
 
 

 

  

Abstract— This paper presents the design issues of two 
intelligent forecasting systems, feedforward-neural-network- 
aided grey model (FNAGM) and Elman-network-aided grey 
model (ENAGM). Both he FNAGM and ENAGM combine a 
first-order single variable grey model (GM(1,1)) and a neural 
network (NN). The GM(1,1) is adopted to predict signal, and 
the feedforward NN and the Elman network in the FNAGM 
and ENAGM respectively are used to learn the prediction 
error of the GM(1,1). Simulation results demonstrate that the 
intelligent forecasting systems with on-line learning can 
improve the prediction of the GM(1,1) and can be implemented 
in real-time prediction. 

I. INTRODUCTION 
REY theory, a numerical method, is used to cope with 
the systems with partial information or system dynamic 

model [1]. Based on grey theory, the first-order single 
variable grey model (GM(1,1)) has been developed for 
prediction in various applications, such as temperature 
forecast [2], electricity demand forecasting [3] and control 
of a humanoid robot [4]. The GM(1,1) first transforms a few 
number of historical data into a more exponential-like and 
smooth signal. Then the grey differential equation, modified 
from the first-order ordinary differential equation is adopted 
to calculate one-step-ahead predictive value. Therefore, the 
GM(1,1) could achieve good accuracy for exponential type 
signal prediction. It takes the advantages of simplicity and 
less computation time. However, the precision is not 
sufficient for other types of signals. 
 Aside from the grey theory, neural network (NN) has 
been developed as soft-computing-based forecasting 
method [5]. The NN is modeled from the physical 
architecture of the human brain. Thus, it is highly 
interconnected by a number of processing elements, or 
artificial neurons, and its connective behaviors are similar to 
the human brain. With flexible properties and learning 
abilities, the NN could be used to model an unknown 
relationship between inputs and outputs. The NN can be 
trained by either off-line or on-line training. The off-line 
training not only requires lots of training data, usually entire 
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data set, but takes a long time to train the NN. After training, 
the NN could be applied for prediction. However, huge 
number of data for successful training are not easy to 
acquired [6]. Moreover, whereas the NN faces the dynamic 
changes, it is necessary to take lots of time to retrain the NN. 
Differ from the off-line training, the on-line training adapts 
the NN incrementally by adjusting the weights after each 
pair of input and target is presented. Therefore, the NN can 
simultaneously perform prediction and learning by the 
on-line training in real-time. However, there is neither 
mathematical guarantee of stability of adaptation nor the 
convergence of the weights. In [7], the author found that if 
the learning rate is small enough, the weights would 
converge stably. 

Based on the approach of “mixture of experts,” lots of 
researchers integrate the GM(1,1) and NN as a fusion 
scheme according to their complementary merits. In [8], a 
fusion scheme employs a linear aggregator to combine the 
outputs of the GM(1,1) and NN, and uses the least mean 
square method to estimate the coefficients. In [9], the radial 
basis function neural network is employed to improve the 
forecasting accuracy of the GM(1,1). In [10], the GM(1,1) 
and two NNs are integrated as a fusion scheme. From the 
aforementioned researches, the fusion scheme of the 
GM(1,1) and NN could outperform the individual ones. 
However, the use off-line training to adjust the NNs. In [11], 
the Lagrange polynomial is used to predict the prediction 
error of the GM(1,1). The system can improve the prediction 
of the GM(1,1) in real-time. Nevertheless, it is not 
considered as the intelligent forecasting system. 

According to the merits of the GM(1,1) and NN, this 
paper propose two intelligent forecasting systems, 
feedforward-neural-network-aided grey model (FNAGM) 
and Elman-network-aided grey model (ENAGM). 
Furthermore, the on-line training is adopted to adjust the 
NNs. This paper is organized as follows. Section II describes 
the basic concept of the GM(1,1) and NN. The proposed 
intelligent forecasting systems are presented in Section III. 
The simulation results in Section IV demonstrate the 
performance of the two intelligent forecasting systems. 
Finally, conclusion is given in Section V. 

II. GREY MODEL AND NEURAL NETWORK 
This section describes the main structures and operations 

of the GM(1,1) and NN respectively. The general 
configuration of the GM(1,1) is briefly derived and the 
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structure of the NN with learning ability is presented. 

A. Grey Model 
Consider a discrete data sequence of length 4≥n  formed 

as the following column vector 
 

 ( ) ( ) [ ] ( ) [ ] ( ) [ ]0 0 0 01 2
T

x x x n⎡ ⎤= ⎣ ⎦x "  (1) 

 
where each element has the same numeric sign. In general, 
the GM(1,1) adopts three fundamental operations, given as 
Accumulate Generating Operation (AGO): 
 
 ( ) [ ] ( ) [ ]1 0

1
   1 2

k

l
x k x l , k , ,...,n

=

= =∑  (2) 

 
Mean Generating Operation (MGO): 
 
 ( ) [ ] ( ) [ ] ( ) ( ) [ ]1 1 11 1    2 3z k x k x k , k , ,...,nα α= + − − =  (3) 
 
Inverse Accumulate Generating Operation (IAGO): 
 
 ( ) [ ] ( ) [ ] ( ) [ ]0 1 1 1    2 3x k x k x k , k , ,...,n= − − =  (4) 
 
where α is often set as 0.5. According to the GM(1,1) [12], 
its grey differential equation is presented as 
 
 ( ) [ ] ( ) [ ]0 1    1 2x k az k b, k , , ,n+ = = "  (5) 
 
where a is the development coefficient and b is the grey 
input. Both a and b are unknown and have to be determined 
first by rearranging (5) into the following matrix form 
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Then a and b could be solved by the least square method as 
below 
 

 ( ) ( )( ) ( ) ( )11 1 1 0T Ta
b

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
X X X x  (8) 

 

Based on the GM(1,1), the solution of the grey first-order 
differential equation (5) is estimated as [12] 
 
 ( ) [ ] ( ) [ ]( ) ( )1 0 11    1a n jx̂ n j x b a e b a , j− + −+ = − + ≥  (9) 

 
Further applying the IAGO in (4) to (9) yields 
 
 ( ) [ ] ( ) [ ]( ) ( ) ( )0 0 11 1a n j ax̂ n j x b a e e− + −+ = − −  (10) 

 
which is the so-called predictive data. The one-step-ahead 
predictive value is then calculated by setting j = 1, which is 
the first predictive value after the original data sequence. 

Since the GM(1,1) performs the prediction via the data 
sequence with the same numeric sign, the preprocess is 
employed to transform the raw data in (1) into 

 
 ( ) [ ] ( ) [ ] ( )( )0 0 0min    1 2x l x l , l , , ,nγ′ = − + =x "  (11) 

 
where γ is a constant bias to avoid the output to be zero. 
Then the transformed value is used to estimate ( ) [ ]0x̂ n j′ +  
from (2)–(11). As a result, the one-step-ahead predictive 
value is determined as 
 
 ( ) [ ] ( ) [ ] ( )( )0 0 0minˆ ˆx n j x n j γ′+ = + + −x . (12) 

 
Therefore, the GM(1,1) can process the data sequence with 
different numeric signs. 

B. Neural Network 
For one-step-ahead prediction, a general feedforward NN 

with single hidden layer is considered. It consists of p hidden 
neurons and one output neuron. The jth hidden neuron 
receives the inputs [ ] [ ] [ ] [ ][ ]Tm kukukuk …21=u  from the 
input layer and computes the output as 

 

 [ ] [ ] [ ] [ ]⎟
⎠
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=

m

i
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1

 (13) 

 
where wj[k] = [wj1[k] wj2[k] … wjm[k] wjb[k]]T is the 
connection-weight vector from the input vector to the jth 
hidden neuron. Due to the use of the on-line training, the 
time index k of the weight vector denotes that the weights 
have been updated through the learning iteration at time k−1 
and are applied for prediction at time k. The activation 
function g(·) can be logistic or hyperbolic tangent function. 
The network output is calculated as 

 

 [ ] [ ] [ ] [ ]kwkhkwky ob
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where wo[k] = [wo1[k] wo2[k] … wop[k] wob[k]]T is the 
connection-weight vector from the hidden neurons to the 
output neuron. Then, the input-output relationship of the NN 
could be further represented as 
 [ ] [ ] [ ]( )kkfky uv ,=  (15) 
 
where 
 

 [ ] [ ] [ ] [ ] [ ][ ]
[ ] [ ] [ ][ ]T

q
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T
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=
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where q = (m+2)·p+1. In order to accelerate the learning 

process, Levenberg-Marquardt algorithm designed to 
approach second-order training speed [13] is adopted. 

III. DESIGN OF INTELLIGENT FORECASTING SYSTEM 
The objective of this paper is construct two intelligent 

forecasting systems, feedforward-neural-network-aided 
grey model (FNAGM) and Elman-network-aided grey 
model (ENAGM). The FNAGM uses a GM(1,1) to predict 
signal and adopts a feedforward NN to learn the prediction 
error of the GM(1,1). As FNAGM, the ENAGM employs a 
GM(1,1) but uses an Elman network [14] to learn the 
prediction error of the GM(1,1). The structure of FNAGM is 
depicted in Fig. 2. With input sequence ( ) [ ] =k0x  

( ) [ ] ( ) [ ] ( ) [ ][ ]kxnkxnkx 000 21 …+−+− , the GM(1,1) 
computes a one-step-ahead predictive value ( )[ ]10 +kx̂  and 

the prediction error is [ ]1GM +ke . To improve the prediction 
accuracy, the feedforward NN adopts [ ]keGM  as input to 
estimate the prediction error [ ]1GM +kê . The weight vector of 
the feedforward NN is adjusted on-line by the 
Levenberg-Marquardt algorithm. First, let’s define the 
training pattern as [ ] [ ] [ ]{ }kekek GMGM ;1−=P  where 

[ ]1GM −ke  is the input and [ ]keGM  is the target. Second, the 
Jacobian matrix is required and computed as 
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where [ ] [ ] [ ]kêkek GMGM −=ε  is network error. Finally, the 
weight vector is modified as 
 
 [ ] [ ] [ ][ ] [ ] [ ]kkkkk TT εμ GIGGw 1Δ −

+=  (18) 
 
where μ is a positive constant. The parameter μ is multiplied 
by a constant β whereas the new cost calculated with new 
weights is worse than the old one. Otherwise, μ is divided by 
β. When μ is large the algorithm becomes steepest descent, 

and whereas μ is small the algorithm becomes 
Gauss-Newton.  
 With the fusion scheme, the FNAGM possesses not only 
the capacity to predict data by the GM(1,1) but also the 
intelligence to learn to estimate the prediction error 
continually by the feedforward NN. In the initial time steps, 
the output of the FNAGM is [ ] ( )[ ]11 0

FNAGM +=+ kx̂kx̂  and 
the feedforward NN simultaneously learns to estimate the 
prediction error. After sufficient learning iterations, the 
output of the FNAGM is [ ] ( ) [ ]11 0

FNAGM +=+ kx̂kx̂  
[ ]1GM ++ kê . That is the FNAGM combines the outputs of 

the GM(1,1) and the feedforward NN for skk ≥  where ks is 
the switching time. 
 To decide the switching time, many independent runs are 
performed to obtain when the feedforward NN could learn to 
approach a solution. As to the ENAGM, the structure is 
depicted in Fig. 2. The input of the Elman network consists 
of not only [ ]keGM  but also the self-feedback of the previous 
outputs of the hidden neurons. Thus, the Elman network can 
be applied to learn the temporal pattern. As in the FNAGM, 
the Levenberg-Marquardt algorithm is also employed to 
update the weight vector on-line for ENAGM. 
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Fig. 2. Feedforward-neural-network-aided grey model (FNAGM). 
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Fig. 1. Elman-network-aided grey model (ENAGM). 
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IV. SIMULATION RESULTS 
To demonstrate the performance of the FNAGM and 

ENAGM, two examples are given. The numerical 
simulations are carried out via the MATLAB software 
performed on an Intel Pentium running at 1.5 GHz with 512 
MBytes of RAM. 
Example 1: 
 The signal to be predicted is 
 
 [ ] ( )kTkx 2cos21 +=   (19) 
 

where T is the sampling time and set as 0.05 second. The 
parameters used in both the FNAGM and ENAGM are 
choosen as n = 4, γ = 2, μ = 0.001 and β = 10. Two hidden 
neurons are employed in both the feedforward NN and 
Elman network. 
 The mean absolute prediction errors (MAPEs) of both the 
FNAGM and ENAGM for k > 20 over 100 independent runs 
are statistically summarized in Table I, including mean, 
standard deviation, maximum and minimum. Furthermore, 
the computation times per prediction step of the GM(1,1), 
FNAGM and ENAGM are presented in Table I. It is evident 
that both the FNAGM and ENAGM achieve better 
performance than the GM(1,1), which the MAPEs are 
reduced from 10−2 to 10−3. Furthermore, the ENAGM is 
found better than the FNAGM due to small mean and 
standard deviation. Although the intelligent forecasting 
systems take longer computation time, increased from 10−4 
to 10−2, they can perform prediction during one sampling 
interval. 
 To decide the switching time ks, it is necessary to analyze 
the learning process of the ENAGM over these 100 runs per 
time step. Fig. 3 shows the absolute prediction errors of the 
ENAGM over these 100 runs for each time step by using 
boxplot. The star symbol indicates the prediction error of the 
GM(1,1). The bottom and top of each box are the 25th and 
75th percentile respectively, the lower quartile Q1 and the 
upper quartile Q3, and the small horizontal line inside the 
box is the 50th percentile, the median. Furthermore, the 
outlier, which lies more than Q3+1.5(Q3−Q1) or less than 
Q1−1.5(Q3−Q1) is marked as a point. The dash line extends 
outward to the outmost values which are not enough to be 

TABLE I 
COMPARISON OF MAPES OF THE GM(1,1), FNAGM AND ENAGM      

FOR k > 20 IN EXAMPLE 1 
Model Mean Std. Max. Min. Time (s) 

GM(1,1) 1.16e-2 --- --- --- 4.08e-4 
FNAGM 1.90e-3 1.30e-3 5.70e-3 2.26e-4 1.58e-2 
ENAGM 1.30e-3 8.26e-4 4.20e-3 1.19e-4 1.70e-2 

 

Fig. 3. ENAGM absolute prediction error spread for (19) per time step. 
 

Fig. 4. Absolute prediction error of (19). 
  

Fig. 5. Absolute prediction error of signal in (20). 

TABLE II 
COMPARISON OF MAPES OF THE GM(1,1), FNAGM AND ENAGM      

FOR k > 40 IN EXAMPLE 2 
Model Mean Std. Max. Min. Time (s) 

GM(1,1) 9.70e-3 --- --- --- 4.08e-4 
FNAGM 6.80e-3 3.50e-3 1.93e-2 1.10e-3 1.58e-2 
ENAGM 4.50e-3 1.50e-4 8.30e-3 1.40e-3 1.70e-2 
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flagged as outliers [15]. Because the GM(1,1) requires four 
historical data for prediction and ENAGM needs one 
prediction error of the GM(1,1) as input, there is no data of 
the ENAGM for 5≤k . The Elman network starts to learn 
the prediction error for 6≥k .  From Fig. 3, the ENAGM 
could achieve better prediction than the GM(1,1) for k > 10. 
Therefore, the switching time is carefully selected as 12. 
Then, the output of the ENAGM is [ ] =+ 1ENAGM kx̂  

( ) [ ] [ ]11 GM
0 +++ kêkx̂  for 12≥k . 

 Fig. 4 shows the absolute prediction errors of the GM(1,1) 
and ENAGM for another signal 
 
 [ ] ( ) ( )kTkTkx 2cos5.0exp343 −+=  (20) 
 
where T = 0.05. The switching time ks = 12 is still applied. It 
is evident that the ENAGM is superior to the GM(1,1). 
Example 2: 
 The Mackey-Glass time series [16] is generated from the 
following delay differential equation 
 

 ( ) ( )
( )

( )tx.
tx

tx.
dt

tdx 10
1

20
10

−
−+

−
=

τ
τ  (21) 

 
where τ = 17 and x(0) = 12 in the simulation. The data points 
are obtained based on the fourth-order Runge-Kutta method 
with sampling interval 0.1 second. All the parameters of the 
ENAGM are the same as Example 1. 
 Table II presents the statistical results of the MAPEs over 
100 independent runs. The ENAGM achieves better 
performance than the GM(1,1), which is reduced from 9.70 
× 10−3 to 4.50 × 10−3. To decide the switching time, Fig. 6 
show the absolute prediction error spread of the ENAGM 
over these 100 runs per time step, where the star symbol 
represents the prediction error of the GM(1,1). Fig. 6 shows 
that most runs of the ENAGM can perform better prediction 
than the GM(1,1) for 30≥k . Therefore, the switching time 
is selected as ks = 30. Fig. 7 shows the prediction results of 
the GM(1,1) and ENAGM. It is evident that the proposed 
intelligent forecasting system is better than the GM(1,1). 

V. CONCLUSION 
This paper proposes two intelligent forecasting systems, 

feedforward-neural-network-aided grey model (FNAGM) 
and Elman-network-aided grey model (ENAGM). Both the 
two systems apply the GM(1,1) to predict signal. The 
FNAGM and ENAGM use the feedforward NN and Elman 
network respectively to learn the prediction error of the 
GM(1,1) on-line. They combines the outputs of the GM(1,1) 
and NN after the switching time. The simulation results 
demonstrate that the intelligent forecasting systems perform 
better than the GM(1,1). Although they take longer 
computation time, they can complete the prediction step 
during one sampling interval and thus can be implemented in 
real-time prediction.  
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