
High Visual Quality Sprite Generator using Automatic Segmentation
and Intelligent Blending

I-Sheng Kuo* and Ling-Hwei Chen**

Department of Computer and Information Science, National Chiao Tung University,
1001 Ta Hsueh Rd., Hsinchu, Taiwan

ABSTRACT

This paper presents a sprite generator using automatic segmentation and intelligent blending. Unlike the sprite
generator introduced in MPEG-4, which requires manually segmentation masks provided by user, the proposed sprite
generator segments a video frame automatically into the background and moving objects called masks first. The
segmentation masks increase the fidelity of the generated sprite. The automatically segmented masks are then used to
generate sprite. The experimental result shows that the generated sprite using the automatically segmented masks close
to the generated sprite using manually segmented masks. An intelligent blending method is also proposed to remove
ghostlike shadows in the generated sprite caused by imperfect segmentation. The intelligent blending removes the
shadows effectively without PSNR degradation, and the fidelity of the generated sprite is raised.

Keywords: sprite generation, sprite coding, background mosaic, global motion estimation, MPEG-4

1. INTRODUCTION

A sprite is an image that is formed by collecting backgrounds of a video sequence in a scene. The sprite provides a
panoramic view of the scene and is efficient to represent the backgrounds. The technique of extracting backgrounds and
obtaining a sprite is named as ‘sprite generator’ and is adopted as an efficient tool in the MPEG-41 video standard. The
coding of a sprite, instead of coding all backgrounds in each frame of a scene, can achieve very low bit-rate with good
quality. Many sprite generation algorithms2-6 have been proposed, most of them contain two parts: global motion
estimator (GME) and frame blender. First, the global motion estimator uses a geometric model to estimate the spatial
location variation of two frames caused by camera motions. After the effects of camera motions are eliminated, a blender
is then provided to mix all frames into a single image, that is, a sprite.

The aim of global motion estimator is to obtain an accurate estimation of camera motions. The camera motions can be
represented by parameters of some geometric models often denoted as global motion parameters (GMP). Gradient
descent based algorithms are widely used in the estimator. These algorithms usually need a good initial guess to avoid
the solution being local optimum not global one. In this paper, we will provide an efficient method to get a good initial
guess.

Before the frames are mixed into a single image, they must be in the same camera position. The estimated global motion
parameters which represent the camera motions between two frames A and B are used to register the two frames. Frame
B is first geometrically transformed (also called warped) via estimated global motion parameters into a frame B’ with the
same camera view as that of frame A. Then the transformed frame B’ and frame A are mixed by a blending algorithm,
e.g., averaging.

The motion of background comes from camera motion, like zooming, panning, and rotation. To eliminate the effect of
camera motion, the motion must be modeled and estimated. A good camera model describes the camera motion
accurately with low computational complexity; it is usually modeled by a geometric transformation with a set of

* sasami@debut.cis.nctu.edu.tw
** lhchen@cc.nctu.edu.tw

Visual Communications and Image Processing 2005, edited by Shipeng Li,
Fernando Pereira, Heung-Yeung Shum, Andrew G. Tescher, Proc. of SPIE Vol. 5960

(SPIE, Bellingham, WA, 2005) · 0277-786X/05/$15 · doi: 10.1117/12.633436

Proc. of SPIE Vol. 5960 596068-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

video

auxiliary masks
(if provided)

sprite

(1)

(2)

parameters. The affine transformation and perspective transformation are usually selected as the camera models. Both of
them are defined by two equations with a set of parameters and as follows:

Affine: 321' mymxmx , 654' mymxmy ,

Perspective:
1

'
87

321

ymxm

mymxm
x ,

1
'

87

654

ymxm

mymxm
y ,

where (x,y) and (x’,y’) denote the coordinates of a pixel before and after the camera motion respectively. m1,m2,…,m8 are
the transformation parameters which describes the camera motion. We can see that the affine transformation with six
parameters is a special case of the perspective transformation with m7=m8=1. The perspective transformation can
describe more complicated camera motions. However, the higher computational complexity of the perspective
transformation limits its usability. The affine transformation is quite simple, but it has a lower accuracy. Both of them are
adopted as standard tools in MPEG-41. In this paper, the perspective transformation is selected since the sprite is usually
generated first before coding the video sequence itself and real-time processing is not required.

MPEG-4 introduces an offline sprite generator7 with three major parts: global motion estimation (GME), warping, and
blending. Fig. 1 shows a flowchart of the sprite generator proposed by MPEG-4. The global motion estimation estimates
the camera motion between the current frame and the sprite built so far and finds a set of parameters, P, of the used
camera model which is named as global motion parameters (GMP). Then the current frame is warped toward the sprite
by the transformation of the camera model, i.e., I’(x,y)=I(x,y) where I and I’ are the original frame and the warped frame
respectively. (x,y) are one pixel’s coordinates in the original frame and the corresponding warped coordinates are defined
as (x’,y’)=TP(x,y), where TP is the transformation with parameters P. After warping the frame, the sprite is updated by
blending the warped frame into the previous sprite. The sprite is blended by simple averaging in MPEG-4’s system.

Figure 1: The sprite generator proposed by MPEG-4.

The video sequence is inputted frame by frame into the sprite generator. The sprite buffer holds the sprite generated so
far and provides the current sprite to the GME process as the reference image.

As Fig. 1 shows, the MPEG-4’s sprite generator requires an auxiliary segmentation masks. The segmentation masks are
binary images which describe whether a pixel of its corresponding frame belongs to the foreground or not. These masks
are created manually. The auxiliary masks can be used in global motion estimation to raise the estimation accuracy,
furthermore, these masks can also be used to avoid moving object attending average blending. However, to generate the
masks manually is impractical. Thus, developing a method to automatically segment moving objects is necessary.

MPEG-4 uses a simple averaging as the blending strategy. The averaging strategy derives good quality only if the
background is segmented perfectly. The generated sprite will be blurred if some foreground objects are misclassified as
backgrounds. To overcome the above-mentioned problems, in this paper, a two pass sprite generator is proposed. In the
first pass, a coarse sprite is generated without using masks. In the second pass, based on the generated coarse sprite, an
automatic segmentation method is provided to create moving object masks first. And then an intelligent blending
strategy is presented. Based on the segmented masks and the intelligent blending strategy, a high visual quality sprite is
generated finally.
The reminder of the paper is structured as follows. Section 2 describes the first pass of the proposed sprite generator.
The second pass of the proposed generator is described in Section 3. Section 4 shows the experimental results and some
comparisons with existing methods. Conclusions are made in Section 5.

Proc. of SPIE Vol. 5960 596068-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

video

Sec On!

coarse
sprite

;prite

buffered sprite

(3)

(4)

2. THE FIRST-PASS OF SPRITE GENERATION

The proposed sprite generator is based on the MPEG-4’s work shown in Fig. 1. Fig. 2 shows the flowchart of the
proposed generator. The generation process contains two passes. The first pass generates a coarse sprite by a global
motion estimation algorithm, the bilinear interpolation warping1, and the averaging blending strategy7. The second pass
takes the generated coarse sprite and the original frame as inputs to generate a segmentation mask, and generates the
final sprite with the generated segmentation mask. A new blending strategy noted as ‘counting-averaging’ replaces the
averaging blending in the second pass to improve the visual quality of generated sprite.

Figure 2: The proposed sprite generator.

The details of the proposed generator are described as follows.

2.1. Global motion estimation
The GME aims at finding a set of GMP between the current frame and the reference image, i.e., the current sprite. The
global motion parameters determine the corresponding position in the reference image for every pixel in the current
frame. The GME can be described by a minimization equation:

),',(minarg*
P

P
TIIEP

where I and I’ are the current frame and the reference image respectively. TP is the transformation function with global
motion parameters P. P* is the estimated parameters. E(I,I’,TP) is an error function defined by user. The estimation
registers pixels in the current frame into the reference image by finding the parameters which minimize the error between
the current frame and the reference image. In this paper, the squared error is chosen as the error function:

Iyx
PP yxTIyxITIIE

,

2)),(('),(),',(

To solve the minimization problem, the Levenberg-Marquardt algorithm8 (LM-algorithm) based on the gradient descent
method is used. Since the gradient descent method has a risk of being trapped into a local minimum, to get ride of the
risk, a good starting point called an ‘initial guess’ should be provided. The GME is divided into two stages. Fig. 3
illustrates the block diagram of the proposed two stage GME schema. The first stage makes a good initial guess and
estimates the motion parameters called the ‘local parameters’ between the current frame and the previous frame by the

Proc. of SPIE Vol. 5960 596068-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

previous _________________________________ The first stage:
frame Locai parameter estimation

Feature Point i nitiai Guess Gradient
Extraction Computation Descer iocai

current parameters
frame

GM P of ____________ p arameter a radient ______
previous frame C ombining 0 esc er

GM P

The second stagte:

current sprite Giobai parameter estimation
tV

. S

(5)

LM-algorithm. The estimated local parameter is combined with the GMP of the previous frame as the initial guess of the
second stage and the global parameter is estimated with the LM-algorithm.

Figure 3: The proposed two-stage GME method.

To reduce the time complexity of the LM-algorithm, only some selected feature points in the current frame are employed
while computing the registration error6. In order to avoid the aperture problem9, those pixels with intensities being local
maximum and local minimum are considered as feature points6. The feature points can be located by finding the pixels
with larger Hessian values10. The Hessian value of a pixel (x,y) with intensity I(x,y) is defined as

22

2

2

2

2),(),(),(
dxdy

yxId

dy

yxId

dx

yxId
.

An image and its Hessian value are showed in Fig. 4. We can see that the pixel with large Hessian values (the white
points in Fig. 4(b)) centralized in the high frequency part of the image. This will degrade the estimated GMP. The feature
points should spread evenly over the entire image and avoids the homogenous regions.

For a M N image, the image is divided into 256 non-overlapping regions, each of which has size (M/16) (N/16). The
intensity variance of each region is computed. Regions with variances larger than a pre-given threshold TV are considered
as non-homogenous regions. Suppose that we have K non-homogenous regions. For each non-homogenous region, H/K
pixels with largest Hessian values in the region are considered as feature points. H=2000 is taken in the paper.

(a) (b)
Figure 4: An image and its Hessian value. (a) The image. (b) The Hessian value.

By observing Figure 4(b), we can find that not only the pixels in background have larger Hessian values but also the
pixels in foreground objects. The precision of the global motion estimation will be affected if the pixels of the
foreground objects are selected as feature points. The motion vectors of foreground objects usually differ from the
motion vector of the background, which can be noted as the global translation (GT). The quality of the motion vectors of
the objects will be degraded if we make a smaller search window around the GT.

Proc. of SPIE Vol. 5960 596068-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

(6)

We select 100 feature points which have the largest Hessian value and find the translations of them by full search within
a 64 64 search window. Then the GT can be found by finding the most frequent translation. Then the motion vectors of
all feature points are found by a full search within a smaller search window 17 17 centralized at the GT. Both the GT
and the motion vectors of objects are estimated with a 17 17 block centralized at the feature point. Let (dx,dy) be the
motion vector estimated, the feature point is considered as an outlier if its mean-squared-error (MSE) between the
original and the motion-estimated blocks is larger than a preset threshold TO, i.e.,

Byx
O

B

TdyydxxIyxI
N ,

2),('),(1

where B is the block centered at the feature point and NB is the number of pixels in the block, I(x,y) and I’(x,y) are the
current frame and the previous frame respectively. Since objects are assumed to have different motions from the
background, they may not have a good motion vector around the global translation (a roughly approximation of the
background motion), and will be considered as outliers.

Fig. 5 shows the results of extracting 2000 feature points from the original frame shown in Fig. 4(a) using different
methods. Fig.5(a) shows the result of the traditional method which selects the pixels with the largest H Hessian values as
features points. We can see that no feature points exist at the lower-left part of the image. The feature points selected by
the proposed method are shown in Fig. 5(b). The figure shows that not only the pixels in the dedans but also the pixels
on the white line in the lower part of the image are selected. The feature points selected by the proposed method spread
uniformly. Fig. 5(c) shows the effect of outlier removing. We can see that many of the feature points inside the man are
removed by testing Eq. (6).

(a) (b) (c)
Figure 5: The extracted feature points by different methods. (a) The result of taking H pixels with the largest Hessian values.

(b) The result of the proposed method. (c) The result of the proposed method with outlier removing.

Each feature point in the current frame and its corresponding point in the reference image form a feature point pair,
which are used to find the initial guess for camera motion. The corresponding point is defined as the motion-estimated
point of the feature point, i.e., if the location of the feature point is (x,y), the location of the corresponding point in the
previous frame is (x+dx,y+dy), where (dx,dy) is the motion vector.

As mentioned previously, the perspective transformation expressed in Eq. (2) has eight parameters m1…m8. By
substituting the location of feature point (x,y) and the location of the corresponding point (x’,y’) in Eq. (2) respectively,
two equations are built. Since the perspective transformation has eight parameters, theoretically, four feature point pairs
are sufficient to solve the parameters. In practical, the corresponding points found by motion estimation are not precise
enough to provide a correct solution. Instead of using four feature point pairs, all feature point pairs found are applied to
form an over-determined set of equations. The initial guess is computed by solving the set of equations under the sense
of the least-squared error10.

Let us recall the minimization problem described in the beginning of this section. An initial guess is required for the
gradient descent method to find the global/local motion parameters. The LM-algorithm is employed here. The error

Proc. of SPIE Vol. 5960 596068-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

(7)

(8)

(9)

function required in the gradient descent method, is in slightly different from Eq. (4). Only the errors of the feature
points are counted in the error function, that is,

spofeatureyx
PP yxTIyxITIIE

int_),(

2)),(('),(),',(

The gradient descent method is applied in the estimation of the local parameters and the global parameters. While
estimating the local parameters, the reference image is defined as the previous frame. The reference image is defined as
the current sprite in the case of estimating the global parameters.

2.2. Warping and blending
The current frame is warped toward the sprite using the same method in MPEG-4’s system. Since the transformed
coordinates are not integers, bilinear interpolation is applied while generating the warped frame. The coarse sprite is built
by blending the warped current frame into the current sprite. The simple averaging strategy is employed in the blending
process. Let X, SC and SU be the intensities of the current frame, the current sprite and the updated sprite respectively.
The averaging strategy can be expressed as:

1
*

C

CC
U N

XSN
S

where NC is the number of pixels blended in the current sprite.

3. THE SECOND-PASS OF SPRITE GENERATION

The blending strategy employed in the second pass requires segmentation masks to distinguish objects from
backgrounds. Good segmentation masks separate the objects and backgrounds accurately. Furthermore, using good
segmentation masks in GME, we can avoid selecting object points as feature points, thus the accuracy of estimated
global motions will be increased. The blending error caused by wrongly blending the objects can be reduced. In the
MPEG-4’s system7, the segmentation masks are given manually. However, generating the segmentation masks for every
frame manually is time consuming and impractical. Developing an automatic generation method is necessary for a real
system.

In the existing blending methods, objects will be blended into the sprite if segmentation masks are not provided.
Objects are defined as moving things. An object which does not move in the whole scene is considered as a part of the
background. Since the sprite is blended by averaging the gray values of pixels of the same location in the real world,
those pixels, which some objects ever pass through, must get blurred in the blended sprite. This phenomenon provides a
good starting point for automatic segmentation mask generation.

3.1. Frame segmentation
Fig. 6(a) and Fig. 6(b) shows the original frame and its reconstructed frame, which is built from the generated sprite in
the first pass of the proposed method. We can see that the player in Fig. 6(a) leaves some shadows along his moving
path. The shadows are caused by blending the player into the sprite incorrectly. Despite of the shadow areas, the
reconstructed frames still carry most of background information.

By subtracting the original frame by the reconstructed frame, we can get an image of the moving objects. In order to
remove the effect of peak noise, the block difference is applied instead of the pixel difference. The pixel difference D is
defined as the magnitude of the difference between the original frame I and the reconstructed background R, i.e., D=|I-R|.
A threshold T1 is set to find out the candidates of object pixels. Pixels with D value larger than T1 are considered as
candidates. For each candidate, a 5 5 block B centered on the candidate is taken. The block difference DB, is defined as

Bji
B jiDD

),(
),(

Proc. of SPIE Vol. 5960 596068-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

*1 t t

The candidate with block difference larger than a preset threshold T2 is considered as an object pixel. The two-stage
thresholding technique computes the block differences only for those pixels with higher possibility to be objects. It
reduces the complexity of computing block difference for each pixel.

(a) (b) (c)

(d) (e) (f)
Figure 6: The generation of a segmentation mask. (a) The original image. (b) The reconstructed background. (c) The object
pixels extracted by two-stage thresholding. (d) The seed image. (e) The base image. (f) The generated segmentation mask.

There are two problems while extracting the object pixels. First, the object regions are often ill-shaped with holes.
Second, there are some small-sized regions which are mis-classified as objects. These problems can be solved using
morphological processing and region selecting. Let O be a binary image representing the results of thresholding in the
previous step. Pixels judged as objects will be set to one and others will be set to zero. Two binary images called seed
and base images are generated. The seed image is produced by applying morphological erosion to O using a disk shaped
structure element of radius 2, and the base image is produced by applying morphological dilation to O using the same
shaped structure element of radius 5. The region selecting is applied on the base image. An object region is selected if
any of its pixels have a value of one in the seed image. The segmentation mask is defined as the union of all regions
selected.

Fig. 6(c)-Fig. 6(f) gives an example of generating a segmentation mask. Fig. 6(c) shows the candidates of object pixels
generated by the two-stage thresholding. The seed and base images are shown in Fig. 6(d) and Fig. 6(e). The generated
segmentation mask is produced by region selecting and shown in Fig. 6(f). The object pixels are colored black. Most part
of the moving objects was extracted correctly, except two unclassified parts: the upper part of bat and the player’s legs.
The upper part of bat is nearly transparent hence the background is visible through the bat; the legs of the player have
similar intensities to the background. Thus, both mis-classified parts do not affect the blending result. Moreover, the top
and right borders are also classified as objects, this will eliminate the black line shadows in the generated sprite which
will be discussed in the next subsection. Note that the tennis ball is also classified as an object.

3.2. Global motion estimation in the second pass
The GME process in the second pass is similar to that described in the Subsection 2.1. The automatically generated
segmentation masks are employed as a classification of object pixels. The feature points which are classified as object
pixels are removed. The GMP of the second pass is estimated by the LM-algorithm. The accuracy of GMP is increased
since the effect of object pixels is removed.

Proc. of SPIE Vol. 5960 596068-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

3.3. Reliability-based blending
The traditional sprite generation methods produce the sprite by warping and averaging all frames of the video sequence.
However, pixels belonging to the foreground objects will also be blended into the generated sprite; these will blur the
generated sprite. A reliability-based blending method based on Smolic’s work6 is proposed to resolve this problem. A
frame is split into reliable, unreliable and undefined regions by a reliability mask. Each region will be blended by
different strategies. The proposed method divided the frame into 4 types: reliable, unreliable, object, and undefined. The
reliable pixels are the pixels classified as background in the segmentation mask, excepting the pixels around the frame
boundary which are classified as unreliable. The pixels classified as foreground objects in the segmentation mask are
treat as object region. Since the warped frame and the sprite are not in rectangular shape, the pixels without holding any
value are assigned to undefined. Fig. 7(a)-Fig. 7(c) shows a segmentation mask, the reliability mask extracted from the
segmentation mask, and the warped reliability mask respectively. The black regions and the dark-grayed regions are the
pixels classified as ‘reliable’ and ‘unreliable’ respectively. The white region is the pixels classified as ‘object’, and the
undefined pixels are colored in light-gray.

(a) (b) (c)
Figure 7: The reliability mask establishment. (a) The segmented mask. (b) The reliability mask. (c) The warped reliability mask.

The reliability-based blending method blends the warped frame into the current sprite according to different blending
strategies. Three blending strategies are proposed: average, replace, and discard. The average strategy blends the current
frame into the current sprite by simple averaging which is the Eq. (8) specified in Subsection 2.2. The replace strategy
simply replaces the value of the current sprite by the value of the current frame. The discard strategy discards the value
of the current frame and the value in the current sprite keeps unchanged.

Table 1 lists the blending strategies applied in all combinations of reliability status of the current sprite and the current
frame. If the types of one pixel in the current frame and the current sprite are the same, the average strategy is applied. If
the pixel in the current frame is more reliable than that in the current sprite, the replace strategy is used. Otherwise the
discard strategy is taken.

Table 1: Blending strategies.
pixel type current sprite

current frame reliable unreliable object undefined
reliable average replace replace replace

unreliable discard average replace replace pixel type
object discard discard average replace

The blended sprite is the result of the sprite generation. If there still have unprocessed frames, the blended sprite is
buffered and treated as the current sprite.

3.4. Improved blending
It is hard to get a prefect segmentation mask automatically. The pixels of foreground objects which are not correctly
segmented still blend into the generated sprite, leaves ghostlike shadows. Fig. 11(a) and Fig. 11(b) show this quality
degradation. There are several elliptic shadows caused by the bat crossing the middle part of the image, and two visible
shadows caused by the shoes in the center of the image. To overcome the problem, we should avoid those pixels in the
current frame with intensity very different from those of the corresponding pixels in the current sprite being blended. If

Proc. of SPIE Vol. 5960 596068-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

the average strategy is selected for a pixel according to Table 1, the intensity of pixel is further checked. The pixel is
mixed into the sprite only if the following criteria met. The proposed criteria-added averaging strategy is noted as
‘counting-averaging’ strategy.

A candidate memory is used to store candidate background intensity for every pixel in the current sprite. For each pixel,
two counters are used for the current sprite and the candidate. The counters hold the numbers of pixels that are used to
compute the average intensities. The intensity difference between the current pixel and the current sprite is tested. If the
intensity difference is smaller than a preset threshold, the current pixel is blended into the current sprite by averaging,
and the counter of current sprite is increased by 1. If the test fails, the candidate counter is checked. The intensity of the
current pixel is stored in the candidate memory directly if the counter is zero, this means that the current pixel is the first
one with intensity very different from that of the current sprite. Otherwise another test is performed; it checks the
difference between the current pixel intensity and the candidate memory. The current pixel will be blended into the
candidate memory and the candidate counter is increased if the intensity difference is smaller than a preset threshold;
else the candidate memory is replaced by the intensity of the current pixel

Based on the fact that the background appears more often than moving objects in any pixel, two counters are checked.
If the candidate counter is larger than the sprite counter, the value stored in the candidate memory is believed to have a
higher possibility to be the intensity of background. The sprite and sprite counter are replaced by the value of candidate
memory and candidate counter respectively. The candidate memory is cleared and the candidate counter is set to zero. A
pseudo code is listed in Table 2 to help understanding.

Table 2: The pseudo code of improved blending
if abs(current_pixel-current_sprite)<T then
 blend the current pixel into the current sprite.

sprite_counter is increased by 1.
else
 if cand_counter>0 and abs(current_pixel-candidate)<T then
 blend the current pixel into the candidate memory.

cand_counter is increased by 1.
 else

candidate=current_pixel
cand_counter is increased by 1.

 end if
 if cand_counter>sprite_counter then
 replace the current sprite by the candidate.

sprite_counter=cand_counter
 clear candidate and cand_counter.
 end if
end if

4. EXPERIMENTAL RESULTS

The aim of sprite generation is to reconstruct the background from the generated sprite perfectly. The quality of the
reconstructed background for each frame is often measured by PSNR. In most cases, the PSNR is a good measurement to
describe the quality. However, the PSNR is fooled in seldom cases. A comparison of visual quality of the generated
sprite is performed for completeness.

Fig. 8 shows the generated sprite of the video sequence ‘stefan’ by different methods. Fig.8(a) is generated without using
segmentation masks, i.e., the first pass sprite generation proposed in Section 2. The masks used to generate Fig. 8(b) are
obtained automatically by the proposed segmentation schema described in Section 3.1. Mmanually segmented masks
also employed as an comparison and the results are shown in Fig. 8(c). Fig.9 shows one of the reconstructed frames
using three different methods respectively. Like we stated before, the sprite generated without using masks contains
shadows (see the circled parts in Figure 8(a)), caused by wrongly blending the player into sprite. These shadows are
successfully removed in the sprite generated using the masks generated automatically by our method. The sprites
generated with automatically or manually segmented masks are perceptually the same by human eyes.

Proc. of SPIE Vol. 5960 596068-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

(a)

(b)

(c)
Figure 8: The sprite generated by: (a) one pass without using mask; (b) two pass using automatically generated masks; (c) two pass

using manually generated masks.

(a) (b) (c)
Figure 9: The reconstructed frames: (a) one pass without using mask; (b) two pass using automatically generated masks; (c) two pass

using manually generated masks.

Proc. of SPIE Vol. 5960 596068-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

The PSNR of the reconstructed frames are illustrated in Fig. 11. The results of generation without masks, with proposed
automatically segmented masks, and with manually segmented masks are shown in thick line, thin line, and dotted line
respectively. As we expected, the sprite generated without masks performs worst. The segmentation masks improve the
quality of the reconstructed frames about 0.5 to 1.0dB in PSNR. Using masks generated automatically by the proposed
method perform closely to that using the manually segmented masks.

The performance using the proposed counting-averaging blending strategy is also tested. Fig. 10 shows the reconstructed
backgrounds using different blending strategies. Fig. 10(a) is generated by the traditional averaging strategy and Fig.
10(b) is generated using the proposed counting-averaging strategy. Two contrast-enhanced version of Fig. 10(a) and Fig.
10(b) are shown in Fig. 10(c) and Fig. 10(d) to express the effect of shadow eliminating. It shows that the
counting-averaging strategy eliminates the shadows perfectly. A comparison in PSNR is also illustrated in Fig. 12. The
averaging strategy is plotted in solid lines and the counting-averaging strategy is plotted in dotted line. The comparison
shows that the novel counting-averaging strategy improves the visual quality without decreasing the PSNR.

(a) (b)

(c) (d)

Figure 10: Reconstructed frames with different blending methods. (a) Reliability-based averaging. (b) Counting-averaging. (c)
Part of (a), contrast enhanced. (d) Part of (b), contrast enhanced.

0 50 100 150 200 250

20

21

22

23

24

25

26

frame no

P
S

N
R

(d
B

)

without mask
with manuallysegmented mask
with automatically segmented mask

Figure 11: PSNR comparison using different segmentation
masks.

0 50 100 150 200 250

20

21

22

23

24

25

26

frame no

P
S

N
R

 (
dB

)

averaging
counting-averaging

Figure 12: PSNR comparison of different blending strategies.

Proc. of SPIE Vol. 5960 596068-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

5. CONCLUSIONS

An effective sprite generation method is proposed. The method includes an accurate GME schema, an object
segmentation schema, and a novel frame blending strategy. The proposed GME schema applies a robust gradient descent
approach with a new way of finding the initial guess. The novel blending strategy increases the visual quality of the
reconstructed background by eliminating the ghostlike shadows effectively, without degrading the PSNR. The
segmentation masks generated by the proposed segmentation schema can be employed into the GME and the blending
step, these will increase the PSNR by 0.5 to 1.0dB.

ACKNOWLEDGEMENTS

The research was supported in part by the National Science Council under contract NSC-92-2213-E-009-101 and the
MediaTek incorporation, Taiwan.

REFERENCES

1. ISO/IEC MPEG Video Group, MPEG-4 video international standard with amd. 1, ISO/IEC 14496-2, Jul 2000.
2. M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu, “Efficient representations of video sequences and their

applications,” Signal Processing: Image Communication, special issue on Image and Video Semantics: Processing,
Analysis, and Application, vol. 8, pp. 327–351, May 1996.

3. M. Irani and P. Anandan, ”Video indexing based on mosaic representations,” Proc. IEEE, vol. 86, issue 5, pp.
905–921, May 1998.

4. R. Szeliski, “Video mosaics for virtual environments,” IEEE Computer Graphics and Applications, vol. 16, pp.
22–30, March 1996.

5. A. Smoli , and J. R. Ohm, “Robust global motion estimation using a simplified M-Estimator approach,” Proc.
ICIP’2000, IEEE International Conference on Image Processing , Vancouver, Canada, Sep. 2000.

6. A. Smoli , “Long-term global motion estimation and its application for sprite coding, content description, and
segmentation,” IEEE Trans. Circuits and system for video technology, vol. 9, pp. 1227-1242, Dec. 1999.

7. ISO/IEC MPEG Video Group, MPEG-4 video verification model version 18.0, N3908, Jan. 2001.
8. J.J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” Numerical Analysis, ed. G. A.

Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
9. A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland, “Visually controlled graphics,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 15, pp. 602–605, June 1993.
10. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User's Guide, Third Edition, SIAM, Philadelphia, 1999.
11. M. Lee, W. Chen, C. B. Lin, C. Gu, T. Markoc, and R. Szeliski, “A layered video object coding system using sprite

and affine motion model,” IEEE Trans. on Circuits and System for Video Technology, vol. 7, pp. 130–145, Feb.
1997.

12. T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. on Circuits and System for Video
Technology, vol. 7, pp. 19–31, Feb. 1997.

13. E. T. Kim and H. M. Kim, “Fast and robust parameter estimation method for global motion compensation in the
video coder,” IEEE Trans. on Consumer Electronics, vol. 45, no.1, Feb. 1999.

14. F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for video coding,” IEEE Trans. on
Image Processing, vol. 9, no. 3, Mar 2000.

15. Y. Lu, W. Gao, and F. Wu, “Efficient background video coding with static sprite generation and arbitrary-shape
spatial prediction techniques,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 5, May, 2003.

16. J. Y. A. Wang and E. H. Adelson, “Representing moving images with layers,” IEEE Trans. on Image Processing,
vol. 3, pp. 625-638, Sept. 1994.

17. H. G. Musmann, M. Hotter, and J. Ostermann, “Object-based analysis-synthesis coding of moving images,”
EUROSIP Signal Processing: Image Community, vol. 1, no. 2, pp. 117–138, Oct. 1989.

Proc. of SPIE Vol. 5960 596068-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms

