
NORTH- HOLLAND

C l i m b i n g H a s h i n g for E x p a n s i b l e Files"

YF-IN ('-:11A N(',

l)cpartmcnt of Apph~:d Mattzcmat~cs, Narwhal SuT~ Y.t-Nu. tbzil'e~'sity. Kaoiz.~o,'ng,
"l}mcan, licpublic of (:hit*.

/ t i l l]

('HIEN-[I,EE

Department o/Con~puter and lnfor'matzon .';cwm~. .'Yati,,nal (:htao 7~mg l;nzv~:rszty.
ttsmchu. 7}zzwan. Repubhc cg China

A BS'I 'RA(' /I"

T h e goal of dy ,m m i (h~shing is to design a funct ion and a tile s t r u c t u r e |.]I~L|
allow the address space a lh)cated to the tile to b(, in(:veased and reduced wi thou t
r(,.organizing the whole tile. In tiffs pat>er, we l)rOl)OSe a new d y n a m i c ha sh ing
scheme (:ailed climbing hashzng, which requires no index anti has the g rowth of a
tile at a , a t e of '~ ._~1 per full exl)ansion, where -i, is the n u m b e r of pages of the tile.
as (:ompared to a ra te of two in li,mar h~Lnhing. In (:l imbing ha.siting, when a split
oc(:urs, the re la t ive posit ion of the new page (in| o whi(:h a d a t a ,ecord may move).
to the (:mr(mt page. (where the d a t a re('ord is now), is t)rol)orl.ional to the n u m b e r
of flfll exl)mlsions. Therefor(~, it st.eros like the d a t a record is c l imbing in the tih,s.
(Nole t.hat a lcvc.l is det ined |ks the n u m b e r of full expa, ls ions t h a t have h a p p e n e d
thus far.) I:'rom our pe r fo rmance analysis , given a fixed load control , the p roposed
scheme can achieve near ly 961K. s torage u t i l iza t ion as corot)areal to 78(X s to rage
u t i l i za t ion by using l inear h;mhing, which is also verified by a s imula t ion study.
Moreover. the proposed schente can be general ize l.o have the g rowth of a tile
ill. ~it ra te of , ,+t-i per full expans ion , where t is an in teger larger them 1. As

n

t is increased, th(: average mmlb(,r of overflow pages per home page is reduced,
r esu l t ing m a (tecrea'~e of the average nu ,nber of disk accesses for d a t a retr ieval .

1. 1NTRODUC'FI()N

T h e goa l of d y n a m i c h a s h i n g is to (h,sign a f 'un(: t ion a n d a file s t r u c t u r ('

t h a t c a n a d a p t in r e s p o n s e to la rge , u n p r e d i c t a b l o c h a n g e s in t h e n u m b (, r

"This work was support(xt m |)rot by)h(, N~ttiomd Sci('n(:e (fount:i] o[" China und(:r
,~l'ant NSC-82-040g-E- 110-135.

INFORMA7"ION S(:IEN(:EN 86:77 !)9 (1!)!)5)
@ Elsevier Science Iuc., 19!)5
655 Avenue of the Alllt~ri(:as. New York, Nh' 10•)1(1

002C)-0255/95/$9.5t)
s s I.)I 0020-0255(95)00048-T

78 YE-IN CHANG AND CHIEN-I LEE

and distribution of keys while maintaining a fast retrieval t ime [1]. Tha t is,
the address space allocated to a file can be increased and re.duced without
reorganizing the whole file. Over the past decade, many dynamic hashing
schemes haw' been proposed. These dynamic h~shing scheines can be di-
vided into two classes: one needs an index, the other one does not need an
index. Extendible hashing [3, 12] and dynamic h~shing [4, 17 i belong to
the first class. Linear hashing [2, 5--7, 9--11. 13-161 belongs to the second
cbkss.

Among these dynamic ha.shing schemes, linear hashing dispenses with
the. use of an index at the cost of requiring overflow space. The first linear
hashing scheme, w~s proposed by Litwin [11]. In linear hashing, a file is
expanded by adding a new page at the end of the file when a split occurs
and relocating some of the data records in the split, page to the new page. by
using a new hashing function. To maintain stable performance through file
expansions in linear h~kshing, many strategies have been proposed. Among
these strategies, linear hashing with partial expansions as first presented
by Larson [5, 7] is a generalization of Litwin's linear hashing [11]. This
method splits a number of buddy pages together at one time, and the data
records in each of those buddy pages are redistributed into the. related old
page and the new added page.

In this paper, we propose a generalized approach for designing a class
of dynamic hashing schemes that require no index and have the growth
of a file at a rate of ~..1 per full expansion, whe.re n is the number of

71

pages of the file, as compared to a rate of two in linear hashing. Since the
growth rate of the proposed approach is smaller than that of linear hashing,
the proposed approach can maintain more. stable performance through file
expansions arm bet ter storage utilization than linear hashing. Based on
this generalized approach, we derive a new dynamic hashing scheme called
climbin9 hashing. In climbing hashing, when a split occurs, the relatiw'.
position of the new page (into which a data record may move), to the cur-
rent page (where the data record is now), is proportional to the number of
full expansions. Therefore, it seems like the data record is climbing in the
files. From our performance analysis, given a fixed load control, climbing
hashing can achieve nearly 96%, as compared to 78% storage utilization
using linear ha~shing, when the keys are unifornfly distributed. (Note that
a load control denotes the upper bound of the number of new inserted
records before the next split can occur.) Climbing hashing can have even
nmch better storage utilization than linear hashing, when the key are not
uniformly distributed. Moreover, the proposed scheme can be generalized
to set the growth of a file at a rate of ,~+t-_____! per full expansion, where t

n

is an integer larger than 1. As t is increased, the average number of over-
flow pages per home page is reduced, resulting in a decrease of the average

CLIMBING HASHING FOIl EXPANSIBLE FILES 79

number of disk accesses for data retrieval (while also d e c r e e i n g storage
utilization).

The rest of the paper is organized as follows. Section 2 presents the
generalized approach and climbing ha,shing. Section 3 gives descriptions of
climl)ing h~h ing . Section 4 presents the per tormance analysis of climbing
hashing. Section 5 discusses the simulation results of climbing hashing,
linear hashing, and lin(,ar hashing with partial expansions. In Section 6,
we generalize climbing bashing to have the growth of a file at a rate of
n+t - 1 ,, pe.r full expansion. Finally, Section 7 contains a conclusion.

2. A CLASS OF D Y N A M I C HASHING SCHEMES

In this section, we first present st generalized approach for designing a
cl~ss of dynamic bashing schemes. Next, we derive a new dynamic hashing
scheme based on this approach.

2.1. 771E GENERALIZED APPROA(71

In a dynamic hashing schenm without using an index, the da ta records
are stored in chains of pages linked together. A page split occurs under
certain conditions, for (,xample. whenever tile numt)er of records exceeds a
t)ositiw~ integer value denoted by L. Let each key be mapped into a str ing
of binary bits bi first, i.e., H(key) = (b q . _ 1 bl.bo) = c. Then, this
scheme addresses records by using a series of split fll.rmtions, ho. h i , . . . , hq,
where, each function It, maps c to a nonnegative integer. Let a split pointer
sp point to the next page to be. split, and initially, split pointer sp points
to page 0. A full ea:tmTtsiolt occurs when a split occurs at a page next to
which is a new added page [11]. A level is defined as the number of fldl
expansions tha t haw~ happe.ned thus far. For each lewq d, hd or ha+l is
used to locate a page depending on whether hd(c) "~ .sp or not. On each
level d, the pages are split in the order from page 0 to the max imum index
of pages ()n tha t level. After all the pages on the current lewq d have been
split, i.(,., after a full expansion, the value of level d is increased by 1 and
the split t ing pro('ess starts again from pag(, 0.

Based on the above s t ra tegy to han(ll(~ file expansions, we can give a class
of dynamic hashing schemes with a growth rate of n~l pel" full expansion
by defining the r(dationship among h~ in the following way. Let ho(c) be.
tile function to load the file initially and h0:c ---* {0 ,so - 1}, where
so is the number of pages of the file initially. Let w(i) be a function
with w : i ~ Z -- {0}, where Z denotes the set of integer numbers. (Note
tha t w(i) denotes the distance frorn the current page h,(c) to the new
l)age hi+l(C). The res(of the split functions, hi, t~2 h,. are defined as

80 YE-IN C H A N G A N D CHIEN-I LEE

follows:

ho(c) = c rood so;

h , . , (.) = (h , (.) + , , , (~ /)b~)rood (.~0 + i + t) .

for i _> 0, where b, is the value of the ith bit of c: that is, 0 _< hi+l(O) <
i + 1 + h0 (c) .

From the above definitions of the relationshit)s between functions h~+l
and h,, where i >_ 0, the address space returned from function h~+l is in the
set of {0, 1 so + i} ; tha t is, the file. size .s~+~ on level (i + 1) is (so + i + 1).
Consequently, the growth rate of a file is ,,+1 per full expansion, where n - 7 -
is the number of pages of the file.

For example, given .so = 1 and w(i) -- 1, we have h, +. 1 (c) = h, (c) + b,. In
this c~use, when an insertion causes a split on level i and .sp = k, 0 <_ k < i,
the da ta records in page k will be redistr ibuted to page k or page (k + 1)
according to whether the value of bit b, is 0 or 1, respectively, i.e., according
to the value of h,+l(C). When a split occurs on level i and sp = i, i.e., sp
has pointed to the maximum inde.x of pages, then a new page (i ~ 1) is
added at the end of the file and the da ta records in page i are redistr ibuted
to page i or page (i =- 1) according to whether the value of bit bi is 0 or
1. respectively.

2.'2. (;'LIMITING f t A S I I I N G

Based on the above proposed generalized at)proach, now we derive a
st)ecilic dynamic hashillg scheme called clirnbin 9 hash in 9. Let .so = 1 (i.e..
ho(c) = 0) and w(i) = i. then

h0(c) = 0,

h~(c) -= h o (.) + t~o.

h , + ~ (c) = (h , (c) + ib,) rood (i-~ "2).

for i "_2 1. tha t is, 0 <_ h , , l (c) < i ~ I.
In general, when an insertion causes a split and sp = k (k <_ 1) on level

d (> 0), the da t a records in page k will be redistr ibuted into page k or page
(k + d), according to whether the value of t)it b~t is 0 or 1, respectively, as
shown m Figure l(a). Note tha t 0 _< hd(c) _< el, i.e., there are at most
(el + 1) pages in the system when the (:urrent level = d. When a split
occurs in page k(2 <_ /," _< d), where (k t- d) luk~ exceeded the max imum
index of pages on level d .t- 1 (i.e., (d + 1)), da ta records in page k will be
redistr ibuted into page (k - 2) [= (k + d) rood (d 4 2)] or still s tay in page

CLIMBING HASHING FOIl EXPANSIBLE FILES 81

0 1 d 0 k d d+l

t [,,,J I I I I l I I I I
h d =0 ~ ~ b d = l ~ b d =0

! t] l 1::,,1] ! [I 1 I]
d d ÷ l k - 2 k

(a) , b I

F i g , 1. A s p l i t t i n g o p (a ' a t i (m m c l i m b i n g h t k s h m g .

k, a(:cording to wheth(,r the value of bd is 1 ()r 0. r(,sp(,(:tiveIy, as shown in
Figure 1(t)).

3. T H E A L G () I I I T H M S

In this se(:tion, we give descript ions of address (:omt)utation, retrieval,
insertion, file split, and fih" contract ion algori thms. In these algorithnls.
the following variables are used globally: (1) b: llw size of it home page in
t e rms of the nmnber of records; (2) u': the size of an overflow page in t e rms
()f the number of records: (3) .sp: the split pointer with an initial value = 0:
(-'1) d: the level with an initial value = 0.

.'~.1. AI)I)I~ESS (,OMI'UT"ATION

Let function H(key) map a key into r andom binary bit pa t t e rns of length
q. for q sufficiently large. Let function bi (c) re turn the value of the i th bit of
the b inary pa t t e rn , which is denoted by c (= H (key)). To compu te the final
home page nuinb(,r after d full expansions, function home-address is shown
in t"igure 2. In this functi(m, initially, all t, he. <lat, a records are m a p p e d
into page 0 by h . (c) -- 0 and hence, addr('..s,s - 0. Then, the. tbr-loop

funct~<m kome~Mdrc.-~(kcy) ;:;'_cger,
vat c : : : l~ger. /* = i t (k e)) *.,'

i I I H C g u r . "* :tR I l i d e x *,,'
a d d r e s s ILte~e:

L e g m

end,

c = l i (kc3)
add ; e s s == O, i " i e . hu(c~ *"
if d > 0 then a,t:l:e~s = a : ld : e s s ..- br,.
for I = 1 tc (d - l) do

address = (address 4- : x b , (c)) m(,d (i + 2),
i f address < sp teen a , id less = (address - d x be(c)) rood (d + ~2):
ret : : : 'n (addr, 's>):

F i g . 2 F u n c t i o n h o m e _ a d d r e s s .

82 YE-IN CHANG AND CHIEN-I LEE

statement traces the home page number (denoted ,as address) ttlrough d
full expansions. For the unfinished (d + 1)th full expansion, a page may
have been split or not. Depending on whether or not address < sp, the
final home page number is determined.

3.2. OVERFLOW IIANDLING AND RETRIEVAL

In il0], Larson applied separators [8] for home pages to linear hashing to
guarantee that any data record can bc retrieved in one disk access, where
overflow records are distributed among the home pages. This method,
separators, is based on hashing and makes use of a small in-core table, for
each home page if needed, to direct the search. To understand what a
separator is, let us define a probe sequence first [10]. Assume that all of the
data records are stored in an external file consisting of n pages, and each
of those n pages has a capacity of b records. For each data record with
key = K, its probe sequence, p(K) = (pl(K),p.2(K), . . . ,p,~(K)), (n >_ 1),
defines the order in which the pages will be checked when inserting or
retrieving the record. For each data record with key = K, its signature
sequence, s(K) = (Sl (K) ,s2(K) sn(K)), is a q-bit integer. When a
data record with key = K probes page p*(K), the signature s ,(K) is used,
1 < i _< n. Implementation of p(K) and s(K) are discussed in detailed
in [8]. Consider a home page j to which r, r > b. records hash. In this
case, at least (r - b) records must be moved out to their next pages in their
probe sequences, respectively. Only at most b records are stored on their
current signature.s, and records with low signatures are stored on the page
whereas records with high signatures are moved out. A signature value that
uniquely separates the two groups is called a separator, and is stored in a
separator table. The value stored is the lowest signature occurring among
those records that must be lnoved out. (Note that a separator table has
two entries: one is a separator value and the other on(.' is a pointer to a

page.)
Since in [10] overftow records are distributed among tim home pages,

tim costs of file-split, insertion, and maintaining separators will be expen-
sive. "ib avoid this disadvantage and efficiently search a data record stored
in overflow pages, climbing hashing also applies separators, but only for
overflow pages. To apply separators to handle overflow pages in climb-
ing hashing, we need the following modification. Assume that for each
home page i, its overflow records are stored in an external file consisting
of m pages, and that each of these 7n pages has a capacity of w records.
For each overflow record of home page / with key = K, let its probe se-
quence be p,(K) = (p,I(K) ,p ,2(K), . . . ,p~m(K)) " (1,2 m), m >_ 1.
(Note that to increase storage utilization, we probe overflow page j until

CLhMBING H A S H I N G F O R E X P A N S I B L E FILES 83

funct ion re t r ieva l (key) : pointer:
va t i, j : in teger;

b.egin
= home .add re s s (key) ;

If d a t a record is found m page i then r e tu rn (phys i ca l_add re s s (i));
/* funct ion ph.vsical_address returl:s the actual physical address of h o m e page : *,.'
else
begin

for each entr~ .: :n tl:e -~'1 ara' .o: table, ~ ,!c,
begin

If s u [koy) < sel~atator,; " value th~n
begin

if d a t a lecold is found :.n t,age pollate.'] by s~'..'~arator,j 1 [~oinier
~.i:e:: letu;; l (separa:or , : 1 poih:e:)
-:~: : e t m n (hi!),

end;
leUul~ ,'ai[). " :~1; den:,tes t}:a: tile :,:co:d I~ l:e,t f.':tmd * /

en:l.
elld.

F ig . 3 F u n c t i o n rv, trzeval.

overflow page (j - 1) is full when a data record is inserted.) For each over-
flow record of home page i with key = K. let its sigrzatuT"e sequence be
st(K) = (s~l(K), si.~(K)s,,,,(K)). When an overflow record of home
page i with key = K probes page p~3(K), the signature sij(K) is used,
i _< j _< m. By using separators and the above modification, any da ta
record can be found in at most two disk accesses.

As a file grows, the total size of separator tables of all the home pages
(which have overflow pages) can be too large to be loaded into main memory
at the same time. Moreover, to reduce the number of disk accesses for
loading a separator table for a certain home page that has overflow pages, we
store a separator table in each home page. A separator table is loaded into
main memory whenever its related home page is read into main memory.
and it is wri t ten back to the disk whenever its home page is wri t ten back
to the disk. In the case tha t there is no change for the da ta records in the
home page but a da t a insert ion/delet ion has caused da t a record movements
between overflow pages, the related home page still should be wri t ten back
to the disk before it is removed from main memory. ~i'hat is, one more
disk access is needed in this case, since the contents of the separator table
has been changed. Therefore, we still can guarantee tha t the cost of da t a
retrieval is at most two disk accesses. As shown in Figure. 3, the function
retrieval(key) is used to locate the actual physical address (either in a home
page or one of its related overflow pages), where separatoT;j, 1 <_ j <_ m,
represents the separator for the j t h overflow page of home page i.

84 YE-IN CHANG AND CHIEN-I LEE

in this f lmction, home page i is searched first, wfiich is one disk access.
If the da t a r(,cord ('allllOt b(' found in htJlll(, [)~ig(' i. its overflow pages are
t.ried bv using ,separators. If the da t a record exists in those ow~rflow pages,
one more disk access is needed: otherwise, 0/1 more disk access is needed.
"l'h(~r(,for(,, a t most two disk accesses are lleede(].

.¢.,'~, INSERTION A NI) FILE SPLIT

W h e n a d a t a record is inser ted, its home page is sear(:hed first. If the.
size of i ts home page h~s exceeded the page size b. lhen one of its re la ted
overflow pages is searched according to its probe sequf~nce.s. In the case t h a t
at d a t a record illserl iOll (:auses re locat ions of StJlll(, O[her records ill overflow
pages, re la ted .s~epa'rator,s t ha t are s to red in the home page may also have | o
lu, upda t ed . In this cluse, one more disk a('ce.ss is m,vded to wr i te the home
page back to the disk. since the ,separator lab& is included in the home
page.

W h e n e v e r the growth of a file exceeds a split control condi t ion , a spl i t
occurs. In this case. d a t a records in page .sp (including its overflow page.s)
have to b(' r ed i s t r ibu ted to page sp or page ((sp-} d) rood (d + 2)) , accord ing
Io whe the r the value of b,i is 0 or l . ,espect ively. If sp = d, d is increased
by 1 and .sp is reset to 0. The resul ts of the abow' ac t ions are equal to
u p d a t i n g .sp (and d) first, and then re inser t ing lhose d a t a records tha t are
in the page where tit(, old sp poin ts by using the new hashing funct ion

l i j ~1. T h e desc r ip lkm of procedure, file_split is showll in Figure 4. (Note
t,hat to reduce the l l | l lnher of disk accesses, we us~, a buhrer lnech&llisnl to

reduce the overhead of re inser t ion.)

,'¢.4. b'ILE CONTf¢AC'I ' ION

Whe, lever tit(' number of de le t ions of a fih' d rops below a cont ro l condi-
t ion, a con t rac t ion occurs. In c l imbing hashing, we collect the d a t a records
t h a t are s to red in page (s p - 1) and page ((s p - 1 . - d + 1) m o d (d + 2))
back to page (sp - 1), when sp > 0 and level -- d. If ap = 0 and level
d, we collect the d a t a records t ha t are s tored in page (d - 1) and page
((d 1 + d) rood (d + 1)) (= d - 3) back to page (d - 1). T h e desc r ip t ion

of procedure file_contraction is shown in F igure 5.

4. PERFOIIMANCE ANALYSIS

In all dynanfic hashing schemes without using ~lll index, a split occurs
under a certain condition. There are t,wo kinds of strategies [1, 11]: uncon-
trolh.'d and controlled splitting. Uncontrolled splitting means that a split

CLIMBING t tASHINC F()R I-;XPANSIBLE FILES ~5

proc , ' du r , , f i l e . sp l i t () .

V a f I .I i l l t e g l , r ;

[)eg::~

l e a d h o m e p a g e Sl, a n d Its o'.,,rfi<,~ pa!:c~ ; : : : : ;.ufi..: I~
a : ,] lelea.~e t h e s e paKes f r o n l Ih(. dl~k

s l, : Sl* - 1,
I f s I, ", d t l ,ml
beg ; : :

sp m (,.

d = ,{ .÷ i .
i ' l ld,
'.%r , a c h r e : r : : d ',vt:i: k , 'y = I~ ::~ L~:ib.: I; !..
} ~'}',I;I

t : hom,:=~d.:h, .ss: . K'<
if h o m e i , agc I :.- no" fi:]l :!,,q;

V , ' l : t e {]!1> l l ' : , : l] ",%]b ' , l lA ' I , , i}" ,

O}>c
!:,,Kt:~

i l l l (! / i l l ~*:1[1~1 I : X " U I I ; L i , : I o : I , ! ! , . ' ! ! . ; I L ; t : " . :) , i~ ' , > " ! : t l , t I J: L, ~ \ ' , : i . ! ! ' . ' , l

If t]le p;tg~" po ln t t ,d by >c[:;!r:tt < , :] p : ,m: , . t is I!lil LII,'::

m o w ~ult t i :e ze(<,ld w h o , e ke.', i> , 'q;;:: . t!¢.: ,: " Vahl,. t(, Bulh ' l B
w : t t e t h e d a t a r eco rd w v k k, '" :-](: , , : .: , . ,',, [l! . ,w l ,a<c p o l m c d
by s e p a r a t o r , ; " p O l l l t e r ,

upda t~ .d >ep 'a:a 'or , : 7 v a l : w :.r Iwc, .>~;c}.
e l !d;

el lCi
c ; l l ! .

!'11',I ~

F i g . . 1 l ' r - (' ~ , d u r e i l l , . . ~pb t .

occurs whenever a collision occurs. In controlled split.ring, a split occurs

when the l l l lnlber of inserted data records exceeds a load control (L), or
when storage utilization exceeds a load filctor (A), 0 < A < 1. (Note
t h a t a load control denotes the upper bound of the number of new inserted
records beR)re the next spli t c~tI1 occur, and a load factor is a storage uti-
lization threshold.) In general, the controlled strategy can provide, bel ier
st, or~tgc utilization than the uncontrolled strategy, which is w,rified in [11].
Moreover, when the load factor is used as the split control strategy, the
syst.em will suffer more unstabh~ performance during a fllll expansion, as
s t a t ed in [5, 15]. Therefore , wc preDr to use the load control as the split
control strategy, as in [15, 16].

In this section, we present the. t)m'fbrmanc(, ;malysis of climbing hashing
under the split control of the h)ad co,~trol L. In this performance analysis
model [15]: we assume (hat the keys for data records are distributed Ulfi-
R)rmly and independently to each other, {-tlld ttmt the page size is measured
in terms of number of record slots. The size of a home page is denoted by

86 YE-IN CHANG AND CHIEN-I LEE

plocedure file_contraction(),
var i..l integer;

B buffel :
begin

l f sp = : - 0
then read home page ~d - 1) and page (d - 3) including :elated overflow pages

into buffet B and release these pages fi'om the disk
elsie read home page (sp - 1) and page ((sp - 3) rood (d + 2)) : n c l u d m g :elate({ o~e:ficw l'.ages

into buffer B and :elease these pages flora the disk;
sp = sp - i.
if si; < C the::
begin

d = d - I.
sp : d.

C11d.
fo: v:uh leco:d ~ltl l key = K In buffm B do
I,~:gm

i = l : cme-add tess (I () .
If h o m e page i Is not full then

wri te tins lecotd to home page i
else
begin

find an entry .i in separator table i such that s u (l () < s epa ra to : , j ~ v~:iue do
begin

t[the page pointed by separator u I . po in t e r is full then
move out the record whose key is separator u] v a l u e to Buffet B

w:: te "he data lecord with key = I': to the overflow page pointed
[,y sepalator,; l.pointer4
u i ,da ' ed sepa. 'a tor u] value ff necessary;

eiid.
end.

end,
end;

Fig. 5. Funct ion file_contractzon.

b and the size of an overflow page is denoted by u,. We also assume that
the number of overflow pages for each home page is a minimum. In other
words, if a home page has k, k _> 0, overflow records, then there will be
[~] overflow pages for this home page. The overflow data records are
handled by using separa tor s , as stated in Section 3.2. When the search
cost is computed, all records are assumed to have the same probability of

retrieval.
Let so be the number of pages of a file initially and N be the nun>

bet of data records inserted into the file. Given N, we are able to de-
rive information about the current state of the file, such as the num-
ber of used home pages sp, the average retrieval cost, and the storage
utilization; that is, we can analyze these properties of a file as a func-
tion of N. The various properties that we are interested in are discussed

below.

CLIMBING HASHING F OR E X P A N S I B L E FILES 87

The number of splits performed is given by

ns (N) = O, 0 <_ NsoL,

n s (N) = [N L -s°L], N > s o L .

(Note that to reduce the number of splits, we assume that the first split
is not started until the first so pages are filled with s o l records in this
performance analysis.) Since in climbing hashing, the growth rate of a file

n + l is --5- per full expansion, the number of home pages expanded (denoted
by m) is given by

So + (so + 1) + . . . + (so + (,71.- 1))

_< ,~s(N) < so + (.~o +]) + " " + (so + m).

The tirst page will be added after sp scans over So pages, the second
page will be added after sp scans over (so + 1) pages, and so on; there-

~"', ,So + m -- 1 tbre. the ruth page is added to the file after ,__~=.~,, i splits. Therefore,
48ns(N)+(2so- 1) ~ - 2 ` s . + 1

I-~+2~,,-1),,, < ns(N) and rn = k 2]. Then. the max-
2 - - •

imum index of home pages for the file is .s(=(so + m - 1)), and sp is (ns (N)
(m + 2 s , , - 1) m

2)
The load distribution for each home page is ditferent in climbing hashing,

~s shown in Table 1. The value shown in the intersection position of level
d and page number i is the number of records stored after d full expansions
and is denoted by X~ ~, when there are '2 a data records whose keys are

TABLI'; 1
'['h(~ Variance of the I,oad Distribmion in

Climbing H~hing"

l , e v e l P a g e l m m b e r l i)

d 0 1 2 3 ,1 5 M e a n V a r i a n c e

1 1 i 1 0

2 1 2 l ! 3 () .2

3 2 2 2 2 2 0

| 4 .1 2 .1 2 3 . 2 0 9

5 6 S .1 .1 6 .1 5 . 3 1 .9

d "M~.~, = (1/(d + 1)) X~,=o X,~(= ('#/(d+ l))).
~',d (X d M (, a n) 2 V a r i a n c e = (1 / (d + 1)) ~-..-)=o ~ '

88 YE-IN CHANG AND CHIEN-I LEE

uni lbrmly dis t r ibuted. Initially, we have X01 = 1, X~ = 1. When d is 2,
the vah,e of Xi 2 is X,l , the. value of X~ is (X~ + ,g~), and the vah,e of
X,~ is X~. Moreover, when (t > 2, the value of X~i(0 < i < (d - 1)) is

, f yd - y , l - , ~ the value of X f f _ , is t- ,1- l + X g - ') . and the value of .'r.:I (X d - 1 + "- ,+2 J,
iS X'I t 1

l,et P (s p . i . . s) be the l)robability of a da ta record hashed into home page
i aff, er s full expansions when the split pointer points to page sp. In g e n -
eral, af ter s full expanskms in cl imbing hashing and sp = 0, the probabi l i ty
P(0, i s) for home page i(0 < i < (. s 1)) is p(0.i,.~ .l/~.r'(o,,+2,s-1) the

probabi l i ty P(0, .s - 1, s) for home t)age (.s' - 1) is ,'(o.~..~- i}.~'(0..~- 1,,~.- t) 2
and the probabi l i ty P(O, s. s) for home page s is r(o.1,.~-1) During the '2
(s + 1)th full expansion, after a split occurs ill home page 0 (i.e., sp =
1) and all tilt.' da ta records of home page 0 have been redis t r i tmted to
home page 0 and home page s, the prot)at)ility P(1 , i , . s) , 0 _% i < s is

t ' (0 , i , s) l+v(0.0..~) and the probabi l i ty P(1 s . s) is *'(o,o,,,l+t'(o) ., ' 1~,'(o,o,,~) After a spli t
has occurred in home page 1 (i.e., sp -- 2) and all the. da ta records of
honle page 1 have been redis t r ibuted to home page 1 and a new added
home page (i.e.. page (s + 1)), the probabi l i ty P(2, i , s) (0 <_ i < s) is

P(O,i,s) 1 ' (00 , s)+ t ' (O , s s)
l+P(0,o,~)+~'(o,t,.~)' the prol)at)ility P(2, s , s) is ,~ ;,(o,0..~)+_v(0.1,,)and the

probabi l i ty I"(2, .s+ l, s) for the new added page (s-} 1) is P(0,t,.~)
l + P (O , (} , s) + P (O . l , s) "

Moreover, when 2 < .sp _< .s, the probal)il i ty l ' (s p , i , .s) of the t)age
to the left of page (.s t) - 2) (i.e., 0 < i < (.sp - 2)) is *'(o,,,s)+t'(o,i+')..~l

-- 1+~2"=7 ,' t'(0,k.s)
while the. t)robabili ty P (s p , i , . s) of the page to the right of page (sp - 2),

r'(o,z,s) the including page (s p - 2) (i.e., (s p - 2) _< i < s), is 1+?2;,,i~ P(0,k,.~)'

probal)i l i ty t ' (sp , s,,s) for home page .s' is v(o,o,.~)-,~'(o) and the prob-
i f~7,~" , l P(O,k,~)

abil i ty P(,sp, s ~ l , s) for the new added home page (s + [) is
P(O,l,s)

i +E['L, ~ P(o.k,.~) "

Froln the load dis t r ibut ion analysis, we observe t ha t (hiring the (s + 1)th
full ext)ansion, the m a x i n m m used index (n) of home pages is ,s. in climt)ing
hashing when 0 .<_ .sp _< I and is (.s ~ 1) when '2 <_~ .sp < .s. Let IV(t) 1)e
a function to denote the number of overflow t)ages to a home page with t
thtta records inserted and let it, be defined as follows:

u , , (t) = 0.

u ' (t) -.-: .j,

O _ < t < b ,

(b + (j - 1) , , ,)- 1) < t < (b - - j , , ,) .

Let Bin(t; N. P) denote the binomial distribution, i.e., Bin(t; N. P) =
C [, ' p t (1 .. p)N- t) . The probabilky that home page i(0 < i < n) contains
t data records is Bin(t; N, P(sp, i, s)) . Tile expected number of overflow

CLIMBING HASHING FOIl EXPANSIBLE FILES 89

pages tot home page i is obtained is

O P , (N) = Z (W (t) B i n (t : N . P(,s'p. i. s))) .
t = (I

Then , the aw,rage mnnber of ow,rflow pages tier the fih' af ter inser t ing
N d a t a records is given by

() I - ' , (N)
OP(, ' ¢) -- .--.,=0

n t l

and the s torage u t i l i za l ion can be ob ta ined as follows:

U T I (N) .-
N

(,~ - l)(t, + , , , o p (. . v))

By using separators t0r handl ing overflow r(,cords, tit(' ext)ected cost ()f
an unsuccessful search for home page i(0 < i < .) in t e rms of the trencher
of disk accesses is

g:,b', = L. O P , - O.

US, = 2, O l), > l).

'/'hell, the average mtmber of disk access,,s to," au unsuccessful search is
given])v

t t

c:,s'(:,,) = y ~ (t : .% (N) i ' (. ~ , . i, .,)).

For the successful search, we first consider the expec ted number of disk
accesses fi)r ret.rieving all the d a t a records in home page i(0 <_ i < .) plus
its overflow pages, which can be ob ta ined by

t?A, (N) .- y (t Bin(t , "\:, P (. s p . i . .~)))
1 : (}

.%"

((t ~- (t -- b))B in (t . . \ ' , l ' (, sp , i, s))) .
t .: b b 1

Then . the average mmd)er of disk access~,s ior a successful search can be
ca lcu la ted by

V " "
R A , (N)

SS(: \ . ') = ~ ' = '

90 YE-IN CHANG AND CHIEN-I LEE

For the average insertion cost, we fist consider the split cost at the
insertion of the t th (t _< N) da ta record, which is given by,

SC(t) = 1 + O P (t) 4-2(1 q- OP(t q- 1)),

where a buffer mechanism is applied. Since a split occurs only when t is
L, 2L ns(N)L(ns(N)L < N), the total split (:()st for N inserted da t a
records can be obtained by

TSC(N) =

ns(N)

Z SC(iL).
l=[

Then, we (:onsider the average cost of inserting a da ta recor(t when
there are t da t a records tha t have been inse, rted. (Note tha t given the
number of da t a records t, we can obtain the (:orresponding split pointer
sp' and the number of full expansion s ' ,as explained before.) Since it da ta
insertion may cause the other da ta records to l)e rcinserted, the average
number of disk accesses tor inserting the (t + 1)th da ta record in page i is
i~s follows:

ACdt) =
2b(1 + op , (t)) + > v (o P ~ (t) + o P , (t) - 1 -~ + 1)

t, + wOPi(t)

2t,(l + OPt(t)) + w O P , (t) (1 + O l 5 (t))

b + . ,OP,(t)

Then, the average number of disk accesses for inserting a da ta record in
any page i among those (J + 1) t)ages is given by

AC(t) = Z P(sp'. i, s')AC,(t).
i=O

Finally, we can obtain the average insertion (:()st. in the insertion process
of N da ta records (including the split cost), which is given by

~ N - t AC(t) TSC(N) + z-~t=o
I N S (N) = N

Table 2(a) shows the results de.rived from the above formulas, where
so = l, N = l0 ~, b = 10,20,40, and 80; w = 0.5b; L = 0.8b, and L = b and
L - 1.2b in climbing hashing. From this table, we observe tha t the storage
util ization can be up to nearly 96c~.

CLIMBING HASHING FOR EXPANSIBLE FILES 91

TABLE 2
Performance: (a) Analysis Results; (b) Simulation R.esults ~

P a r a m e t e r s Analys is Re, sui ts Pa rame te r s S inmla t ion Resul t s

b w L I N S s s u s u t i b It, L I N S ,ss u s ut~

10 5 08
10 5 10

10 5 12

20 10 16

20 10 20

20 10 24

,10 20 32

40 20 40

• 10 20 48
so ,10 6,1
~o 41) 80

80 40 96

6.6 1.932 1.934 0.!140 10 5 08 6.7 1.929 1.927 0.945

6.4 1.938 2.0 0.958 10 5 10 6.5 1.939 1.855 0.950

6.2 1.939 2.0 0.!159 10 5 12 6.1 1.939 1.855 0.959

4.2 1.870 1.899 0.93,I 20 10 16 .1.2 1.879 1.855 0.934

4.1 1.876 1.904 0.950 20 10 20 4.0 1.879 1.855 0.952

:1.9 1.878 1.9(15 (I.962 20 10 24 3.9 1.879 1.855 0.961

3.2 1.780 1.988 0.952 ,10 20 32 3.3 1.759 2.0 0.961

3.2 1.785 2.0 0.!156 40 20 40 3.2 1.77!t 2.0 0.943

3.1 1.803 2.0 0.958 ,10 20 ,18 3.2 1.799 2.0 0.943
2.9 1.632 1.998 0.924 80 40 6,1 3.0 1.639 2.0 0 9 2 5

2.8 1.650 2.0 0.943 80 40 80 2.9 1679 2.0 0.943

2.8 1.728 2.0 0.947 80 40 96 2.!1 1.719 2.0 0.9,13

(a) (b)

~%: the size of a home page: w: the size of an overflow page; L: load control: IN, ' , ' :

inser t ion cost: ss: sllccessful search cost: us: IlllSllCCeSSfU] search cost; ut i : s to rage

u t i l iza t ion .

5. SIMULATION RESULTS

In this se(:tion, we show the simulation results of climbing hashing,
linear h,~shing [11], and linear hashing with partial expansions [5] under
two different split control strategies. In this simulation study, we assume
that N input data records are unifornfly distributed [7 I. The environment
control variables are the size of a home page. (b),the size of an ow~rflow
page (w), and a load control (L) ior a load factor (A)]. Storage utiliza-
tion, average insertion cost, average successflfl search cost, and average
unsuccessful search cost are the main performance measures considered.
These costs are measured in terms of the nurnber of disk accesses. More-
over, ow.~rflow pages are handled by' separators m all three of these ap-
proaches.

Table 2(b) shows the simulation results of climbing hashing under the
split control of the load control L, where N = 10 G, u, = (}.Sb and L = 0.8b,
and L = b and L = 1.2b, respectively. Compared with the analysis results
shown in Table 2(a), the simulation results shown in Table 2(b) are very
close to those shown in Table 2(a).

Sinmlation restllts of climbing hashing, linear h~hing, linear hashing
with two partial expansions per full expansion, and linear hashing with
three partial expansions per flfll expansion under the split control of the
load control L are shown in Tables 3(a), (b), (c) and (d), respectively,

92 YE-IN CHANG AND CHIEN-I LEE

' I ' A B L E 3

S i m u l a t i o n R e s u l t s thMc," t h e S p l i t C o n t r o l of t he l , oad (: o n t r o l (L) : (a)

(' . l imb ing] l a s h i n g : (b) IAnear H a s h i n g : (c) IAnear ll~Lshing w i t h T w o P a r t i a l

E x p a n s i o n s ; (d) l , i ,mar H ~ s h i n g w i l h 'I 'hre(, t) a r / i a l E x p a n s i o n s "

I ' a ra ,ne te r s (: l i ,nl)iug Hashing Pa rame te r s I , inear Hashing

b w L I N N s s u.~ u t i b w I. I N N s s u s u t i

10 5 0S 6 7 1.929 1.927 0.945 10 5 08

10 5 10 6.5 1.939 1.855 0.950 10 5 10

l0 5 12 6.1 1.939 1.855 0.959 l0 5 12

20 10 16 -1.2 1.879 1.855 0.93'1 20 ll) lil

20 10 20 ,1.0 1.S79 1.~55 0.952 211 l0 211

20 l0 24 3.9 1.879 1.855 0.961 20 10 2 i

40 20 32 3.3 1.759 2.(") 0.961 .10 2(I 32

40 20 ,10 3.2 1.779 2.0 I).943 .10 20 40

,10 20 48 3.2 1.799 2.0 0.943 .10 2(I ,lS

80 ,10 6,1 3.0 1.639 3.0 0.925 hi) ,10 6.1

80 40 80 2.9 1.679 2.0 0.9,13 80 ,10 80

80 40 96 2.9 1.719 2.0 0 9 4 3 80 40 96

l , inear l l a sh ing with Two

Pa rame te r s l ' a r t i a l l_,;xpansions l 'aramet(u 's

b u: L I N.S' s s us ut2 t~ ~, L

111 5 08 3.1 1.1115 1.0,17 0.790 10 5 0S

10 5 10 3.3 1.144 1.,145 11.858 10 5 10

10 5 12 3.5 1.243 1.697 11.858 11) 5 13

211 10 16 2.7 1.016 1.046 11.781 20 10 16

20 111 20 2.9 1.153 1.43~ (}.784 311 10 20

21") 10 2.1 3.1 1.2,11 1.689 0.78,'1 20 10 2-1

40 20 32 3..I 1.011 1.031 0.781 ,10 20 32

,i11 20 4(I 2.6 1.154 1.438 0.781 ,i0 20 ,111

4(-) 2(I .18 2.8 1.2,15 1.686 0.781 .10 20 ,18

80 ,10 64 2.3 1.000 1.000 0.781 80 ,10 6,1

80 ,10 80 2.5 1.157 1.436 0.781 ~[1 40 80

~0 40 96 2 7 1.247 1.686 0.781 80 40 96

2.7 1.010 1.0.1(I 11.788

2.!} 1.136 1.43,1 11.858

3.1 1.2,13 1.699 0.858

2.5 1.012 I.(134 0.781

2.7 1.143 1.423 0.78,1

2.8 1.2:/3 1.677 0.784

2.3 1.(1(12 1.003 0.781

3.5 1.145 1.407 0.781

3.7 1.234 1.656 0.781

2.2 1.001 1.003 11.757

2..1 1.132 1.3711 0.781

2.t'; 1.222 1.938 0.781

(b)

l,in(,ar t l a sh ing with 'l'hre(~

Par t ia l Expans ions

1 : \ ' 5 s s u s u t i

3.1 1.015 1.114 0.790

3..1 1.136 1.445 (I.858

3.5 1.243 1.610 0.863

2.7 1.026 1.526 0.781

2.9 1.1138 1.786 0.7~;4

3.1 1.159 1.!157 0.784

3.,1 1.025 1.656 0.781

2.6 1.038 1.936 0.781

2.8 1.160 2.0 0.781
2.3 1.024 1.666 11.781

2.5 1.038 1.958 11.781

2.7 1.160 2.0 0.724

(c) (,t)
"b: the size of a home page; w: the size of an overflow page; L: load control; IN,b':

illsertitJll COSt: .'~.S: .SUCCt~Ssful search cost; us: illlSllCCesSflll SCal'ch cost; utz: s torage

ut i l iza t ion.

where N = 10 t;, w = 0.gb and L 0.8b, and L :-- b and L = 1.2b.
From these tables, c l imbing hashing has the highest storage ut i l izat ion
among these four methods. When b 40, u; = 20. and L = 40, c l imbing
hashing can achieve 96% storage uti l izat ion, as compared to 78% storage
ut i l izat ion in linear hashing and in linear hashing with part ial expansions

C'LIMBING HASHING FOIl EXPANSIBLE FILES 93

under the same condi t ions . Under a fixed N, as L is increased from 8 to

96. the number of file spl i t s is decreased, which resul ts in a decrease of the
average inser t ion cost in all these lh ree methods . Moreover, the ra t io of
the avorage inse.rtion (:()st of c l imbing h~ushing to thal of l inear hashing is

(; 7 (~ 2 . 5) t o 2'9g~1 1 de(:re~Lsed from ~ 2.--g,~) when L is iucro~used. The reason is
t ha t when L is increased, the ra t io of the lmmber of newly added pages
of c l imbing hashing to t h a t of l inear hashing is incro~Lsed under a fixed N.
(Note thal. th is ra l io is always smal ler l.hall 1.) ()bviously, since s torage
u t i l i za t ion and the average inser t ion cost (and t, hc average re t r ieval cost.)
are Mways a t rade-off , c l imbing hashing will lwed higher average inse.rt.ioll
(:()st, ~tll(l ~tvel'ag(-~ re t r ieval (.:()st than the o ther th ree methods . IIowev(,r, in
the next sect ion, we will ex tend c l imbing hashing such t ha t it can provide
a lower a v e r a g e , i n s e r t i o n cost t han l inear hashing at. the cost of d(,creasing
s to rage ut i l iza t ion.

Recal l t h a t the growth ra te of c l imbing bas ing is " '__! per full expan-
~t

sion, which is uol a cons tan t since 7~ is changed dur ing file growth, where
,z is the cur ren t size of the file. To compare the average in se r t i on / r e t r i eva l
cost in l inear hashing and c l imbing hashing when bo th a l)proaches achieve
t h e Sitlll(' storage, u t i l iza t ion, we t ry to rllll l inear hashing under different
choices of L. Table .1 shows t ha t s to rage ul i l izat ion in li ,mar hashing can lw
increased as L is increased, at the cost of increas ing the average retr ieval
cost. whero b = 40. , , 20. and N -- 10". t hom this table , we obserw '

'I'A [¢1,1'] -t

The l{elalionship Between l 'erfornmnce
and L in Linear Ha.~hing ''

Load
(' o l l t r o] [N 5 ,~;,~ I 5 ¢: l l

L .'10 2 5 3 1.1,15 1.,107 (I.78

L := 50 2.76 1.256 1.717 0 7 S

L = (ill 2.93 [325 l!)(}(i (17S

L - 65 2 9 6 1.359 2O 0.7N

L = 1[)0 3.03 1.51!) 2 0 ().~3

L = 200 3.0'1 1.77!/ 2 o 0.93

L = 225 3.0,1 1.7!/9 2 0 0.9-1

L = 250 3.05 1.1~19 2.0 0.95

L -- 300 3.[),1 1,s39 2.o 0.96

l, 350 3.03 1.859 2.0 (1.97

c l i m b i n g 3.27 1.779 2 0 0.94

L = ,10

"L; load control, I N N : insertion cost; ss:

,qllt'C(kssflll s e a r c h c o s l : It,'/': |II1NUC(~(.L'gSflI] St 'a l '¢h

(:()st.: uti: storage util ization

94 YE-IN CHA N G AND CHIEN-I LEE

TABLE 5

Simulation Results Under the Split Control of the
Load Factor (A) ~

Load Factor Climbing Ha.siting Linear Hashing

A I N S ss u s u t i I N S ss u s u t i

0.50 104 1.196 1.189 0.498 2.62 1.0 1.0 0.500
0.55 85 1.215 1.335 0.545 2.60 1.{) 1.0 0.549
0.60 66 1.260 1.262 0.599 2.61 1.0 1.0 0.599
0.65 52 1.321 1.496 0.647 2.66 1.0 1.0 0.649
0.70 44 1.340 1.495 0.698 2.73 1.0 1.{) 0.699
0.75 34 1.409 1.666 0.7,15 2.85 1.0 1.0 0.749
0.80 27 1.470 1.720 0.800 3.0(1 1.032 1.(193 0.800
(I.85 19 1.570 1.887 0.847 3.17 1.115 1.337 0.849
0.90 7 1.764 1.926 (I.894 3.35 1.324 1.904 0.858
0.95 5 1.939 1.855 0.950 3.28 1.671 2.(1 0.892

%: the size of a home page; w: the size of an overflow page; A: load
factor; I N S : insertion cost; ss: successful search cost; us: unsuccessful
search cost; uti: storage utilization.

t ha t when both approaches have the same storage ut i l izat ion (or the same

average successful search cost, or the same average unsuccessful search cost,
or the same average inser t ion cost), one will have be t te r performance t han

the other in some performance measures, while having worse perfornlance

t h a n the other in some other performance measures. The reason is tha t as

L is increased a lot in l inear hashing, the n u m b e r of file splits is decreased
in l inear hashing. Therefore, given a fixed N and the same storage uti-
l ization, the n u m b e r of home pages in linear hashing is less t h a n the one

in c l imbing hashing. At the same time, the number of overflow pages in

l inear hashing is greater t han the one in cl imbing hashing. Consequent ly,
the average retrieval cost in cl imbing hashing is be t te r t h a n t ha t in l inear

hashing.
Table 5 shows the s imula t ion results of c l imbing hashing and linear hash-

ing under the split control of the load factor (A), where N = 10 ~, b = 10,
and w = 5. In cl imbing hashing, when A is increased from 0.5 to 0.95,
the number of file splits is decreased, which results in a decrease of the
average inser t ion cost. While in l inear hashing, as A is increased from 0.5
to 0.95, the average inser t ion cost is increased. The remson is t ha t as A is
increased, the number of overflow pages is increased (which is denoted as
factor one), while the number of file splits is decreased (which is denoted
as factor two). As A is increased, factor one domina tes the performance
of the average inser t ion cost in l inear hashing; while in c l imbing hashing,
factor two domina tes the performance of the average inser t ion cost. As A is

CLIMBING HASHING FOR EXPANSIBLE FILES 95

Ut i l i zat ion

1.0
o.9-'
O.B"
0.7"
o.6:
o.5"
0.4

,-...._
. --- _ - - - _--

• , | • , |

10 100

Mult ip l ier of H(key)

n l inear

- - c l imbing

7.7 n n [3

I O0

Fig. 6. 'Flit! relationship between slot'age ulilization and non-unifornl key' distribution.

increased, which implies tha t ttle storage utilization threshold is increased.
oscillation performance during a flfll expansion is incre~used, ~us s tated in :5.
11]. Since the growth rate of climbing hashing is , + l per full expansion as

71.

compared to 2 m linear h~h i ng , climbing h~ushing will result in smaller os-
cillation during a full expansion than linear hashing. From Table 5, as A is
increased from (1.5 to 0.95, the ratio of the aw~rage insert, ion cost of climbing
hashing to tha t of linear h~kshing is decreased from ~ to 5 - 2 g . 1 ° 1 5 Moreover.•
when A > 0.85, climbing h ~ h i n g can have higher storag(' utilization than
linear hashing. The reason is that the higher A is, the higher the ratio of
lu,rf'ormance oscillation during a full expansion in linear hashing to tha t in
climbing hashing.

The above simulation results are based on the ~ussumption tha t the input
da ta records are uniformly distributed. Now, let us examille one more in-
terest ing result when the input da ta records are not uniforlnly distr ibuted.
Consider a special case in which ahnost all of the data records are. un-
fortunately, hashed into the same home page. This can be simulated by
letting keys of da ta records be multiplied by 21. 2 e 2 :~ and 2 m. Fig-
ure 6 shows a comparison of storage utilizatioll between climbing hashing
and linear h~ushing under this ca,se, where N = 106, b --- 10, w = 5, L = 10.
(Note tha t in Figure 6. the X axis has been replaced by the logari thmic
function of X with base 2.) In this case, climbing hashing can provide even
bet ter s torage utilization than linear hashing ~ks the multiplier is increased.
W h e n the multiplier is increased (i.e., the number of data records into the
same home page is increased), storage utilization in linear ha,siting even
drops below 50c~, while climbing hashing still keeps the storage utilization
abow~ 85%.

This re~uson can be explained as follows. Assume tha t k splits occur in
linear hashing and the file initially contains one page: in this ease. k more
pages are added. Under the same number of splits, there are s more pages

96 Y E - I N C H A N G A N D C H I E N - I L E E

added in climbing hashing, where (1 + 2 + t- s) _< k < (1 + 2 - e . . • + (s + I)) ,
as explained in Section 4. Theretbre.. (.~+t).~. ., <_ k and .s = [4gV71-1j2 ; i .e . ,

after k splits occur. L skggvTi-1 2 J pages are added in climbing hashing as
compared to k pages in linear h~kshing. When L • b and w = 1, the

(k+l)b storage utilization is [¢r~-r_,l~,+kl ' in climbing h~Lshing as compared to

(k+l)b (k+l)O+kt, in linear hashing, where there are kb overflow records. As k is
increased, s torage utilization is near 1 in climbing hashing, while it is about
1 in linear hashing.

6. E X T E N S I O N

In this section, we extend the proposed scheme lo have a growth rate
of ,,+~-_____! per full expansion (t _> 2); i.e., (t - 1) more pages are added per
full expansion, Stlch tha t tile number of disk accesses for da t a retrieval and
insertion operat ions can he reduced.

Let each key be mapped into a string of t-base digits, i.e., Ht(key) =
c = (cq - l . cq -2 el,cO) (0 _< c, < t and 0 <_ i < q). Let ho(c) = m o
be the function to load tile file initially, where 0 <_ m0 <_ (m - 1) and 'rn
denotes the initial number of pages of a file. The l'cSt of the split functions
1~1, h2 h, for extended clilnbing h;kshillg are defined ms follows:

h 0 (c) = m . .

where 0 _< m0 <_ (m - 1)

hi (c) = h 0 (c) + c . ,

t,,_1(c) = (ht(c)-~ ie ,)rood (m + (i-: l)(t - 1)).

fo r i_> 1, tha t is. 0<_ h,+l(c)<_ ('m --1) + (i + l)(t - t) .
Table 6 shows th(~ simulation results of extended climbing hashing under

the split (:ontrol L, where N = 1() (~, b = 80, w .: 4(1, and L = 96, which
corresponds to what we have. claimed: as t is increased, tile growth rate
per full expansion is increased, resulting in a de.crease of s torage utilization
and costs of da ta retrieval and insertion operations. Moreover, costs of
da ta retrieval and insertion operat ions in extended climbing hashing can
eve.n drop below those in linear hashing, at tile cost of de.creasing storage
utilization. The.refore, if we care about f~Lst, retrieval (and low insertion
cost) more than high storage utilization, we choose a t with a large value
in extended climbing hashing. Since high storage util izatkm and fast da t a
retrieval (and low average insertion cost) are always a tradeott', the pro-
posed extended climbing hashing provides a flexible choice between these
I wo re(tuir(~lllelltS.

C L I M B I N G H A S H I N G FOR. E X P A N S I B L E FILES 97

TABLE 6

Sinmlation Re.suhs in Extended
Climbing llashing

Scheme 1 : \ : 6; ,s.s u.'~ u t i

c l i m b i n g 3 01 1.72 2 00 0.!)-1

t = 3 2 8 8 1 5 !) les(i ().~!)

t - .1 2 .S0 1.18 3 0 0 0 , 8 9

t - ,', 2.7,1 1.53 1 . ~ 6 0 79

t . (; 2 G7 1,,12 I,!).1 0 . 7 9

/ -: 7 2 6 1 1.29 I s 0 t) 7 !)

t = S 3 5 6 1.28 1 71 0 7 8

t = !1 2 5,1 1,33 1.68 0 . 7 0

t = 10 3..'51 1.31 1.67 0 6 3

t = l 1 2 . . I S 1 . 3 0 l.GG () ,")6

t : - 1 2 2 . l (i 1 . 2 !) 1 6 6 (1.5.1

t = 13 2.,13 1.28 1 6 5 11,7)2

t - l.l 2 .39 1.2.1 1.65 ()511

t -.- 15 2 . 3 6 1,19 1.65 O,,1g

t = 16 3 .32 1.1,1 1.{il 0 . 1 7

l in (. ;u 2.5!) 1 32 1.(i2 ().7S

,'l: base syst.(,nl; INN: insm'tion ('ost;
,g-~ NIIC('(),~St"II] search ('()st ; us: HllSil(-U()sNhll

Sl'ill('}l (:()st: i l t i : stor ;Hf(' u l i l i z a t i o n

7. C()NCLUSION

In this l)aper, we have I)rOl)OS(-'d a n('w dymunic h~hing schenm called
climbing hashing. Climbing hashino~ always adds only one more page after
a full expansion: that is, the growth rat(' of a file is ,~+__2 per full expan-
sion. when n is the mm~ber ,)f pag('s of the current size of ill(:. From our
mathematical analysis and simulation study, given a fixed load control,
climbing hashing can achieve 96% storage utilization ~Ls compared to 78c~
storage utilization using linear hashing, when the keys are uniformly dis-
tributed. Moreover, when the keys are not uniff)rmly distributed, climbing
hashing can still achieve abov(~ 85~7t storag(, utilization given a fixed load
control, while the storage utilization in linear hashing will drop below 50%.
Since high storage utilization and t'~Lst, data retrieval are always a trade-
off m all dynamic hashing schemes, w(, have (,xtended climbing hashing to
set a growth rate of a file to ,~+t-~ per full expansion in order to find a
compromise between high storage utilization alld fast data retrieval. Our
simulation results show that, if we care about fast retrieval more that high
storage utilization, we choose a t with a large value in extended climbing
hashing. Therefore, extended climbing hashing provides a flexible choice

98 YE-IN CHANG AND CHIEN-I LEE

between these two requirements. Since there are many factors about which
a file s t ruc ture designer (:ares, including f ~ t da ta retri(;val, a low average
insertion cost, high storage utilization, and stable performance th rough file
expansions, our approach provides designers a useful and flexible formula
with which to reach their goals.

The authors ~,rc grateful to anonymous referee,s /or their careful reading and
helpful commcnt,~'.

REFERENCES

1. R . J . Enbo(ty and H. C. l)u, l)yuamic hashing schemes, ACM C, omputing
,%rveys 20(2):85-113 (June 1985).

2. N.I. Hachem and P. B. Berra, New order preserving access method for very
large files derivc(t from linear h~shing, IEEE Trans. Knowledge and Data
f'ng. 4(1):68-82 (Feb. 1992).

3. R. Fagin, J. Nicvergelt, N. Pippengcr, an(t If. R. Strong, Extendible
hashing--A fast access method tbr dynamic files, ACM Tran,s. Database
Sy,st. 4(3):315-344 (Sept. 1979).

4. I). Larson, l)ynamic hashing, BIT 18:184-201 (1975).
5. l). l,arson, Linear hashing with partial'expansions, in Proceedings of the 6th

International Conference on Very Large Data Bases, Oct. 1980, pp. 224-232.
6. P. I,arson, A single-file version of linear hashing with partial expansions, in

f)rocecdings o/ the 8th International Conference on Very Large Data Bases,
Sept. 1982, pp. 3¢)0-309.

7. I). Larson, tYrformance analysis of linear hashing with partial expansions,
ACM 7Yan.s. Database Syst. 7(4):566 587 (Dec:. 1952).

~. P. Larson and A. Kajla, "File organization: Imphmwntation of a method
guaranteeing retriewd in one access, ACM Computing Practice 27(7):670
677 (July 1984).

it. P.],arson, Linear brushing with overtlow-handling by linear probing, ACM
7Yans. Database Syst. 10(1):75-89 (Mar. 1985).

10. P. I,arson, l,inear h~Lshing with separators--A dynamic hashing s(:heme
;u:hieving one-acces,s retriewfl, ACM 7Yans. Database Syst. 13(3):366-388
(Sept. 1988).

II. W. Litwin, Linear hashing: A new tool for tiles and table, s addressing, in
P'rv~:e~.ding.s of the 6th International Conference on Very Large Data Base,
Oct. 1980, pp. 212-223.

12. l). B. Lomct, t:k)unded index exponential hashing, ACM 7~'an.s. Database
,','yst. 8(1):13(i-165 (Mar. 1953).

13. l). B. Lomct, Partial expansions for file organizations with an index, A('M
'Fran,s. Database Syst. 12(1):65-54 (Mar. 1987).

14. ,l. K. Mullin. "Tightly controlled linear hashing without separate overilow
storage, BIT21(4):390 400 (1981).

CLIMBING HASHING FOR EXPANSIBLE FILES 99

15. K. Ramamohanarao and J. W. Lloyd, Dynamic hashing schemes, Computer
J. 25(4):478-485 (1982).

16. K. Ramamohanarao, Recursive linear hashing, ACM 7~ns. Database Syst.
9(3):369-391 (Sept. 1984).

17. M. Scholl, New file organizations based on dynamic hashing, ACM Trans.
Database Syst. 6(1):194-211 (Mar. 1981).

Recewed I January I99g: revzsed 4 June 1994final ; manuscript accepted 30 November
1994

