load 
factor; I N S :  insertion cost; ss: successful search cost; us: unsuccessful 
search cost; uti:  storage utilization. 

t ha t  when both  approaches have the same storage ut i l izat ion (or the same 

average successful search cost, or the same average unsuccessful search cost, 
or the same average inser t ion cost), one will have be t te r  performance t han  

the other in some performance measures, while having worse perfornlance 

t h a n  the other  in some other performance measures. The  reason is tha t  as 

L is increased a lot in l inear hashing, the n u m b e r  of file splits is decreased 
in l inear hashing. Therefore, given a fixed N and the same storage uti- 
l ization, the  n u m b e r  of home pages in linear hashing is less t h a n  the one 

in c l imbing hashing.  At the same time, the number  of overflow pages in 

l inear hashing is greater  t han  the one in cl imbing hashing. Consequent ly,  
the average retrieval cost in cl imbing hashing is be t te r  t h a n  t ha t  in l inear 

hashing. 
Table 5 shows the s imula t ion  results of c l imbing hashing and linear hash- 

ing under  the split  control of the load factor (A), where N = 10 ~, b = 10, 
and w = 5. In cl imbing hashing, when A is increased from 0.5 to 0.95, 
the number  of file splits is decreased, which results in a decrease of the 
average inser t ion cost. While  in l inear hashing,  as A is increased from 0.5 
to 0.95, the average inser t ion cost is increased. The  remson is t ha t  as A is 
increased, the number  of overflow pages is increased (which is denoted as 
factor one), while the  number  of file splits is decreased (which is denoted  
as factor two). As A is increased, factor one domina tes  the performance 
of the average inser t ion cost in l inear hashing; while in c l imbing hashing,  
factor two domina tes  the performance of the average inser t ion cost. As A is 
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Ut i l i zat ion  

1.0 
o.9-' 
O.B" 
0.7" 
o.6: 
o.5" 
0.4 
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10 100 

Mult ip l ier  of  H(key)  

n l inear  

- -  c l imbing  

7.7 n n [3 

I O0 

Fig. 6. 'Flit! relationship between slot'age ulilization and non-unifornl key' distribution. 

increased, which implies tha t  ttle storage utilization threshold is increased. 
oscillation performance during a flfll expansion is incre~used, ~us s tated in :5. 
11]. Since the growth rate of climbing hashing is , + l  per full expansion as 

71. 

compared  to 2 m linear h~h i ng ,  climbing h~ushing will result in smaller os- 
cillation during a full expansion than linear hashing. From Table 5, as A is 
increased from (1.5 to 0.95, the ratio of the aw~rage insert, ion cost of climbing 
hashing to tha t  of linear h~kshing is decreased from ~ to 5 - 2 g . 1 ° 1  5 Moreover.• 
when A > 0.85, climbing h ~ h i n g  can have higher storag(' utilization than 
linear hashing. The  reason is that  the higher A is, the higher the ratio of 
lu,rf'ormance oscillation during a full expansion in linear hashing to tha t  in 
climbing hashing. 

The  above simulation results are based on the ~ussumption tha t  the input 
da ta  records are uniformly distributed. Now, let us examille one more in- 
terest ing result when the input  da ta  records are not uniforlnly distr ibuted.  
Consider a special case in which ahnost  all of the data  records are. un- 
fortunately,  hashed into the same home page. This can be simulated by 
letting keys of da ta  records be multiplied by 21. 2 e . . . . .  2 :~ and 2 m. Fig- 
ure 6 shows a comparison of storage utilizatioll between climbing hashing 
and linear h~ushing under this ca,se, where N = 106, b --- 10, w = 5, L = 10. 
(Note tha t  in Figure 6. the X axis has been replaced by the logari thmic 
function of X with base 2.) In this case, climbing hashing can provide even 
bet ter  s torage utilization than linear hashing ~ks the multiplier is increased. 
W h e n  the multiplier is increased (i.e., the number  of data  records into the 
same home page is increased), storage utilization in linear ha,siting even 
drops below 50c~, while climbing hashing still keeps the storage utilization 
abow~ 85%. 

This re~uson can be explained as follows. Assume tha t  k splits occur in 
linear hashing and the file initially contains one page: in this ease. k more 
pages are added. Under the same number  of splits, there are s more pages 
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added in climbing hashing, where (1 + 2 + . . . . .  t- s) _< k < ( 1 + 2 - e . .  • + (s  + I ) ) ,  
as explained in Section 4. Theretbre.. (.~+t).~. ., <_ k and .s = [ 4gV71-1j2 ; i .e . ,  

after k splits occur.  L skggvTi-1 2 J pages are added in climbing hashing as 
compared  to k pages in linear h~kshing. When  L • b and w = 1, the 

(k+l)b storage utilization is [¢r~-r_,l~,+kl ' in climbing h~Lshing as compared  to 

(k+l)b (k+l)O+kt, in linear hashing, where there are kb overflow records. As k is 
increased, s torage utilization is near 1 in climbing hashing, while it is about  
1 in linear hashing. 

6. E X T E N S I O N  

In this section, we extend the proposed scheme lo have a growth rate 
of ,,+~-_____! per full expansion (t _> 2); i.e., (t - 1) more pages are added per 
full expansion, Stlch tha t  tile number  of disk accesses for da t a  retrieval and 
insertion operat ions  can he reduced. 

Let each key be mapped  into a string of t-base digits, i.e., Ht(key)  = 
c = ( cq - l . cq -2  . . . . .  el,cO) (0 _< c, < t and 0 <_ i < q). Let ho(c) = m o  
be the function to load tile file initially, where 0 <_ m0 <_ (m - 1) and 'rn 
denotes the initial number  of pages of a file. The  l'cSt of the split functions 
1~1, h2 . . . . .  h, for extended clilnbing h;kshillg are defined ms follows: 

h 0 ( c )  = m . .  

where 0 _< m0 <_ (m - 1) 

hi (c)  = h 0 ( c )  + c . ,  

t,,_1(c) = (ht(c)-~ ie , )rood (m + (i-:  l)(t  - 1)). 

fo r i_>  1, tha t  is. 0<_ h,+l(c)<_ ('m --1)  + (i + l)(t - t ) .  
Table 6 shows th(~ simulation results of extended climbing hashing under 

the split (:ontrol L, where N = 1() (~, b = 80, w .: 4(1, and L = 96, which 
corresponds to what  we have. claimed: as t is increased, tile growth rate  
per full expansion is increased, resulting in a de.crease of s torage utilization 
and costs of da ta  retrieval and insertion operations.  Moreover, costs of 
da ta  retrieval and insertion operat ions in extended climbing hashing can 
eve.n drop below those in linear hashing, at tile cost of de.creasing storage 
utilization. The.refore, if we care about  f~Lst, retrieval (and low insertion 
cost) more than  high storage utilization, we choose a t with a large value 
in extended climbing hashing. Since high storage util izatkm and fast da t a  
retrieval (and low average insertion cost) are always a tradeott', the pro- 
posed extended climbing hashing provides a flexible choice between these 
I wo  re(tuir(~lllelltS. 
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TABLE 6 

Sinmlation Re.suhs in Extended 
Climbing llashing 

Scheme 1 : \ :  6; ,s.s u.'~ u t i 

c l i m b i n g  3 01 1.72 2 00  0.!)-1 

t = 3 2 8 8  1 5 ! )  les(i  ().~!) 

t - .1 2 .S0  1.18 3 0 0  0 , 8 9  

t - ,', 2.7,1 1.53 1 . ~ 6  0 79 

t . (; 2 G7 1,,12 I,!).1 0 . 7 9  

/ -: 7 2 6 1  1.29 I s 0  t) 7 ! )  

t = S 3 5 6  1.28 1 71 0 7 8  

t = !1 2 5,1 1,33 1.68 0 . 7 0  

t = 10 3..'51 1.31 1.67 0 6 3  

t = l 1 2 . . I S  1 . 3 0  l.GG () ,")6 

t : -  1 2  2 . l ( i  1 . 2 ! )  1 6 6  (1.5.1 

t = 13 2.,13 1.28 1 6 5  11,7)2 

t - l.l 2 .39  1.2.1 1.65 ()511 

t -.- 15 2 . 3 6  1,19 1.65 O,,1g 

t = 16 3 .32  1.1,1 1.{il 0 . 1 7  

l in ( . ;u  2.5!) 1 32  1.(i2 ().7S 

,'l: base syst.(,nl; INN: insm'tion ('ost; 
,g-~ NIIC('(),~St"II] search ('()st ; us:  HllSil(-U()sNhll 

Sl'ill('}l (:()st: i l t i :  stor ;Hf( '  u l i l i z a t i o n  

7. C()NCLUSION 

In this l)aper, we have I)rOl)OS(-'d a n('w dymunic h~hing  schenm called 
climbing hashing. Climbing hashino~ always adds only one more page after 
a full expansion: that  is, the growth rat(' of a file is ,~+__2 per full expan- 
sion. when n is the mm~ber ,)f pag('s of the current size of ill(:. From our 
mathematical analysis and simulation study, given a fixed load control, 
climbing hashing can achieve 96% storage utilization ~Ls compared to 78c~ 
storage utilization using linear hashing, when the keys are uniformly dis- 
tributed. Moreover, when the keys are not uniff)rmly distributed, climbing 
hashing can still achieve abov(~ 85~7t storag(, utilization given a fixed load 
control, while the storage utilization in linear hashing will drop below 50%. 
Since high storage utilization and t'~Lst, data retrieval are always a trade- 
off m all dynamic hashing schemes, w(, have (,xtended climbing hashing to 
set a growth rate of a file to ,~+t-~ per full expansion in order to find a 
compromise between high storage utilization alld fast data retrieval. Our 
simulation results show that, if we care about fast retrieval more that high 
storage utilization, we choose a t with a large value in extended climbing 
hashing. Therefore, extended climbing hashing provides a flexible choice 
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between these two requirements. Since there are many  factors about  which 
a file s t ruc ture  designer (:ares, including f ~ t  da ta  retri(;val, a low average 
insertion cost, high storage utilization, and stable performance th rough  file 
expansions, our approach provides designers a useful and flexible formula 
with which to reach their goals. 

The authors ~,rc grateful to anonymous referee,s /or their careful reading and 
helpful commcnt,~'. 
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