
Measurements of material refractive index with 

 a circular heterodyne interferometer 

 
Zhi-Cheng Jiana, Jiun-You Linb, Po-Jen Hsieha, and Der-Chin Su*a 

 
aInstitute of Electro-Optical Engineering, National Chiao Tung University,  

1001 Ta-Hsueh Road, Hsin-Chu 30050, Taiwan, R.O.C. 
bDepartment of Mechatronic Engineering, National Changhua University of Education, 

 No. 2, Shi-Da Road, Changhua City 20056, Taiwan, ROC. 

 

ABSTRACT 

 
When a light coming from a circularly polarized heterodyne light source incidents on an optical material, a phase 

difference between s- and p- polarization components of the reflected light occurs. This phase difference can be 

measured accurately with the heterodyne interferometry. The measured data are substituted into the special equations 

derived from Fresnel equations, the refractive index can be estimated. This method bears both merits of a common-path 

interferometer and a heterodyne interferometer. The refractive indices of three optical glasses and two birefringent 

crystals were measured to show the validity of this method. 
 

Keyword: refractive index, circular heterodyne interferometer, isotropic material, birefringent crystal, Fresnel 

equations. 

 

1. INTRODUCTION 

 

Optical materials such as optical glasses or birefringent crystals are often used to fabricate optical components.  Recently, 

some devices, for example, birefringent laser cavity filters
1
, poled-polymer electro-optic devices

2
, liquid-crystal spatial 

light modulations
3
, and magneto-optic recording media

4
, have been used for many applications.  To enhance their quality 

and performance, it is necessary to determine their refractive indices accurately. There are several methods
5-15

 for 

measuring the refractive index of an optical material.  They are usually divided into two types: the transmission type 

measurement method
5-10

 and the reflection type measurement method
11-15

. In the former method, the phase variations of 

the light beam transmitted through an optical material are measured.  So, the accuracy of thickness, flatness and 
parallelism of the two opposite sides of materials are strongly required.  Hence, the measurement processes become 

tedious. The latter method such as ellipsometric technique is related with the light intensity variations. Consequently, it is 

easily influenced by the stability of the light source, the scattering light, the internal reflection, etc., and its resolution 

will be decreased.  

To overcome these drawbacks, a circular heterodyne interferometer for measuring the refractive indices of an isotropic 

material and a birefringent crystal is proposed in this paper. It utilizes a common-path heterodyne interferometric 

technique and Fresnel equations. When a light coming from a circularly polarized heterodyne light source
16

 incidents on 

an optical material, a phase difference between s- and p- polarization components of the reflected light occurs. This 

phase difference can be measured accurately with the heterodyne interferometry. The measured data are substituted into 

the special equations derived from Fresnel equations, the refractive index can be estimated. This method bears both 

merits of a common-path interferometer and a heterodyne interferometer. 
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2. PRINCIPLE 

 

The schematic diagram of this method is shown in Fig. 1. A light beam coming from a circularly polarized heterodyne 

light source is incident at θ onto an optical material OM located on a rotation stage. The light beam reflected from OM 
passes through an analyzer ANt and enters a photo detector Dt. If the amplitude of the light detected by Dt is Et, then the 

intensity measured by Dt is 
2

tt
EI = . Here, It acts as a test signal. On the other hand, the electronic modulated signal 

of the circularly heterodyne polarized light source is filtered and becomes the reference signal. Finally, these two signals 

are sent to a phase meter PM and the phase difference between them can be measured. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 1 Schematic structure for measuring  the phase difference owing to reflection at an optical material. EO: electro-optic modulator; 
Q: quarter-wave plate; OM: optical material; ANt: analyzer; Dt: photodetector; LVA: linear voltage amplifier; FG: function generator; 
PM: phase meter. 
 

 

2.1 Circularly polarized heterodyne light source 

The circularly polarized heterodyne light source consists of a linearly polarized laser light source, an electro-optic 

modulator EO and a quarter- wave plate Q as shown as shown in Fig. 1. EO is driven by a function generator FG and a 

linear voltage amplifier LVA.  For convenience, the +z axis is chosen along the propagation direction and the y-axis is 

along the vertical direction. Let the laser light be horizontally linearly polarized, the fast axis of EO and Q be 45° and 0° 

with respect to the x-axis, respectively. If an external saw tooth voltage signal with angular frequency ω and amplitude 

2
λ
V , the half-voltage of EO, is applied to EO, then the phase retardation produced by EO can be expressed as ωt. The 

Jones vector of the light coming from the circularly polarized heterodyne light source can be written as  
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From Eq. (1), it is obvious that there is an angular frequency difference ω between the left- and the right- circular 
polarizations of the light beam. 

 

2.2 Phase difference between s- and p- polarizations of reflected light 

2.21 Birefringent crystal  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 2 Reflection at surface of an optical material. OA: optical axis. 
 

 

Here OM is a birefringent crystal with the extraordinary index n
e
 and the ordinary index n

o
, and its optical axis is located 

at α with the incident plane as shown in Fig. 2. If the transmission axis of ANt is located at β with respect to the x-axis, 
then we have 
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where S is the Jones matrix for OM, rpp and rss are the direct-reflection coefficients, and rps and rsp are the cross-reflection 

coefficients, respectively. They can be expressed as 
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Hence, we have 
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2.2.2 Isotropic material  

For isotropic material, we have the relation ne  = no = n. Then, Eq. (3) can be expressed as  

rsp=rps=0,  (8) 
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The average intensity I
o
 and the phase difference φ in Eqs. (5) ~ (7) can be rewritten as 
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respectively. 

2.3 Estimation of refractive index 

The electronic signal generated by FG is filtered, and it uses as the reference signal. So the reference signal has the form 

of 

                           ( )[ ]
0

cos1 φω ++′= tII
r

.                                                                             (13) 

Both the test signal It and the reference signal Ir are sinusoidal signals. They are sent to a phase meter PM, and φ can be 

measured accurately when φ0 is known. 
2.3.1 Birefringent crystal 

From Eqs. (3) ~ (5) and Eq. (7), we can see that φ depends on ne, no, α, θ, and β.  In practical measurement processes, θ 

and β are obtained from the direct angle readouts of the division mark of the rotation stage. Consequently, only three 

factors ne, no and α should be solved. That is, we have  

),,( αφφ
oe
nn= .                                                                                    (14) 

Theoretically, the data of φ being corresponding to three different conditions should be measured. They are substituted 

into Eq. (14) and ne, no and α can be obtained. However, these equations are very complicated, it is not easy solve them 

directly. For easier operations and estimations, θ and β could be so chosen that Eq. (7) can be simplified.  As the 

condition β=0° is chosen, Eq. (7) can be rewritten as 
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 It can be seen from Eqs. (3) and (4) that either rps or rsp equals zero as α equals either 0° or 90°, respectively. Hence, 

under the condition β=0°, the optical axis OA of the birefrigent crystal can be rotated until the condition φ=0° is satisfied. 

Then, the optical axis is located at either 0° or 90° with respect to the incidence plane. 

Next, ANt is rotated so that β is nonzero, and Eq. (7) is rewritten as 
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Now we consider two particular conditions:  

(i) if α=0°, then 
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(ii) if α=90°, then 
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Since three unknowns (ne, no, and α) are to be solved, we need three equations. These can be obtained by measuring φ at 

three different incident angles θ1, θ2, and θ3. Three corresponding phase differences φ1, φ2, and φ3 are obtained, and 

represented as 

),,(
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Two of Eqs. (19a)~(19c) are combined to form a set of simultaneous equations, and three sets are obtained. Any set of 

the simultaneous equations can be solved under either condition (i) or (ii), and so two corresponding pairs of solutions 

for (ne, no) are obtained. Therefore, there are six pairs for (ne, no). Among them, three pairs are derived under condition (i) 

and form a group of solutions. The other three are derived under condition (ii) and form another group of solutions. Then, 

the justification of correct solutions can be achieved by the following approaches: 
1. Rationality of the solution: In general, both ne and no are within the range 1 and 5. If any estimated data of ne and no is 

not within this range, it is obvious that the estimated data may be incorrect. 

2. Comparison between ne and no: Either a positive or negative crystal is tested, all three pairs of solutions of either group 

should meet with only either 
oe
nn > or 

oe
nn < . If not, then that group is incorrect. 

Hence, only one group of solutions is correct, and the corresponding data of α is the azimuth angle of its optical axis. 

2.3.2 Isotropic material 

From Eq.(10), it is easily seen that the case rss=0 should not exist.  From Eq. (12) it is obvious that only when β is neither 

0° nor 90°, then φ=0° as rpp=0.  Under this condition, the incident angle is equivalent to the Brewster’s angle θB. Eqs. (9) 

and (10) are substituted into Eq. (12), we obtain  
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From Eq. (20), θB is capable to be determined with the experimental curve between φ and θ, so n can be evaluated by 

using the relation n = tanθB.  
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3. EXPERIMENTS AND RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 3 Theoretical and experimental curves of φ versus θ for BK7, BaSF2, and SF2 as β=20°. 
 

 

In order to demonstrate the feasibility of this method, the refractive indices of three glasses (BK7, BaSF2, and SF2), and 

two birefringent crystals (quartz and calcite) were measured. A He-Ne laser with 632.8 nm wavelength and an electro-

optic modulator (PC/2; England Electro-Optics Development Ltd.) were used. The frequency of a sawtooth signal 

applied to the EO was 800 Hz. We used to a high-resolution rotation stage (PS-θ-90; Japan Chuo Precision Industrial 

Company, Ltd.) with an angular resolution 0.005° to mount and rotate the test material, and a high- resolution 

phasemeter with an angular resolution 0.01° to measure the phase difference. In addition, we used a personal computer to 

record and analyze the data.  Firstly, the refractive indices of three glasses were measured. For easier operation in glasses 

measurement, β=20° was chosen.  The theoretical and experimental curves of φ versus θ for these three glasses are 
shown in Fig 3. In this figure, the full curves represent the theoretical reference values which are obtained by introducing 

their reference refractive indices
17

 into Eq. (20), and the symbols “�, ×, and ＋” represent the direct readouts of division 

mark of rotation stage for BK7, BaSF2, and SF2, respectively.  It is clear that these three curves show good 

correspondence. The Brewster angles of BK7, BaSF2, and SF2 were measured to be 56.574°, 58.942°, and 60.634°, their 

refractive indices are 1.51508, 1.66046, and 1.77717, respectively.  

Next, the refractive indices of two birefringent crystals were measured. The data of the three incident angles and their 

corresponding phase differences are listed in Tab. 1. These simultaneous equations are solved with 2-D Newton’s method 
and mathematics software “MATHEMATICA”. And two groups of solutions are calculated and summarized in Tab. 2. 

The right column represents the judged results according to the above approaches, and marks Ο and × mean the groups 
of solutions are correct and incorrect. The measured data of (ne, no) and their averages for calcite and quartz are listed at 

the first two rows in Tab. 3 and Tab. 4, respectively.  α=90° exist in testing these two crystals. 
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Material θ1 θ2 θ3 φ1 φ2 φ3 

Calcite 55° 60° 65° 24.52° -6.85° -25.85° 

Quartz 55° 60° 65° 17.46° -24.40° -62.56° 

 
Table 1 Experimental conditions and measurement results. 
 

 

 

 

 

 

 

 

(ne, no) 
Material α 

(φ1, φ2 ) (φ2, φ3) (φ3 , φ1) 

Justification  

0° (1.6695,1.5453) (0.5041,1.0007) (580.71,-22.545) × 

Calcite 

90° (1.4333,1.6233) (1.4267,1.6144) (1.4333,1.6233) Ο 

0° (1.5522,1.5627) (1.5128,1.4638) (1.5293,1.5132) × 

Quartz 

90° (1.5552,1.5449) (1.5560,1.5243) (1.5647,1.5195) Ο 

 
Table 2 Calculated solutions and judged results. 
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 (φ1, φ2 ) (φ2, φ3) (φ3 , φ1) Average  

ne 1.4333 1.4267 1.4333 1.4311 

no 1.6233 1.6144 1.6233 1.6203 

∆ne 9.977×10
-4

 1.196×10
-3

 6.178×10
-4

 9.371×10
-4

 

∆no 1.947×10
-4

 3.69×10
-4

 2.248×10
-4

 2.628×10
-4

 

∆α 0.0043° 0.0076° 0.0043° 0.0162° 

Reference values from Ref. 19: (ne, no) are (1.4852,1.6559) at 627.8nm. 

 

Table 3 Estimated results and their average for calcite. 

 

 

 

 

 

 

 

 (φ1, φ2 ) (φ2, φ3) (φ3 , φ1) Average  

ne 1.5552 1.5560 1.5647 1.5586 

no 1.5449 1.5243 1.5195 1.5295 

∆ne 1.626×10-3 1.9763×10-3 1.046×10-3 1.549×10-3 

∆no 2.14×10-4 5.90×10-4 2.18×10-4 3.406×10-4 

∆α 0.1454° 0.0243° 0.0373° 0.069° 

Reference values from Ref. 20: (n
e
, n

o
) are (1.5518, 1.5428) at 627.8nm. 

 
Table 4 Estimated results and their average for quartz. 

 

 
 

 

 

890     Proc. of SPIE Vol. 5856

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms



4. DISCUSSION 

 

At first, measured resolutions of three glasses are discussed. From Eq. (20), we have 

                                 φβθθθ ∆×⋅⋅≅∆ tancossin
BB

3
,  (21) 

where ∆θ and ∆φ are the errors in the incident angle and the phase meter, respectively. Our experimental conditions are 

substituted into Eq. (21), we can get ∆θ  ≅ 0.001°  . Substituting the data of ∆θ and θB into the equation 

θθ ∆⋅=∆
B

n
2

sec ,                                                                                         (22) 

the measured resolutions of BK7, BaSF2, and SF2 are 5.7×10-5, 6.5×10-5, and 7.2×10-5, respectively. 
Secondly, we discuss the measured resolutions of two birefringent crystals. From Eq. (7), we get 
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Eqs. (24) and  (25) can be rewritten as 
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where ∆α, ∆ne, and ∆no are the errors in α, ne, and no, and ∆φi and ∆φj are the errors in the phase differences at two 

different incident angles θi and θj, respectively. Either i or j is an integer between 1 and 3, and i ≠ j.  Considering the 

angular resolution of the phase meter, the second-harmonic error, and the polarization- mixing error, ∆φ=∆φi=∆φj ≅0.03° 

can be estimated in our experiments
18

. Substituting this data and the experimental conditions into Eqs. (23), (26), and 

(27), the corresponding data of ∆α, ∆ne, and ∆no of three sets of simultaneous equations and their averages are calculated 

and listed at the last three rows in Tab. 3 and Tab. 4, respectively. 

 

5. CONCLUSION 

    

 A novel method for determining the refractive indices of an optical material is presented with a common-path 
heterodyne interferometric technique and Fresnel equations. It has no drawbacks of the conventional methods. Besides, it 

has both merits of a common-path interferometer and a heterodyne interferometer. So, it has merits, such as, simple setup, 

high stability, easier operation and high-resolution.
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