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ABSTRACT

Finding the centerline of the tubular structure helps to segment or analyze the organs such as the vessels or
neuron fibers in medical images. This paper described a semi-automatic method using the minimum cost path
finding and Hessian matrix analysis in scale space to calculate the centerline of tubular structure organs. Unlike
previous approaches, exhaustive search for line-like shapes in every scale is prevent. Centerline pixels candidates
and the width of the vessel are extracted by analyzing the intensity profile along the gradient vectors in the
image. A verification procedure using Hassian matrix analysis with the scale obtained from the gradient analysis
is applied to those candidates. Results obtained from the Hessian matrix analysis are used to construct a weighted
graph. Finding the minimum cost path in the graph gives the centerline of the tubular structure. The method
is applied to find the centerline of the vessels in the 2D angiogram and the neuron fibers in the 3D confocal
microscopic images.
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Many organs, such as blood vessel and neuron, inside human body are tubular shaped. knowing the centerline
of these organs help to obtain quantitative information, such as shape and size of the organ, for further analysis.
In this paper, we present a semi-automatic method to extract the centerline of the tubular structure in 2D and
3D images. The method was applied to segment the 2D vessel in angiogram and the 3D neuron in the confocal
microscopic images.

Centerline of a tubular structure can be obtained by first segment the region of interest to establish a binary
image of the ROI. A further procedure can then be applied to calculate the centerline. A problem with this
approach is that the ROI could be difficult to segment. For example, segmentation of the coronary arteries in
the angiogram is a difficult problem.

Coronary arteries angiography is still the most common modality for physicians to assess the severity of coro-
nary narrowing or stenosis during percutaneous coronary intervention procedure. Accurate analysis of coronary
arteries in digital angiographic images is valuable and important to clinical needs. The major difficulty in auto-
matic extraction of coronary arterial structures in angiogram lies in (1) low signal-to-noise ratio due to poor X-ray
penetration, (2) vessel overlaps, and (3) superimposition of other tissues such as ribs, spine, or cardiac cham-
bers. Traditional signal-based edge detection algorithms1–7 were unable to effectively or accurately detect the
desired structures. The existing methods specific to vessel extraction can be categorized into (i) model-based8–10

(ii) tracking-based,11–13 (iii) classifier-based,14 and (iv) filter-based15–17 techniques. In model-based methods,
the coronary arterial tree is produced based on a pre-defined coronary artery model in the form of a “graph”
structure. In tracking-based methods, the process proceeds with an initial start-of-search location followed by an
automatic tracking process by exploiting the spatial continuity of the vessel’s centerline, orientation, diameter,
and density. In classifier-based methods, a clustering algorithm is employed with properly preprocessed data to
differentiate vessel or non-vessel regions. In filter-based methods, the coronary arteries are enhanced and located
so that they can be subsequently detected in the image. However, any of the above approaches cannot guarantee
to work well in all of the cases.
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Another case studied in this paper is tracing neuron fibers in the confocal microscopic images. A neuron
consists of necleus, dendrite, axon, and terminal button. Knowing the centerline of the neuron helps to analyze
the shape of the neuron. Due to the low contrast of the image and the shape of the neuron, segmentation
of neuron fibers in confocal microscopic images is a much difficult task than segmentation of the vessels in
angiogram. To calculate the centerline by first segmentation of the neuron fibers might not be an appropriate
approach.

In this paper, we developed a method to calculate the centerline of tubular structure directly from the image.
The technique is developed based on the Hessian matrix analysis in scale space. The Hessian matrix analysis
evaluates the local curvatures to explore the second order structure surrounding at a point such that results
of analysis is independent of image properties, and is only dependent to the local shape of the point. Hence,
they generally are suitable for different types of images. Combined with the Hessian matrix analysis, multi-scale
technique is used to detect every scale of feature and eliminates the effect of noise to construct a robust and
feasible extraction algorithm. By finding the centerline directly from the image, we could develop an easier
method to segment the tubular structure.

For completeness, we briefly state the background of the multi-scale technique. Lindeberg18–20 revealed the
way to detect ridge lines in an 2D image for computer vision using analysis of local directional derivatives to
find the area at which the shape conform the ridge definition in differential geometry. His algorithm calculates
directional derivatives of every pixel in scale-space, which represents different level of detail, from the coarse to
the fine, of the image. The directional derivatives of a pixel at some scale can be viewed as a kind of description
of the local shape at that scale. Evaluation and selection those descriptions in scale-space results the possible
ridge, or say, centerline of line structures. Sato et al.21 present a generalized measure of similarity of line in 3D
space using calculation of eigenvalues of the Hessian matrix, which is equivalent to the directional derivatives.
They designed a delicate formula to estimate the likelihood of being line-shape from eigenvalues of the Hessian
matrix, and build a 3D line filter by it for vessel enhancement. Frangi et al.22 also propose another line filter
based on analysis of the Hessian using their own formula. It is shown by the experimental result that good
noise and background suppression of this method. A line extraction algorithm using the response of line filter
mentioned above and the minimum cost path finding is proposed by Wink et al..23 The response from the line
filter is regarded as weights of edges in a graph where image pixels are viewed as nodes and there are edges
connected between any two adjacent pixels in it. Hence, given two points as the beginning and ending of a
vessel or neuron, finding a minimum cost path (with highest weight) extracts the most possible centerline of the
vessel or neuron. Wink et al. improved their tracking algorithm by involving scale parameters into minimum
cost path finding.24 In previous methods using minimum cost finding combined with the line filter to obtain
centerlines, the response using as weights of graph is generally taken from the maximum response over the scales
in scale-space. In this method, however, response in every scale is reserved as a part of the weights in path
finding, rather than discarding all except the max one. This strategy improves the accuracy of the algorithm but
need huge of memory. This restricts the application of the algorithm to the case of handling 3D volume data.

In this paper, we present a semi-automatic method to segment tubular structure in 2D image or 3D volume
data. The method reduces the memory required so processing large volume in a personal computer is possible.
In the next section, we describe some preliminaries. In Section 2, we present our method. The results are shown
in Section 3. We have conclusion and discussion in Section 4

1. PRELIMINARIES

We briefly describe the 3D Hessian Matrix analysis. The 2D Hessian Matrix is the same but ignore the third
dimension. Hessian matrix for a point p under scale σ in 3D space can be written as the following equation

Hσ(p) =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 , (1)
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where Iab is the partial derivative of I in a, b direction ∂2I/∂a∂b. If I is continuous, Iab = Iba, H can be written
as a symmetric matrix

Hσ(p) =




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz


 . (2)

Let λ1, λ2, and λ3 be the eigen values of Hσ(p), and λ1 ≤ λ2 ≤ λ3. If (x, y, z) is on the centerline of a neuron
fiber, we have |λ1| ≈ 0 and |λ2| and |λ3| are large. Furthermore, let v1, v2, and v3 are respectively the eigen
vectors corresponding to the eigen values λ1, λ2, and λ3. We have v1 points along the direction of the medial
axis, and v2 and v3 are normal to the medial axis.

Computing the second partial derivative of the volume data with scale σ = w is implemented in the frequency
domain. Given a point p, the scale σ = w defines a Gaussian function g(p, σ) that the mean is at point p with
variance σ. To compute the second partial derivative of the volume data is equivalent to

1. Fourier transform the volume data into frequency domain.

2. Compute the second partial derivative of the Gaussian Function and transform it into the frequency domain.

3. Multiply the two results in the frequency domain.

4. Inverse transforming the frequency domain back to the spatial domain.

The computation of the second partial derivatives are shown in Eqs. (3-8)

LNxx(p) = σ2I(p) ∗ ∂2

∂x∂x
g(p, σ) (3)

LNyy(p) = σ2I(p) ∗ ∂2

∂y∂y
g(p, σ) (4)

LNzz(p) = σ2I(p) ∗ ∂2

∂z∂z
g(p, σ) (5)

LNxy(p) = σ2I(p) ∗ ∂2

∂x∂y
g(p, σ) (6)

LNyz(p) = σ2I(p) ∗ ∂2

∂y∂z
g(p, σ) (7)

LNzx(p) = σ2I(p) ∗ ∂2

∂z∂x
g(p, σ) (8)

The Hessian Matrix with at point p for scale σ, denoted Hσ(p), is established using the following equation.

Hσ(p) =




LNxx(p) LNxy(p) LNxz(p)
LNxy(p) LNyy(p) LNyz(p)
LNxz(p) LNyz(p) LNzz(p)


 . (9)

2. METHOD

The method consists of three steps, the preprocessing step, Hessian Matrix analysis, and constructing a weighted
graph and find the shortest path in the graph. Each of the steps is described in the following.
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2.1. Preprocessing

Gradient in an image is generally used to compute the edge in the image. Using the Sobel operation, we
compute the gradients, Sx, Sy, Sz along x, y, and z directions at point (i, j, k). Let p = (i, j, k) be a point,
(Sx(p), Sy(p), Sz(p)) describes the direction that the intensity changes the most and |Sx| + |Sy| + |Sz| gives the
magnitudes that the intensity changes. If p is a boundary point, |Sx(p)|+ |Sy(p)|+ |Sz(p)| tends to be large and
(Sx(p), Sy(p), Sz(p)) approximately points to the center of the tubular structure. Based on this observation, we
shall look at the points that have the magnitude of the gradient greater than a given threshold Tg. And along
the direction of the gradient, we shall determine the approximate boundaries and the estimated center point of
the tubular structure. The estimated boundary points and center points are presented as the triple < p, c, q >
where p and q are the estimated boundary points and c is the estimated center point.

The preprocessing step is different for finding centerline for vessel (2D case) and neuron (3D case). We
separate the discussion in two parts.

2D Vessel Case
The triple is obtained by analyzing the intensity distribution along the direction of the gradient vector. Let p
be an boundary point obtained from the Sobel filtering. Let v be a directed line that has one end point anchor
at p and emitting along the direction of the gradient. Along v, the intensity distribution can be roughly divided
into five intervals, namely, flat interval, upward interval, ridge interval, downward interval, and flat interval. The
five intervals along v indicate that the ray shooting into the vessel, passing the center of the vessel on the ridge
interval, and exiting the vessel. The entering point, a point on the ridge interval, and the exiting points are
respectively the points p, c, and q. The algorithm to determine the five intervals and the triple is described in
the following.

Along v, we discretize the directed line to a set of points, {si|si = p + i · ε · u, i = 0, . . . , n}, where u is the
unit vector along v. The intensity of each of the sampled point si is denoted I(si). If si does not have integer
coordinates, I(si) is obtained using the bilinear interpolation from the four neighboring points. Each pair of
I(si), I(si+1), i = 1, . . . , n − 1 defines a slope mi

mi =
I(si+1) − Isi

ε
. (10)

Depending on the slope, we classify the intervals into four categories, namely, flat, upward, downward, and ridge.
Given a threshold, Tflat, the ith interval is

• flat, if |mi| < Tflat,

• upward, if mi ≥ Tflat,

• downward, if mi ≤ −Tflat, and

• ridge, if |mi| < Tflat, and this interval is between an upward interval and a downward interval.

With these four intervals, for a given point p, c and q are determine if they meet one of the following two
conditions,

• q is in a downward interval and I(p) = I(q). In this case, the centerline of the neuron, c, is (p + q)/2.

• c is the center of the ridge interval or at the boundary of the upward and downward intervals (ridge is
empty). In this case, q locates at c + |−→pc|.

For each computed p, q, and c, we have a triple < p, c, q > which is a possible cross section of a vessel and c is a
candidate for a point on the centerline. Note that, for each point p, there could be a pair of triples calculated.
Figure 1 show the triples (cross section) found according to the rules stated above. According to the rules, we
find the set possible candidates for the centerline. The best possible result shall be determined by the shortest
path finding algorithm. The set of points C={c|c is a candidate for a point on the centerline} will be used for
creating the weighted graph.
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Figure 1. Two triples are obtained by applying the two rules. Each triple obtain a possible point on the centerline. The
best one will be determined by the shortest path finding algorithm.

3D Neuron Case:
When the gradient analysis is applied to 3D volume case, the steps performed are the same as that in the 2D
case. Since the directed line determined by the gradient may not pass through the true center of a neuron fiber,
the candidates for the points on the centerline are determined differently. Let C′ be the set of points of all points
c found in gradient analysis and C be the set of points obtained by applying the dilation operation of C′. C
contains most of the points on the centerline.

2.2. Hessian Matrix Analysis

The points in C is the set of candidate point for the centerline of the tubular structure. Note that the point in C
is obtained through the gradient analysis that the magnitude of the gradient is greater than a given threshold.
Noises can also produce points in C. To verify whether a point in C is truly on the centerline, we apply the
Hessian Matrix analysis.

For each triple < p, c, q > in C, |p, q| is the estimated width of the vessel. Let W = p, q/2, we expect that
there is a tubular structure with radius equal to the half width of the cross section, W , passing through c. By
using a Hessain Matrix with scale σ = W , there should be a detected tubular structure.

2D Vessel Case
For each point c in C, we compute the Hessian Matrix Hσ(c).

Hσ(c) =
[

LNxx(c) LNxy(c)
LNxy(c) LNyy(c)

]
. (11)

Note that, the σ used in obtained from the previous step. The two eigen values λ1 and λ2 (λ1 < λ2) are
calculated. We define w1 and w2,

w1 =
|λ1|
|λ2| 32

, (12)

and

w2 =
|v2 · −→p, q|
|v2||−→p, q| , (13)

where v2 is the eigen vector corresponding to λ2. Recall that, if c is indeed on the centerline of the vessel of
width W , |λ1| ≈ 0 and |λ1| << |λ2|. That means w1 should be very small. Secondly, if p, q is truly orthogonal
to the centerline of the vessel, v2 should have same direction as −→p, q, thus w2 should be close to 1. Combining
w1 and w2, we define the weight w

w = e
(

w2
1

−2a2 )
e
(
(1−w2)2

−2b2
)
. (14)

w is in the range [0, 1]. If w is large, there is significant line structure with width W and c is on the centerline.

3D Neuron Case
We compute the 3D Hessian Matrix as show in Eq. (9). Again, the three eigen values, λ1, λ2 and λ3, are
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computed. Recall that if c is indeed on the centerline of a tubular structure, we have λ1 << λ2, λ1 << λ3, and
λ2 ≈ λ3. In this case, we define the weight w,

w =
√

λ2 · λ3 − λ1. (15)

If w is large then c is likely on the centerline of a neuron fiber.

2.3. Graph Construction and the Shortest Path Calculation
Neuron structure extraction is carried out through finding the shortest path in a weighted graph G = (V, E).
Each vertex in V corresponds to a point in C. Let u, v be two vertices in E. There is an edge between u and v if
the points corresponding to u, v are 8-neighbor connected in 2D case or 26-neighbor connected in a 3D volume.
There are costs associated with the edges in E. We used different way to define the weight of an edge.

2D Vessel Case
The weight between two connected vertices u and v is denoted C(u, v).

C(u, v) = (Cweight(i, j) + Cwidth(i, j)) · Cdistance(i, j) · Cdirection(i, j), (16)

where

Cweight(i, j) =
1

wi
+ 1

wj

2
(17)

Cwidth(i, j) = �(|wi − wj |) + 0.5� (18)
Cdistance(i, j) = |u, v| (19)

Cdirection(i, j) = (2 − (1 −−−−→vi, vj · diri)2

2c2
)(2 − (1 −−−→vivj · dirj)2

2c2
) (20)

3D Neuron Case
For an edge e connecting u and v, we define

C(u, v) = w1 + Cdistance, (21)

where Cdistance(u, v) = D(vi, vj).

The weights are designed so that the centerline of a piece of vessel or neuron fiber occur on the shortest
path between a pair of vertices on the neuron. Given the weighted graph, G = (V, E), we calculate the all pairs
shortest paths using the Dijkstra Algorithm. The structure extraction algorithm is obtained by a graphics user
interface system. The user provides a pair of points on the centerline as the input. The shortest path between
the pair of points are calculated that corresponds to the centerline between the points. The process iterates until
the whole tubular structure is extracted.

3. RESULTS

In Figure 2, a computer generated phantom test data is shown. The centerline obtained by the proposed method
is shown on the right side. In order to test the robustness of the proposed method, we used computer to generate
low contrast phantom image. We also generated the condition that the background intensity changes gradually
(Figure 3). The image containing noises were also generated by computer for testing robustness reason(Figure 4).
In Figure 3, since the background intensity changes, the centerline shift to the right of the true centerline. But
the centerline falls in the interior of the vessel. That means the centerline can still serve as a reference to find
the boundary of vessel. In the noisy image shown in Figure 4, the proposed method can still accurately calculate
the centerline.

In Figure 5, the retinal images is shown. The centerlines for the vessels in the low contrast area could still
be well identified. The experiments using the coronary artery angiogram was also performed (Figure 6). The
arterial tree can be extracted fairly complete.

In Figure 7, we present the result obtained by tracing neuron in 3D confocal microscopic volume data. The
image on the right was obtained by tracing neuron fibers in a volume data of size 512× 512× 120. This problem
can be fitted into a personnel computer with 2G memory. The preprocessing time took about two hours.
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Figure 2. A computer generated phantom data set. The original image is shown on the left and the center line obtained
is show on the right.

Figure 3. The test data containing low contrast image and the background intensity change gradually. The original
image is shown on the left and the center line obtained is show on the right.

Figure 4. Image containing noises. The original image on the left and the result shown on the right.
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Figure 5. The result obtained for the retinal image. The original image is shown on the left and the centerlines found is
shown on the right.

Figure 6. Center lines identification for the coronary artery in the angiogram. The image on the right shows the extracted
centerlines.
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Figure 7. Two examples show the results of tracing neuron fibers. The images are 3D confocal microscopic images.

4. CONCLUSION AND DISCUSSION

We presented a semi-automatic method to find the centerline of tubular structure in 2D or 3D volume images.
A problem with this approach is the long preprocessing time. However, the method worked well even for 3D
neuron tracing case in confocal microscopic images. The future work will be segmentation of vessels or neuron
fibers based on the centerline extracted.
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