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ABSTRACT

The goal of dynamic hashing is to design a function and a file structure that
allow the address space allocated to the file to be increased and reduced without
reorganizing the whole file. In this paper. we propose a new dynamic hashing
scheme called climbing hashing, which requires no index and has the growth of a
file at a rate of % per full expansion. where n is the number of pages of the file.
as compared to a rate of two in linear hashing. In climbing hashing, when a split
oceurs. the relative position of the new page (into which a data record may move).
to the current page (where the data record is now), is proportional to the number
of full expansions. Therefore, it seems like the data record is climbing in the files.
(Note that a level is defined as the number of full expansions that have happened
thus far.) From our performance analysis. given a fixed load control, the proposed
scheme can achieve nearly 96% storage utilization as compared to 78% storage
utilization by using linear hashing, which is also verified by a simulation study.
Moreover. the proposed scheme can be generalize to have the growth of a file
at a rate of E%l_—l per full expansion, where ¢ is an integer larger than 1. As
t is increased, the average number of overflow pages per home page is reduced,
resulting in a decrease of the average number of disk accesses for data retrieval.

I. INTRODUCTION

The goal of dynamic hashing is to design a function and a file structure
that can adapt in response to large. unpredictable changes in the number
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and distribution of keys while maintaining a fast retrieval time [1]. That is,
the address space allocated to a file can be increased and reduced without
reorganizing the whole file. Over the past decade, many dynamic hashing
schemes have been proposed. These dynamic hashing schemes can be di-
vided into two classes: one needs an index, the other one does not need an
index. Extendible hashing [3, 12] and dynamic hashing (4, 17} belong to
the first class. Linear hashing [2, 5-7, 9-11. 13-16! belongs to the second
class.

Among these dynamic hashing schemes, lincar hashing dispenses with
the use of an index at the cost of requiring overflow space. The first lincar
hashing scheme was proposed by Litwin [11]. In linear hashing, a file is
expanded by adding a new page at the end of the file when a split occurs
and relocating some of the data records in the split page to the new page by
using a new hashing function. To maintain stable performance through file
expansions in linear hashing, many strategies have been proposed. Among
these strategies, linear hashing with partial expansions as first presented
by Larson [5, 7] is a generalization of Litwin's linear hashing [11]. This
method splits a number of buddy pages together at one time, and the data
records in each of those buddy pages are redistributed into the related old
page and the new added page.

In this paper, we propose a generalized approach for designing a class
of dynamic hashing schemes that require no index and have the growth
of a file at a rate of "7—’:’ per full expansion, where n is the number of
pages of the file, as compared to a rate of two in linear hashing. Since the
growth rate of the proposed approach is smaller than that of linear hashing,
the proposed approach can maintain more stable performance through file
expansions and better storage utilization than linear hashing. Based on
this generalized approach, we derive a new dynamic hashing scheme called
climbing hashing. In climbing hashing, when a split occurs, the relative
position of the new page (into which a data record may move), to the cur-
rent page (where the data record is now), is proportional to the number of
full expansions. Therefore, it seems like the data record is climbing in the
files. From our performance analysis, given a fixed load control, climbing
hashing can achieve nearly 96%, as compared to 78% storage utilization
using lincar hashing, when the keys are uniformly distributed. (Note that
a load control denotes the upper bound of the number of new inserted
records before the next split can occur.) Climbing hashing can have even
much better storage utilization than linear hashing, when the key are not
uniformly distributed. Moreover, the proposed scheme can be generalized
to set the growth of a file at a rate of "*;_1 per full expansion, where t
is an integer larger than 1. Ast is increased, the average number of over-
flow pages per home page is reduced, resulting in a decrease of the average
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number of disk accesses for data retrieval (while also decreasing storage
utilization).

The rest of the paper is organized as follows. Section 2 presents the
generalized approach and climbing hashing. Section 3 gives descriptions of
climbing hashing. Section 4 presents the performance analysis of climbing
hashing. Section 5 discusses the simulation results of climbing hashing,
linear hashing, and linear hashing with partial expansions. In Section 6,
we generalize climbing hashing to have the growth of a file at a rate of
w per full expansion. Finally, Section 7 contains a conclusion.

1

2. A CLASS OF DYNAMIC HASHING SCHEMES

In this section, we first present a generalized approach for designing a
class of dynamic hashing schemes. Next, we derive a new dynamic hashing
scheme based on this approach.

2.1, THE GENERALIZED APPROACH

In a dynamic hashing scheme without using an index, the data records
are stored in chains of pages linked together. A page split occurs under
certain conditions, for example, whenever the number of records exceeds a
positive integer value denoted by L. Let each key be mapped into a string
of binary bits b; first. i.e., H(key) = (by—1.....b1.by) = e Then, this
scheme addresses records by using a series of split functions, hy. hy,... by,
where each function h, maps ¢ to a nonnegative integer. Let a split pointer
sp point to the next page to be split, and initially, split pointer sp points
to page 0. A full expunsion occurs when a split occurs at a page next to
which is a new added page [11]. A level is defined as the number of full
expansions that have happened thus far. For each level d.hg or hyyy is
used to locate a page depending on whether hg(e) > sp or not. On cach
level d, the pages are split in the order from page 0 to the maximum index
of pages on that level. After all the pages on the current level d have been
split, i.e.. after a full expansion, the value of level d is increased by 1 and
the splitting process starts again from page 0.

Based on the above strategy to handle file expansious, we can give a class
of dynamic hashing schemes with a growth rate of % per full expansion
by defining the relationship among h, in the following way. Let hy(c) be
the function to load the file initially and hg:ec — {0,....sq — 1}, where
so is the number of pages of the file initially. Let w(z) be a function
with w:7 — Z ~ {0}, where Z denotes the set of integer numbers. (Note
that w(i) denotes the distance from the current page h;(c) to the new
page h;y1(c). The rest of the split functions, ky, hy. ..., h,. are defined as
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follows:

ho(e) = ¢ mod s;
hy o (e) = (hi(e) + w(i)by) mod (so + i+ 1),

for ¢ > 0, where b; is the value of the ith bit of ¢; that is, 0 < h;4 () <
i+ 14 ho(c).

From the above definitions of the relationships between functions h,4;
and h;, where i > 0, the address space returned from function ;4 is in the
set of {0,1..... so+1}: that is, the file size 5,41 on level (i4+1) is (so+141).
Consequently, the growth rate of a file is ﬂ:—l per full expansion, where n
is the number of pages of the file.

For example, given sp = 1 and w(7) = 1, we have h, 1 (¢) = h,(¢)+b,. In
this case, when an insertion causes a split on level 7 and sp = k, 0 < k < ¢,
the data records in page k will be redistributed to page k or page (k + 1)
according to whether the value of bit b, is 0 or 1, respectively, i.e., according
to the value of h,4(¢). When a split occurs on level ¢ and sp = ¢, ie., sp
has pointed to the maximum index of pages, then a new page (i + 1) is
added at the end of the file and the data records in page i are redistributed
to page i or page (1 — 1) according to whether the value of bit b; is 0 or
L. respectively.

22, CLIMBING HASHING

Based on the above proposed gencralized approach, now we derive a
specific dynamic hashing scheme called climbing hashing. Let so = 1 (i.c..
ho(e) = 0) and w(i) = i. then

ho{c) = 0.
’Ll((f) = h()((‘) + [)().
hop1(c) = (hi(e) + b)) mod (i - 2).

for i > 1. that is, 0 < h,oy(c) <2 ¢ L.

In general, when an insertion causes a split and sp = k(k < 1) on level
d(> 0), the data records in page k will be redistributed into page & or page
(k + d). according to whether the value of bit by is 0 or 1, respectively, as
shown in Figure 1(a). Note that 0 < hg(c) < d, i.e., there are at most
(d + 1) pages in the system when the current level = d. When a split
oceurs in page k(2 < k < d), where (k + d) has exceeded the maximum
index of pages on level d +1 (ie., (d + 1)), data records in page & will be
redistributed into page (k — 2) [= (k + d) mod (d + 2)] or still stay in page
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Fig. 1. A splitting operation in climbing hashing.

k, according to whether the value of 04 is 1 or 0. respectively, as shown in
Figure 1(b).

3. THE ALGORITHMS

In this section, we give descriptions of address computation, retrieval,
insertion, file split, and tile contraction algorithis. In these algorithms,
the following variables are used globally: (1) b: the size of a home page in
terms of the number of records; (2) w: the size of an overflow page in terms
of the number of records: (3) sp: the split pointer with an initial value = 0:
(4) d: the level with an initial value = 0.

g4, ADDRESS COMPUTATION

Let function H (key) map a key into random binary bit patterns of length
q. for ¢ sufficiently large. Let function b; (¢) return the value of the ith bit of
the binary pattern, which is denoted by ¢ (= H(key)). To compute the final
home page number after d full expansions. function home-address is shown
in Figure 2. In this function, initially. all the data records are mapped
into page 0 by hy(c) = 0 and hence. address = 0. Then, the for-loop

function hemeaddressikey)  integer,
var ¢ nteger, = Hikey) */
1 mieger, Toanandex Y/
address - antege:

begin
¢ = lifkey)
addiess = 0, /e higient
if d > 0 then address = address -« by,
for1 =1 tc {d-1} Jo
address = (address + 1 x b,(¢)) maod (i + 23,
if address < sp then address = {address ~ d x bu(c)) mod {d + 2).
return {address):
(‘“(1.

Fig. 2. Function home_uddress.
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statement traces the home page number (denoted as address) through d
full expansions. For the unfinished (d + 1)th full expansion, a page may
have been split or not. Depending on whether or not address < sp, the
fina] home page number is determined.

8.2. OVERFLOW HANDLING AND RETRIEVAL

In :10], Larson applied separators [8] for home pages to linear hashing to
guarantee that any data record can be retrieved in one disk access, where
overflow records are distributed among the home pages. This method,
separators, is based on hashing and makes use of a small in-core table, for
each home page if needed, to direct the search. To understand what a
separator is, let us define a probe sequence first [10]. Assume that all of the
data records are stored in an external file consisting of n pages, and each
of those n pages has a capacity of b records. For each data record with
key = K, its probe sequence, p(K) = (p1(K),p2(K),...,po(K)), (n > 1),
defines the order in which the pages will be checked when inserting or
retrieving the record. For each data record with key = K, its signature
sequence, s(K) = (s1(K),so(K)....,sn(K)), is a ¢-bit integer. When a
data record with key = K probes page p;(K), the signature s;(K) is used,
1 < i € n. Implementation of p(K) and s$(K) are discussed in detailed
in [8]. Consider a home page j to which r, r > b. records hash. In this
case, at least (r —b) records must be moved out to their next pages in their
probe sequences, respectively. Only at most b records are stored on their
current signatures, and records with low signatures are stored on the page
whereas records with high signatures are moved out. A signature value that
uniquely separates the two groups is called a separator, and is stored in a
separator table. The value stored is the lowest signature occurring among
those records that must be moved out. (Note that a separator table has
two entries: one is a separator value and the other one is a pointer to a
page.)

Since in [10] overflow records are distributed among the home pages,
the costs of file-split, insertion, and maintaining separators will be expen-
sive. To avoid this disadvantage and efficiently search a data record stored
in overflow pages, climbing hashing also applies separators, but only for
overflow pages. To apply separators to handle overflow pages in climb-
ing hashing, we need the following modification. Assume that for each
home page i, its overflow records are stored in an external file consisting
of 1 pages, and that each of these m pages has a capacity of w records.
For each overflow record of home page i with key = K, let its probe se-
quence be p(K) = (pa(K)ypa(K). ... .pim(K)) = (1,2....,m), m > 1.

(Note that to increase storage utilization, we probe overflow page j until
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function retrieval(key) : pointer:
var i, ) : integer,
kegin
t = home._address{keyv);
if data record is found n page i then return! physical-address(i) }:
/* function physical.address returns the actual physica! address of home page: >/

else
begin
for eacii entry ; :n the separator table 1 .o
begin
i s, 10y < sepatator,; " value then
begin
if data record s found i page pomnted by separator,; 1. pointer
2 returi iseparator,, l.pointer)
else veturn {nily, ’
eird:
end,
vetuin (i), oo denates that the record s ot found Y7
end, .

(’lld.

Fig. 3. Function retrieval

overflow page (j — 1) is full when a data record is inserted.) For each over-
flow record of home page i with key = K. let its signature sequence be
$:{(K) = (s, (K),si2(K).. .. sun(K)). When an overflow record of home
page ¢ with key = K probes page p,;(K). the signature s;;(K) is used,
i < j < m. By using separators and the above modification, any data
record can be found in at most two disk accesses.

As a file grows, the total size of separator tables of all the home pages
(which have overflow pages) can be too large to be loaded into main memory
at the same time. Moreover, to reduce the number of disk accesses for
loading a separator table for a certain home page that has overflow pages, we
store a separator table in each home page. A separator table is loaded into
main memory whenever its related home page is read into main memory,
and it is written back to the disk whenever its home page is written back
to the disk. In the case that there is no change for the data records in the
home page but a data insertion/deletion has caused data record movements
between overflow pages, the related home page still should be written back
to the disk before it is removed from main memory. That is, one more
disk access is needed in this case, since the contents of the separator table
has been changed. Therefore, we still can guarantee that the cost of data
retrieval is at most two disk accesses. As shown in Figure 3, the function
retrieval(key) is used to locate the actual physical address (either in a home
page or one of its related overflow pages), where separator;;, 1 < j < m,
represents the separator for the jth overflow page of home page 1.
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In this function, home page i is searched first, which is one disk access.
If the data record cannot be found in home page (. its overlow pages are
tried by using separators. If the data record exists in those overflow pages,
one more disk access is needed: otherwise. 0/1 more disk access is needed.
Therefore, at most two disk accesses are needed.

3.4 INSERTION AND FILE SPLIT

When a data record is inserted, its home page is searched first. If the
size of its home page has exceeded the page size b. then one of its related
overflow pages is scarched according to its probe sequences. In the case that
a data record insertion causes relocations of some other records in overflow
pages, related separators that are stored in the home page may also have to
be updated. In this case, one more disk access is needed to write the home
page back to the disk, since the separator table is included in the home
page.

Whenever the growth of a file exceeds a split control condition. a split
oceurs. In this case, data records in page sp (including its overflow pages)
have to be redistributed to page sp or page ((sp+t d) mod (d+2)), according
to whether the value of by is 0 or 1, respectively. If sp = d, d is increased
by 1 and sp is reset to 0. The results of the above actions are equal to
updating sp (and d) first and then reinserting those data records that are
in the page where the old sp points by using the new hashing function
havi. The description of procedure file_split is shown in Figure 4. (Note
that to reduce the number of disk accesses, we use a buffer mechanism to
reduce the overhead of reinsertion.)

3.4, FILE CONTRACTION

Whenever the number of deletions of a file drops below a control condi-
tion, a contraction occurs. In climbing hashing, we collect the data records
that are stored in page (sp — 1) and page ((sp — 1 ~d + 1) mod (d + 2))
back to page (sp — 1), when sp > 0 and level = d. 1f sp = 0 and level
d, we collect the data records that are stored in page (d — 1) and page
((d -1+ d)ymod (d + 1)) (=d - 3) back to page (d — 1). The description
of procedure file_contraction is shown in Figure 5.

4. PERFORMANCE ANALYSIS

In all dynamic hashing schemes without using an index, a split occurs
under a certain condition. There are two kinds of strategies {1, 11]: uncon-
trolled and controlled splitting. Uncontrolled splitting means that a split
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procedure file.spht().
var i) anteger;

B buffer;

begin
tead home page sp and its overflow pages it Lafie: I
and release these pages from the disk
Spomosp o= 1

ispo» d then

$po= U
G i
end,
for eacl vererd with key = Ko baifer 145

JRE
1= homesddressi K,
i home page 1 not {2l they,

wiste ths vesoad to hanse e

IR
frd cn entiy i sepaiatorn taloe s e L Tt i o e Alatat,, T ovalae 0
')t‘éi]]l ’ i a
i the page pomted by separatar, 1 omte 1s il siyen
move cut the record whose key is e
wiite the data record with hey = Kt 1 oe
by separator,, " .ponter,

wetflow page pomted

updaied separator,, ; valie :¥ necessary |
»sn('.,
enc

e,

Fig. 4 Procedure file split.

oceurs whenever a collision occurs. Tn controlled splitting. a split occurs
when the number of inserted data records exceeds a load control (L), or
when storage utilization exceeds a load factor (4), 0 < A < 1. (Note
that a load control denotes the upper bound of the number of new inserted
records before the next split can occur, and a load factor is a storage uti-
lization threshold.) In general, the controlled strategy can provide better
storage utilization than the uncontrolled strategy, which is verified in [11].
Moreover, when the load factor is used as the split control strategy, the
system will suffer more unstable performance during a full expansion, as
stated in 5, 15]. Therefore. we prefer to use the load control as the split
control strategy. as in [15, 16).

In this section. we present the performance analysis of climbing hashing
under the split control of the load control L. In this performance analysis
model [15], we assume that the keys for data records are distributed uni-
formly and independently to each other, and that the page size is measured
in termms of number of record slots. The size of a home page is denoted by
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procedure file_contraction(},
var i, j . integer;
B - buffer:
begim
fsp == 0
then read honte page [d - 1) and page (d - 3) including relatec overfiow pages
to buffer B and release these pages from the disk
clse read home page (sp - 1) and page ((sp - 3) mod {d + 2)} :nclucing relatec overficw pages
into buHer B and release these pages from the disk;
Sp = sp - NN
if sp < C the:
begin
do=d- 1.
sp = d.
end.
for each record with key = Kn buffer B do
Legin
1 = LhemeaddressiK).
if home page i1s not full then
write this record to home page 1
else
begin
find an entry ) in separator table i such that s, (K) < separator,, | vaiue do
begimn
if the page pointed by separator,, {.ponter is full then
move out the record whose key is separator,, | .value tc Buffer
write the data record with key = K to the overflow page pointed
by separator,, I.pointer;
updated separator,; 1 valueif necessary;
end.
end.
end,

end;

Fig. 5. Function file.contraction.

b and the size of an overflow page is denoted by w. We also assume that
the number of overflow pages for each home page is a minimum. In other
words, if a home page has k, k > 0, overflow records, then there will be
[%] overflow pages for this home page. The overflow data records are
handled by using separators, as stated in Section 3.2. When the search
cost is computed, all records are assumed to have the same probability of
retrieval.

Let sp be the number of pages of a file initially and N be the num-
ber of data records inserted into the file. Given N, we are able to de-
rive information about the current state of the file, such as the num-
ber of used home pages sp, the average retrieval cost, and the storage
utilization; that is, we can analyze these properties of a file as a func-
tion of N. The various properties that we are interested in are discussed
below.
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The number of splits performed is given by
ns(N) =0, 0 < NsoL,

7LS(1’V) = [ﬁ#-l .

(Note that to reduce the number of splits, we assume that the first split
is not started until the first sy pages are filled with soL records in this
performance analysis.) Since in climbing hashing, the growth rate of a file
is "T“ per full expansion, the number of home pages expanded (denoted

by m) is given by

N > syL.

so+ (so+ 1)+ -+ (so+(m—1))
<ns(N) <sp+(so+ 1)+ -+ (50 +m).

The first page will be added after sp scans over s, pages, the second
page will be added after sp scans over (sy + 1) pages. and so on; there-
fore. the mth page is added to the file after Zf;::n_li splits. Therefore,

250— VBns(N)+(2s0—1)2=2s0+1 | .o,
("L%ﬂ <ns{(N)and m = | ne(i)+( = o2t ]. Then, the max-

imum index of home pages for the file is s(=(sp + m — 1)), and sp is (ns(N)
_ (m+2s0—1)m )

5 .

The load distribution for each home page is different in climbing hashing,
as shown in Table 1. The value shown in the intersection position of level
d and page number ¢ is the number of records stored after d full expansions

aud is denoted by X9, when there are 2¢ data records whose keys are

TABLE 1
T'he Variance of the Load Distribution in
Climbing Hashing®

Level Page number (i)

o o 1 2 3 4 5 Mean  Variance
1 1 1 1 0

2 1 2 1 1.3 0.2

3 2 2 2 2 2 0

! 4 t 2 12 3.2 0.9

5 6 3 4 4 6 4 5.3 1.9

aMean = (1/(d + 1)) T, X2 (= (2¢/(d + 1))).
Variance = (1/{d + 1)) ;izo(Xl‘l - Mean)?.
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uniformly distributed. Initially, we have X} = 1, X} = 1. When d is 2,
the value of X§ is X, the value of X7 is (X} + X1). and the value of
X3 is X|. Morcover, when d > 2. the value of X4(0 < i < (d- 1)) is
(X,d_1 X,’tzl) the value of X% | is (Y:f_l + X{7Y). and the value of xd
is X;i

Let P(sp.1.s) be the probability of a data record hashed into home page
1 after s full expansions when the split pointer points to page sp. In gen-
eral, after s full expansions in climbing hashing and sp = 0, the probability

P(0,1,s) for home page 1(0 < i < (s 1)) is £ HP(O #2571 the
probability P(0,s — 1,s) for home page (s — 1) is 2% “_”” Os-lus-1)
and the probability (0. s.s) for home page s is M During the

(s + 1)th full expansion, after a split occurs in home page 0 (ie., sp =
1) and all the data records of home page 0 have been redistributed to
home page 0 and home page s, the probability P(1,i.s), 0 < i < s is

PO4s) . i . P00.s)+P(0.s.s)
1—+7((—00—s) and the probability P(1,s.8) is =550

has occurred in home page 1 (i.e., sp - 2) and all the data records of
home page 1 have been redistributed to home page 1 and a new added
home page (i.c., page (s + 1)), the probability P(2,i,s)(0 < i < s) is

P(0.3.s) . e Do o ) e P00 FP0.58) | .
PO POI the probability P(2,s,s) is 1;1’(0,()_5)4-1’(0_1,3)““‘1 the

probability (2, s+ 1. s) for the new added page (s-1) is 1+F’(0}:)(?‘)1+‘73(() L

Moreover, when 2 < sp < s, the probability P’(sp.i.s) of the page
e P o P02,8)+ P(0,0420s)

to the loft of page (sp —2) (e, 0 < @ < (sp—2)) is ?—éigr—f((—:w

while the probability P(sp.i.s) of the page to the right of page (sp — 2).

. . . . o,

including page (sp — 2) (e, (sp—2) < i < s), is W the

P0.0,5)+ P (0,55
1"’22" nl P(0.k,s)
ability P(sp.s + l,s) for the new added home page (s + 1) is
P(0.1.s)
143500 TPk
From the load distribution analysis, we observe that during the (s+1)th

full expansion, the maximum used index (1) of home pages is s in climbing
hashing when 0 < sp < 1 and is (s + 1) when 2 < sp << s, Let W(f) be
a function to denote the number of overflow pages to a home page with ¢
data records inserted and let it be defined as follows:

After a split

probability F(sp, s.s) for home page s is and the prob-

W)=0, 0<t<b,
W) ==, b+ (- Dw+ 1)<t < (b ju).
Let Bin(t; N. ) denote the binomial distribution, i.e.. Bin{t; N. P) =

CNPt(1-- P)N~1). The probability that home page (0 < 7 < n) contains
t data records is Bin(t; N, P(sp.i,s)). The expected number of overflow
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pages for home page ¢ is obtained is

A\’

OP/(N) = Z(W(I)Bin(r: N.P(sp.i.s))).
t=0
Then, the average number of overflow pages for the file after inserting
N data records is given by
" LOP(N)

Op() = Ze=0 L

and the storage utilization can be obtained as follows:

N

VEIN) = (n = 1)(b+wOP(N))

By using separators for handling overow records. the expected cost of
an unsuccessful search for home page i(0 <7 < »} in termms of the number
of disk accesses is

s, = L. OF, —0.
[rs, =2, OF, > 0.

Then. the average number of disk accesses for an unsuccessful search is
aiven by

1

US(N) = Y (US(N)P(sp.i.s)).

=0

For the successtul search, we first consider the expected number of disk
accesses for retrieving all the data records in home page (0 < ¢ < n) plus
its overflow pages, which can be obtained by

RA(N) = > (t Bin(t. N P(sp.i.)))
t=0
N
= D (1 - B)Bin(t. N P(sp.i.s))).
te bl

Then, the average number of disk accesses for a successful search can be
calculated by
I -
Z;:() RAI(-"\')

SS(N) - Sttt
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For the average insertion cost, we fist consider the split cost at the
insertion of the tth (¢t < N) data record, which is given by

SC(t) = 1+ OP(t) +2(1 + OP(t + 1)).

where a buffer mechanism is applied. Since a split occurs only when ¢t is
L2L.... ns(N)L(ns(N)L < NJ), the total split cost for N inserted data
records can be obtained by

ns(N)
TSC(N)= Y SC(iL).

1 =1

Then, we consider the average cost of inserting a data record when
there are t data records that have been inserted. (Note that given the
number of data records ¢, we can obtain the correspouding split pointer
sp” and the number of full expansion s’ as explained before.) Since a data
insertion may cause the other data records to be reinserted, the average
number of disk accesses for inserting the (t + 1)th data record in page 7 is
as follows:

2b(1 + OP,(t)) + 2w(OP,(t) + OP(t) = 1 + -+ 1)

A =
C(t) b+ wOP(t)

~20(1 + OF(1)) + wOPR,(t)(1 + OR(1))
B b+ wOP;(t) '

Then, the average number of disk accesses for inserting a data record in
any page 1 among those (8" + 1) pages is given by

’
S

AC(t) = > P(sp' 1.5 )AC,(1).

=0

Finally, we can obtain the average insertion cost in the insertion process
of N data records (including the split cost), which is given by

_ TSC(N) + TN Ac)

INS(N) = = .

Table 2(a) shows the results derived from the above formulas, where
so = 1. N =10° b =10,20.,40, and 80; w = 0.5b; L = 0.8h, and L = b and
L - 1.2bin climbing hashing. From this table, we observe that the storage
utilization can be up to nearly 96%.
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TABLE 2
Performance: (a) Analysis Results; (b) Simulation Results®

Parameters Analysis Results Parameters Simulation Results

b w L INS ss us uti b w L INS ss us ut:
10 5 08 6.6 1.932 1.934 0.940 10 5 08 6.7 1.929 1.927 0.945
105 10 6.4 1.938 2.0 0.958 10 & 10 6.5 1.939 1.855 0.950
10 5 12 6.2 1.939 2.0 0.959 10 5 12 6.1 1.939 1.855 0.959
20 10 16 4.2 1.870 1.899 0.934 20 10 16 1.2 1.879 1.855 0.934
20 10 20 4.1 1.876 1.904 0.950 20 10 20 4.0 1.879 1.855 0.952
20 10 24 3.9 1.878 1.905 0.962 20 10 24 3.9 1.879 1.855 0.961
40 20 32 3.2 1.780 1.988 0.952 40 20 32 3.3 1.739 2.0 0.961
40 20 40 3.2 1785 20 0456 10 20 40 3.2 1779 2.0 0.943
40 20 48 3.1 1.803 2.0 0.958 40 20 48 3.2 1.799 2.0 0.943
80 40 64 2.9 1.632 1.998 0.924 80 40 64 3.0 1639 20 0.925
80 40 80 2.8 1.650 2.0 0.943 K0 40 R0 2.9 1.679 2.0 0.943
80 40 96 2.8 1.728 2.0 0.947 K0 40 96 29 1719 20 0.943

(a) {b)

“b: the size of a home page: w: the size of an overflow page; L: load control: INS:
msertion cost: ss: successful search cost: us: unsuccessful search cost; uti: storage
utilization.

5. SIMULATION RESULTS

In this section, we show the simulation results of climbing hashing,
lincar hashing [11], and linear hashing with partial expansions (5] under
two different split control strategies. In this simulation study, we assume
that N input data records are uniformly distributed {7,. The environment
control variables are the size of a home page (b).the size of an overflow
page (w), and a load control (L) jor a load factor (A)]. Storage utiliza-
tion, average insertion cost, average successful search cost, and average
unsuccessful search cost are the main performance measures considered.
These costs are measured in terms of the number of disk accesses. More-
over, overflow pages are handled by separators in all three of these ap-
proaches.

Table 2(b) shows the simulation results of climbing hashing under the
split. control of the load control L, where N = 10°, w = 0.5 and L = 0.8b,
and L = b and L = 1.2b, respectively. Compared with the analysis results
shown in Table 2(a), the simulation results shown in Table 2(b) are very
close to those shown in Table 2(a).

Simulation results of climbing hashing, linear hashing, linear hashing
with two partial expansions per full expansion, and linear hashing with
three partial expansions per full expansion under the split control of the
load control L are shown in Tables 3(a), (b). {¢) and (d), respectively,
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TABLE 3
Simulation Results Under the Split Control of the Load Control (L): (a)
Climbing Hashing: (b) Linear Hashing: (¢) Linear Hashing with T'wo Partial
Expausions; (d) Linear Hashing with Three Partial Expansions®

Parameters Climbing Hashing Parameters [inear Hashing
b w L INS  ss us uti b w L INS  ss us uti
10 5 03 6.7 1.929 1.927 0.945 10 5 08 2.7 1010 1.040 0.788
10 5 10 6.5 1,939 1.855 0.950 105 10 2.9 1.136 1.431 0.858
10 5 12 6.1 1939 1.8565 0.959 10 5 12 3.1 1243 1.699 0.858
20 10 16 1.2 LB79 1.8GH 0.934 20 10 16 2.5 1012 1.034 0.781
20 10 20 4.0 1.879 1.855 0.952 20 10 20 2.7 1.143 1.423 0.784
20 10 24 3.9 1.879 1.855 0.961 20 10 24 2.8 1.233 1.677 0.734
4020 32 3.3 1.759 2.0 0.961 40 20 32 2.4 1.002 1.003 0.781
40 20 40 3.2 1779 2.0 0.943 40 20 40 2.5 1145 1.407 0.781
40 20 48 3.2 1.799 2.0 0.943 40 200 4% 2.7 1.234 1.656 0.781
30 40 64 3.0 1.639 20 0.925 =0 40 61 2.2 1.001 1.003 0.707
30 40 &80 2.9 1.679 2.0 0.943 50 40 80 2.4 1.132 1.376 0.781
80 40 96 29 1719 2.0 0943 8040 96 2.6 1.222 1.938 0.781
(a) ()
Linear Hashing with T'wo l.inear Hashing with Three
Parameters Partial Iixpansions Parameters Partial Expansions
b w L INS  ss us ute h w L INS  ss us utt
10 5 08 3.1 1015 1.047 0.790 10 5 08 3.1 1015 1114 0.790
10 5 10 3.3 1144 1445 0858 10 5 10 3.1 1136 1.445  0.858
10 5 12 3.5 1.243 1.697 0.8358 10 5 12 3.5 1.243 1.610  0.863
20 10 16 2.7 1.016 1.046 0.781 20 10 16 2.7 1.026 1.526 0.781
200 10 20 2.9 1153 1.438 0.784 20 10 20 29 1.03%8 1.786 0.784
20 10 24 3.1 1.241 1.689 0.784 20 10 24 3.1 1159 1.957  0.784
40 20 32 2.4 1.011 1.031 0.781 40 20 32 2.4 1.025 1.656 0.781
40 20 40 2.6 1.154 1438 0.781 40 20 40 2.6 1.038 1.936 0.781
40 20 18 2.8 1.245 1.686 0.781 40020 48 2.8 1.160 2.0 0.781
30 40 64 2.3 1.000 1.000 0.781 80 40 64 2.3 1.024 1.666 0.781
80 40 80 2.5 1.167 1.436 0.731 50 40 80 2.5 1.038 1.958  (.781
80 40 96 2.7 1.247 1.686 0.781 30 40 96 2.7 1.160 2.0 0.724
(c) (d)
ah: the size of a home page; w: the size of an overlow page; L: load control; INS:
insertion cost: ss: successful search cost; us: unsuccessful search cost; uti: storage
utilization.

where N = 10% w = 05b and L = 0.8h, and L - b and L = 1.2b.
From these tables, climbing hashing has the highest storage utilization
among these four methods. When b = 40, w = 20, and L = 40, climbing
hashing can achieve 96% storage utilization, as compared to 78% storage
utilization in linear hashing and in linear hashing with partial expansions
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under the same conditions. Under a fixed N, as L is increased from 8 to
96. the number of file splits is decreased, which results in a decrease of the
average insertion cost in all these three methods. Moreover, the ratio of
the average insertion cost of climbiug hashing to that of linear hashing is
decreased from ‘2#.3[(225) to %(211) when L is increased. The reason is
that when L is increased, the ratio of the number of newly added pages
of climbing hashing to that of linear hashing is increased under a fixed N,
(Note that this ratio is always smaller than 1.) Obviously, since storage
utilization and the average insertion cost (and the average retrieval cost)
are always a trade-off, climbing hashing will need higher average insertion
cost and average retrieval cost than the other three methods. However, in
the next section, we will extend climbing hashing such that it can provide
a lower average insertion cost than linear hashing at the cost of decreasing
storage utilization.

Recall that the growth rate of climbing hasing is 1% per full expan-
sion, which is not a constant since n is changed during file growth, where
n is the current size of the file. To compare the average insertion/retrieval
cost in linear hashing and climbing hashing when both approaches achieve
the same storage utilization, we try to run lincar hashing under different
choices of L. Table -1 shows that storage utilization in linear hashing can be
increased as L is increased, at the cost of increasing the average retrieval
cost, where b = 40, w20, and N = [0% From this table. we observe

TABLE 1
The Relationship Between Performance
and L in Lincar Hashing®

Load

Control INS SN us uli
L 40 2.63 1.145 1.407 0.78
L =50 2.76 1.256 1.717 0.78
L =60 2.93 1.325 1.906 075
L. — 65 2.96 1.359 2.0 0.78
L. =100 3.03 1.519 2.0 .83
I = 200 3.04 1.779 20 .93
L =22 3.04 1.799 2.0 0.91
[, = 250 3.06 1.519 2.0 .95
L = 300 3.04 1.834 2.0 0.06
I 350 3.03 1.854 2.0 0.97
climbing 3.27 1.779 2.0 0.94
L = 40

“L: load control, INS: insertion cost; ss:
successful search cost: us: unsuccessful search
cost; uti: storage utilization.
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TABLE 5

Simulation Results Under the Split Control of the
Load Factor (A)?

Load Factor Climbing Hashing Linear Hashing

A INS ss us uti INS  ss us utt
0.50 104 1.196 1.189 0.498 262 1.0 1.0 0.500
0.55 35 1.215 1.335 0.545 260 1.0 1.0 0549
0.60 66 1.260 1.262 0.599 261 1.0 1.0 0.399
0.65 52 1.321 1.496 0.647 2.66 1.0 1.0 0.649
0.70 44 1.340 1.495 0.698 273 1.0 1.0 0.699
0.75 34 1.409 1.666 0.745 2.85 1.0 1.0 0.749
0.80 27 1.470 1.720 0.800 3.00 1.032 1.093 0.800
0.85 19 1.570 1.887 0.847 3.17 1115 1.337 0.849
0.90 7 1.764 1.926 0.894 3.36 1.324 1.904 0.858
0.95 5 1.939 1.855 0.950 3.28 1.671 2.0  0.892

2bH: the size of a home page; w: the size of an overflow page; A: load
factor; /NS: insertion cost; ss: successful search cost; us: unsuccessful
search cost; uti: storage utilization.

that when both approaches have the same storage utilization (or the same
average successful search cost, or the same average unsuccessful search cost,
or the same average insertion cost), one will have better performance than
the other in some performance measures, while having worse performance
than the other in some other performance measures. The reason is that as
L is increased a lot in linear hashing, the number of file splits is decreased
in linear hashing. Therefore, given a fixed N and the same storage uti-
lization, the number of home pages in linear hashing is less than the one
in climbing hashing. At the same time, the number of overflow pages in
linear hashing is greater than the one in climbing hashing. Consequently,
the average retrieval cost in climbing hashing is better than that in linear
hashing.

Table 5 shows the simulation results of climbing hashing and linear hash-
ing under the split control of the load factor (A), where N = 10°, b = 10,
and w = 5. In climbing hashing, when A is increased from 0.5 to 0.95,
the number of file splits is decreased, which results in a decrease of the
average insertion cost. While in linear hashing, as A is increased from 0.5
to 0.95, the average insertion cost is increased. The reason is that as A is
increased, the number of overflow pages is increased (which is denoted as
factor one), while the number of file splits is decreased (which is denoted
as factor two). As A is increased, factor one dominates the performance
of the average insertion cost in linear hashing; while in climbing hashing,
factor two dominates the performance of the average insertion cost. As A is
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Fig. 6. The relationship between storage utilization and non-uniform key distribution.

increased, which implies that the storage utilization threshold is increased.
oscillation performance during a full expansion is increased, as stated in 5,
11]. Since the growth rate of climbing hashing is ”%‘ per full expansion as
compared to 2 in linear hashing, climbing hashing will result in smaller os-
cillation during a full expansion than linear hashing. From Table 5, as A is
increased from 0.5 to 0.95, the ratio of the average insorrion ('ost of climbing
hashing to that of linear hashing is decreased from ﬁ to 3%5. Morcover,

when A > 0.85, climbing hashing can have higher storage utilization than
linear hashing. The reason is that the higher A is, the higher the ratio of
perforinance oscillation during a full expansion in linear hashing to that in
climbing hashing.

The above simulation results are based on the assumption that the input
data records are uniformly distributed. Now, let us examine one more in-
teresting result when the input data records are not uniforinly distributed.
Consider a special case in which almost all of the data records are, un-
fortunately, hashed into the same home page. This can be simulated by
letting keys of data records be multiplied by 2'.22,. .. .2% and 2'. Fig-
ure 6 shows a comparison of storage utilization between climbing hashing
and linear hashing under this case, where N = 10% b = 10, w = 5, L = 10.
(Note that in Figure 6. the X axis has been replaced by the logarithmic
function of X with base 2.) In this case, climbing hashing can provide even
better storage utilization than linear hashing as the multiplier is increased.
When the multiplier is increased (i.e., the number of data records into the
same home page is increased), storage utilization in linear hashing even
drops below 50%, while climbing hashing still keeps the storage utilization
above 85%

This reason can be explained as follows. Assume that k splits occur in
linear hashing and the file initially contains one page: in this case. & more
pages are added. Under the same number of splits. there are s more pages
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added in climbing hashing, where (1+2+---+5) <k < (142+-- -4+ (s+1)),

as explained in Section 4. Therefore, (*—glﬁ <k and s = [@J ie.,

after k splits occur, L@J pages arc added in climbing hashing as

compared to k pages in linear hashing. When L - b and w = 1, the

storage utilization is '_"(fﬁ)fbm in climbing hashing as compared to
t 2

k+Db .o . .
Uﬁm in linear hashing, where there are kb overflow records. As k is

increased, storage utilization is near 1 in climbing hashing, while it is about
L in linear hashing.

6. EXTENSION

In this section, we extend the proposed scheme to have a growth rate
of ”+7‘I_l per full expansion (t > 2); i.c, (t — 1) more pages arc added per
full expansion, such that the number of disk accesses for data retrieval and
insertion operations can bhe reduced.

Let cach key be mapped into a string of t-base digits, i.e., Hi(key) =
e = (Cqor Cqonennn ervep) (0 € e < tand 0 < i < g). Let hole) = myg
be the function to load the file initially, where 0 < mg < (m — 1) and m
denotes the initial number of pages of a file. The rest of the split functions
hy hy.o o o0y for extended climbing hashing are defined as follows:

ho(c) = my.
where 0 < mg < (- 1)
ha(e) = ho(e) + ey,
hooi(e) = (h(e) + ie,) mod (m + (i = 1)(t = 1)),

for i > 1 that is, 0 < hyyy(e) < (m - 1) + G+ (¢ - 1).

Table 6 shows the simulation results of extended climbing hashing under
the split control L, where N = 10°, b = 80, w -~ 40, and L = 96, which
corresponds to what we have claimed: as ¢ is increased, the growth rate
per full expansion is increased, resulting in a decrease of storage utilization
and costs of data retrieval and insertion operations. Moreover, costs of
data retrieval and insertion operations in extended climbing hashing can
even drop below those in lincar hashing, at the cost of decreasing storage
utilization. Therefore, if we care about fast retrieval (and low insertion
cost) more than high storage utilization, we choose a ¢t with a large value
in extended climbing hashing. Since high storage utilization and fast data
retrieval (and low average insertion cost) are always a tradeoff, the pro-
posed extended climbing hashing provides a flexible choice between these
two requirements.



CLIMBING HASHING FOR EXPANSIBLE FILES 97

TABLE 6
Simulation Results in Extended
Climbing Hashing

Scheme INS s us utl
climbing  3.01 .72  2.00 0.94
t =3 288 1.59 1.56G (.59
t - 2.80 118 2.00 .89
t .5 2.74 1.53 1.86 079
[ .6 267 142 194 0.79
t =7 2.61 1.29 1.80 0Ty
t =N 2.56 1.2% 1.71 0.7%
t— 9 251 1.33 1.68 0.70
t= 10 2.51 1.31 167 0.63
t = 1! 218 1.30 1.66 .56
t 12 216 1.29 1.66 (.51
t =13 2.4 1.258 1.65 .52
t- 1 2.0 1.241 1.65 (.50
{15 2.0 1.19 1.65 0148

=16 2.32 1.1 16l 017
linear 2.59 1.22 1.62 0.78

1. base svstem; /NS insertion cost;
ssosuccessful search cost; us: unsuccesstul
scarch cost: uti: storage utilization

7. CONCLUSION

In this paper. we have proposed a new dynamic hashing scheme called
climbing hashing. Climbing hashing always adds only one more page after
a full expansion: that is. the growth rate of a file is l:—l per full expan-
sion, when n is the number of pages of the current size of file. From our
mathematical analysis and simulation study, given a fixed load control,
climbing hashing can achieve 96% storage utilization as compared to 78%
storage utilization using linear hashing. when the keys are uniformly dis-
tributed. Moreover, when the keys are not uniformly distributed, climbing
hashing can still achieve above 85% storage utilization given a fixed load
control, while the storage utilization in lincar hashing will drop below 50%.
Since high storage utilization and fast data retrieval are always a trade-
off in all dynamic hashing schemes, we have extended climbing hashing to
set a growth rate of a file to Lf}”—l per full expansion in order to find a
compromise between high storage utilization and fast data retrieval. Our
simulation results show that, if we care about fast retrieval more that high
storage utilization, we choose a t with a large value in extended climbing
hashing. Therefore, extended climbing hashing provides a flexible choice
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between these two requirements. Since there are many factors about which
a file structure designer cares, including fast data retrieval, a low average
insertion cost, high storage utilization, and stable performance through file
expansions, our approach provides designers a useful and flexible formula
with which to reach their goals.

The authors are grateful to anonymous referees for their careful reading and

helpful cormnments.
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