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This paper revises the CRCS algorithm 

proposed by Yang’. In the constrained 
range search, we use the cost and 

performance of candidate links to ob- 

tain the exact link range of the optimal 
solution. Moreover, we use the concept 

of variable dominance to reduce the 

number of candidate links without loss 
of optimality. A comparison of results 
obtained using Yang’s and the revised 

CRCS algorithm shows that the revised 
CRCS algorithm is superior to Yang’s 
original version. 
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In a recent paper in this journal, 

Yang’ proposed a heuristic algo- 

rithm that uses constrained range 

and reduced candidate set search 
(CRCS) to reduce computation 
time while obtaining a near-optimal 
solution. The key finding in Yang’s 
paper is that the CRCS algorithm is 
justified, since the algorithm takes 
only a non-exponential time to 
compute and has a high probability 
of reaching optimality. 

However, Yang’s work raises two 
problems that need to be investi- 
gated. First, the range of the con- 
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strained range search in Yang’s 

paper, which uses the costs of 
candidate links to obtain the range 
(or number of links) of the optimum 
solution, is very wide, so a further 
‘squeeze’ is required. Second, since 
Yang’s method chooses a candidate 
set through a linear search algo- 
rithm, it is possible that optimality 
will be lost, i.e. the reduced candi- 
date set in Yang’s method could rule 
out a link which is in the optimal 
solution set. 

The purpose of this paper is to 
revise the CRCS algorithm. Two 
major improvements are proposed: 
first, by combining information on 
the cost and performance of candi- 
date links, we obtain the exact 
number of links in one step without 
compromising optimality and with- 
out requiring further ‘squeeze’; sec- 
ond, instead of using a linear search 
algorithm, we use the concept of 
variable dominance to reduce the 
candidate set and ensure that the 
optimal solution is in the reduced 
set. Further, we include the domi- 
nance of variables in the computa- 
tion to increase searching efficiency. 

The rest of this paper is organized 
as follows. The revised CRCS algo- 
rithm is presented in the next sec- 
tion; the following section compares 
the results obtained using Yang’s 
CRCS algorithm with those ob- 
tained using the revised algorithm. 
Conclusions and the limitations of 

CRCS algorithms are discussed in 
the final section. 

REVISION OF THE CRCS 
ALGORITHM 

Two major improvements can be 
made to Yang’s CRCS algorithm. 
The first is to tighten the feasible 
space, which is determined by the 
available budget and the given cost 
of the links. The second is to use the 
concept of variable dominance to 
retain (or rule out) links that are 
definitely (or definitely not) in the 
optimal solution set without losing 
optimality. We shall call the revised 
CRCS method CRCS’. We explain 
this search method as follows. 

New constrained range search 

First, we describe the method of 
constraining the range in the 
CRCS’ algorithm. Given a budget 
B and the cost Ci and performance 
Pi of each candidate link i, we may 
squeeze the number of links within a 
constrained range without compro- 
mising optimality, hence reducing 
the computational cost tremen- 
dously. 

The revised constrained range 
search algorithm can tighten the 
number of optimal links exactly as 
is done in Yang’s examples. First, 
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we sort the cost of all links in 
ascending order and add up the 
cost of each link from the lowest 
cost link up until the budget is 
exhausted. Then we obtain the 
number of links under this cumula- 
tive cost, and take this number as 
an upper bound on the count of the 
optimal solution set (UL), since this 
cumulative cost is the cost of the 
maximum number of links we can 
use. Second, we sort the perfor- 
mance of all links in descending 
order. These sorted links are se- 
lected in order and their costs are 
added until the budget is exhausted. 
Then we obtain the number of links 
under this cumulative cost and take 
this number as a lower bound on 
the count of the optimal solution 
set (LL), since this cumulative 
performance is the best we can 
achieve with this number of links. 
Then, combining these two steps, 
we tighten the number of links in 
the optimal solution set (K), which 
should lie in the interval LL ,< K 
< UL. Notice that, when the dis- 
tribution (or variation) of the data 
set is not extreme, then the upper 
bound UL will be close to the lower 
bound LL. If the constrained range 
search method can tighten the 
number of links so that the inequal- 
ity LL 6 K < LL + 1 = UL is satis- 
tied, then the reduced candidate set 
search in the next step will be easier 
to carry out. Fortunately, in Yang’s 
paper, the variance in all four data 
sets is not great, so using our 
constrained range search method, 
it is easy to obtain 
LL<K<LL+l =UL.Thenum- 
ber of possible combinations we 
need to try is reduced to C(N, UL), 
where N is the total number of 
links. Moreover, since in our con- 
strained range search method we do 
not compromise optimality, if K is 
equal to the lower bound LL, the 
optimal solution (maximum perfor- 
mance) is obtained simultaneously 
in this step. 

New reduced candidate set search 

After the number of links is deter- 
mined, we employ the concept of 
variable dominance in conjunction 

with the upper bound UL to retain 
(or drop) links that are necessarily 
in (or not in) the optimal solution 
set. This step helps to reduce the 
computation time significantly. 

First, we define the concept of 
variable dominance: 

xi dominates x, iff Pi > Pj 

and Ci < C, 

where xi is a binary decision vari- 
able and xi = 1 (xi = 0) of link i is 
selected (not selected). Pi and Ci are 
the performance and cost of link i, 
respectively. 

We have an obvious property of 
dominance: 

if xi dominates xj then xi 2 xj 

Now, we define binary variable 
D(i,j). Let D(i,j) = 1 if link i dom- 
inates (or is superior to) link j, and 0 
otherwise. By pairwise comparison 
of every link, we define WZN(i) = 
cjii D(i,j) and LOSE(i) = cjzi 
D(j, i) as the total number of links i 
which dominate or are dominated 
by all other links, respectively. No- 
tice that in the constrained range 
search we lind the exact number of 
links (K = (IL) in the optimal solu- 
tion set, and the total number of 
links is N. Then link i must be 
retained in the optimal solution set 
if WIN(i) B N - UL. This is be- 
cause if link i is not in the optimal 
solution set, i.e. x, = 0, then the 
decision variables of the other 
WIN(i) 2 N - UL links dominated 
by link i will be forced to be zero. 
Then there exist only UL - 1 re- 
maining links in the optimal solu- 
tion set, which contradicts the result 
of the constrained range search. 
Furthermore, a link i is ruled out in 
the optimal solution set if LOSE(i) 
2 UL, since if link i is in the 
optimal solution set (xi = l), then 
the other UL links that dominate 
link i should also be in the optimal 
solution set, and the budget con- 
straint will not hold when UL + 1 
links are in the solution set. 

Notice that when the resources 
(or budget) are more limited, then a 
link dominated by other links has a 
higher probability of not being 
retained in the candidate set, since 
the range UL of the optimal solu- 

tion will become smaller and the 
inequality LOSE(i) 2 UL will be 
easier to satisfy. On the other hand, 
when resources are sufficient, the 
upper bound UL of the optimal 
solution is closer to the total num- 
ber of links N, i.e. the inequality 
WIN(i) 2 N - UL is easier to satis- 
fy, so a link that dominates other 
links will have a higher probability 
of being retained in the optimal 
solution set. 

With the revised CRCS’ algo- 
rithm, we discard a link when the 
total number of links that dominate 
it is greater than or equal to the 
upper bound, and we retain a link 
when the total number of links it 
dominates is greater than or equal 
to the total number of links minus 
the upper bound. In other words, we 
reduce the feasible space by tighten- 
ing the candidate set. In this reduced 
candidate set search, we use only an 
adding and sorting procedure, 
whereas in Yang’s paper a division 
or ratio scale is used. So our revised 
CRCS method not only saves much 
computational time, but also retains 
all the information on optimality, 
i.e. our CRCS’ algorithm is thus 
superior to Yang’s algorithm, It is 
worth mentioning that Walukie- 
wicz’ showed that including the 
dominance of variables in a reduc- 
tion method can increase the meth- 
od’s efficiency3. After we obtain the 
reduced candidate set, we can add 
the remaining dominance inequal- 
ities as new constraints to make the 
optimality computation algorithm 
more efficient. 

Performance of revised CRCS 

In this section, we use the examples 
presented in Yang’s paper to show 
that the revised CRCS algorithm is 
more robust than Yang’s original 
algorithm. We apply the revised 
CRCS algorithm to the problem of 
Table I. For example, by using the 
new constrained range search in the 
case of insufficient resources with 
total number of links N = 20 and 
budget of 7000, we can tighten the 
number of links between 3 < K ,< 4, 
and since the maximum total profit 
is 14193 when K = 3, we need to 
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Table 1 Data set for N = 20, B = 7000 

Ascending sorting by cost Descending sorting by performanre 

Link No. cost Performance Link No. cost Performance 

3 1246 3819 6 2568 5216 
7 1508 3859 8 1608 4477 
4 1529 2310 13 2184 4440 

20 1578 3484 17 1883 4368 
8 1608 4477 16 2289 4224 

18 1682 1922 1 1833 4140 
9 1691 3269 7 1508 3859 

19 1711 3844 19 1711 3844 
2 1754 3506 3 I246 3819 
I 1833 4140 IO 2112 3807 

11 I840 3661 II 1840 3661 
17 1883 4368 15 2254 3643 
12 1960 3560 12 1960 3560 
5 2034 3370 2 1754 3506 

10 2112 3807 20 1578 3484 
13 2184 4440 5 2034 3370 
15 2254 3643 9 1691 3269 
16 2289 4224 14 2549 2899 
14 2549 2899 4 1529 2310 
6 2568 5276 18 1682 1922 

UL=4 7-C = 5861 PC = 13472 LL=3 TC = 6360 PP = 14193 

UL (LL) is the upper (lower) bound of the counts of the optimal solution set 
TC is the cumulative cost of links that satisfied the budget constraint and PC or PP is the total 

performance of these links 

check only the number of links 
K = 4 to see whether there exists 
any combination for which the total 
profit is more than 14,193. In other 
words, we now limit the computa- 
tion need to find the optimal solu- 
tion to C(20, 4) iterations. 

Next, we reduce the candidate set 
via the concept of variable domi- 
nance. If a link is dominated by 
other links four or more times (the 
number of links in the optimal 
solution set), then we can drop this 
link, which will definitely not appear 
in the optimal solution set. On the 
other hand, if a link is superior to 
other links 20 - 4 = 16 or more 
times, then we must retain this link 
in the optimal solution set. Using 
the reduced candidate set search, we 
rule out nine links {2,5,9,10,11,12, 
14,15,18} (see Table 2) and the 
remaining candidate links are { 1,3, 
4,6,7,8,13,16,17,19,20}, i.e. we 
further tighten the computation 
from C(20,4) to C(l1,4) iterations 
without losing optimality. Further- 
more, when solving the optimal 
solution from the reduced candi- 
date set, we can add the remaining 
dominance inequalities to the con- 
straints (see Table 3). In this exam- 
ple, we can add 12 new constraints, 
such as x3 - x4 2 0, x3 - x20 2 0, 

. . ) xl7 - x16 > 0, into the optimal- 
ity search algorithm, which will 
make the search procedure more 
efficient. 

any remaining link can satisfy these 
decision rules (see Table 3), but it 
seems to be true that the optimal 
solution set has the highest prob- 
ability to include links (7, S} and 
not include links (4, 16,19,20}. 
Why? This is because the count of 
these links dominate (or is domi- 
nated by) all other links closer to the 
decision rule, i.e. these links have 
the highest priority to keep (or 
discard) in the optimal solution set. 
By using this reduction procedure, 
we can further tighten the computa- 
tion from C(l1,4) to C(5,2) itera- 
tions. Of course, in this step it 
would be taking a bit of a chance 
of losing optimality, since it is not 
easy to define exactly how ‘close’ the 
count of each link is to the decision 
rule. But it can be justified that this 
method has the highest probability 
of reaching optimality, and the 
computation time is reduced signifi- 
cantly. In the case of N = 20, for 
example, the exact optimal solution 
set is {3,6,7, S}; this set is included 
in our reduced candidate set and 
only needs C(5.2) = 10 iterations to 
search for optimality. 

Note that from the remaining When the resources are sufficient, 
candidate links, the decision rule to such as N=23 and B= 11500 in 
keep a link which is definitely in the Yang’s paper, for example, we tight- 
optimal solution set satisfies WZN(i) en the number of links to 11 < K 
2 11 - 4 = 7, and the decision rule < 12. The maximum total profit is 
to rule out a link which is not in 35,059 when K = 11 (see Table 4), 
optimal solution set is still the same so we need to check only the 
(LOSE(i) > 4). Although none of number of links K = 12 to see 

Table 2 Matrix of variable dominance (N = 20, B = 7000) 

Link I 2 3 4 5 6 7 8 9 IO II I2 13 14 15 16 17 18 19 20 WIN(i) 

1 0000 10000 I I I 0 1 1 00000 6 
2 0000 100000 0 0 0 I 0 00000 2 
3 0101 10001 I I I 0 1 I 0 0 I 0 1 I 
4 0000 0 00000 0 0 0 0 0 0 0 I 0 0 I 
5 0000000000 0 0 0 I 000000 I 
6 0000 000000 0 0 0 0 0 0 0000 0 
7 0101100011II01100I11 2 
8 I100100011 1 I 11 I I I I IO 4 
9 0000000000 0 0 0 1 000000 I 

IO 0000000000 0 0 0 1 I 00000 2 
II 0000 100000 0 I 0 I I 00000 4 
12 0000 100000 0 0 0 1 000000 2 
13 0000000000 0 0 0 II I 0000 3 

14 00000000000000000000 0 
15 0000000000 0 0 0 I 000000 I 
16 0000000000 0 0 0 10 0 0 0 0 0 I 
17 0000 10000 I 0 I 0 1 I I 0000 6 
18 0000 0 00000 0 0 0 0000000 0 
19 0100 10000 I I I 0 I I 00000 7 
20 0000 100010 0 0 0 I 0 0 0 I 0 0 4 

LOSS(i) 1 4 0 2 10 0 0 0 4 6 5 7 I 16 9 3 I 5 2 2 
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Table 3 Matrix of remaining dominance variable (N = 20, B = 7000) 

Link 1 3 4 6 7 8 13 16 17 19 20 WIN(i) 

I 0000000 0 0 0 0 
3 0010000 0 0 0 I 
4 0000000 0 0 0 0 
6 0000000 0 0 0 0 
7 0010000 0 0 I I 
8 IO 0 0 0 0 I I 1 I 0 
13 0 0 0 0 0 0 0 I 0 0 0 
I6 0000000 0 0 0 0 
I7 0 0 0 0 0 0 0 1 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 
20 0000000 0 0 0 0 

LOSS(i) I 0 2 0 0 0 I 3 I 2 2 

0 

0 
0 

12 

Table4 Data set for N = 23, B = 11500 

Ascending sorting by cost Descending sorting hy pe[formance 

Link COSi Performance Link COH Pe@vnance 

14 
1 

23 
8 
4 
II 
I2 
I3 
20 
5 
21 

693 3314 
787 2746 
796 3191 
801 2762 
823 3074 
847 3104 
891 3140 
916 3271 
957 3132 
964 2812 
1003 2947 
1012 2868 

15 
I8 
I2 

II 
13 
17 
9 
4 
8 
2 

693 3314 
1031 3304 
1187 3295 
916 3271 
796 3191 
891 3140 
957 3132 
1082 3127 
1498 3107 
847 3104 
823 3074 
1225 2963 

I5 1031 3304 5 1003 2947 
6 1057 2902 3 1066 2916 
3 1066 2916 6 1057 2902 
16 1067 2870 19 1107 2900 
17 1082 3127 16 1067 2870 
19 II07 2900 21 1012 2868 
I8 II87 3295 IO 1242 2824 
22 II96 2818 22 1196 2818 
2 1225 2963 20 964 2812 
IO 1242 2824 23 801 2762 
9 1498 3107 I4 787 2746 

c/L=12 TC= 10490 PC= 36361 LL= II 7-C= 10721 PP= 35059 

whether there exists any combina- 
tion with total profit of more than 
35,059. That is, we now limit the 
computation need to find the opti- 
mal solution to C(23,12) itera- 
tions. 

Next, we reduce the candidate 
set via the concept of variable 
dominance. Since links { 10,19,22} 
are dominated by other links 12 or 
more times (the number of links in 
optimality), we drop these links. 
On the other hand, links 
{1,7,11,12,13} are superior to the 
other links 23 - 12 = 11 or more 
times, so these links must be 
retained in the optimal solution set 
(see Table 5). The remaining candi- 
date links are then (2, 3, 4, 5, 6, 8, 

9, 14, 15, 16, 17, 18, 20, 21, 23}, i.e. 
we have further tightened the com- 
putation from C(23,12) to C(15,7) 
iterations without losing optimal- 
ity. Furthermore, we can add 31 
dominance inequalities (see Table 
6), such as x3 - xi6 > 0, x4 - 
x2 > 0,. . . , xl8 - _YY 2 0, into the 
optimality search algorithm, mak- 
ing the search procedure more 
efficient. 

Note again that from the remain- 
ing candidate links, the decision 
rule will become WIN(i) > 
15 - 7 = 8 and LOSE(i) 3 7, re- 
spectively. If we take a slight risk 
of losing optimality, it seems to be 
a good decision to include links (4, 
5, 8, 15) and not (2, 3, 6, 16}, 

since these links are the best (or 
worst) links which dominate (or are 
dominated by) other links many 
times. In the case of N = 23, for 
example, we use this reduction 
procedure and tighten the compu- 
tation from C(15,7) to C(7,3) 
iterations. Unfortunately, the exact 
optimal solution set is { 1, 2, 4, 5, 7, 
8, 11, 12, 13, 15, 17, 18); this set 
differs from our reduced candidate 
set only by link (2). But this result 
was just the same as that in 
Yang’s’ paper, and our method 
only takes C(7,3) = 35 iterations 
rather than C(20,12), as does 
Yang’s. 

In Table 7, we compare the 
reduced candidate set obtained for 
the four examples in Yang’s paper 
using the original and revised CRCS 
(one can apply the same method 
with N = 15 and N = 28). Table 7 
clearly shows that the revised CRCS 
method is superior to Yang’s meth- 
od. When the available resources or 
budget is insufficient, for example 
(N = 15, 20, 28), the number of 
links in the reduced candidate set is 
almost the same for the two meth- 
ods, and our method not only does 
not miss the optimal solution, but 
also generates dominance inequal- 
ities to improve the search for 
optimality. On the other hand, 
when the available budget is large 
enough (N = 23), the reduced can- 
didate set obtained using the revised 
CRCS method is smaller than that 
produced by Yang’s method, and it 
retains all the information on op- 
timality. Furthermore, in this case 
we have 31 dominance inequalities 
in the remaining links, which will 
certainly improve the efficiency of 
the search for optimality. 

CONCLUDING REMARKS 

In this paper, we have revised the 
CRCS algorithm proposed by 
Yang’ using information on the 
cost and performance of all links to 
tighten the number of links, and by 
using the concept of variable dom- 
inance to reduce the number of 
candidate links. 

From a comparison of the results 
of Yang’s algorithm and the revised 
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Table 5 Matrix of variable dominance (N = 23, B = 11500) 

Link I 2 3 4 5 6 7 8 9 10 II I2 13 14 15 16 17 18 19 20 21 22 23 WIN(i) 

I 0 1 1111011 I I 
2 0 0 0000000 I 0 
3 0 0 0000000 I 0 
4 0 I I 0 I 1000 1 0 
5 0 0 1001000 1 0 
6 0 0 0000000 I 0 
I I I I I I 1011 I I 
8 0 I I 0 I 1000 I 0 
9 0 0 0000000 0 0 

10 0 0 0000000 0 0 
II 0 11011 001 I 0 
12 0 I I 0 I 1001 I 0 
13 0 1 I 0 I 1001 I 0 
14 0 0 0000000 0 0 
15 0 I 1001001 I 0 
I6 0 0 0000000 I 0 
I7 0 I 0000001 I 0 
I8 0 1 0000001 I 0 
I9 0 0 0000000 I 0 
20 0 0 0000000 0 0 
21 0 0 0000000 I 0 
22 0 0 0000000 0 0 
23 0 0 0000000 0 0 

LOSS(l] 1 10 9 2 I 9 0 2 8 I7 2 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

I 
0 
0 
0 
0 
0 
I 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I 

I 
0 
I 
I 
I 
I 
I 
I 
0 
0 
I 
I 
I 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 

I1 

I 
0 
0 
0 
0 
0 
I 
0 
0 
0 
I 
1 
I 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 

6 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 

2 

I 
0 
I 
1 
I 
1 
I 
I 
0 
0 
I 
I 
I 
0 
I 
0 
I 
0 
0 
0 
0 
0 
0 

12 

I 
0 
0 
1 
0 
0 
I 
I 
0 
0 
I 
I 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

7 

I 
0 
0 
I 
I 
0 
I 
1 
0 
0 
I 
I 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 

I 
0 
1 
I 
I 
I 
I 
1 
0 
0 
I 
I 
I 
0 
I 
I 
I 
I 
I 
0 
I 
0 
0 

I6 

I I7 
0 1 
0 4 
0 IO 
0 7 
0 4 
I 22 
0 IO 
0 0 
0 0 
0 13 
0 13 
0 I2 
0 0 
0 IO 
0 2 
0 5 
0 4 
0 2 
0 0 
0 2 
0 0 
0 0 

2 

Table 6 Matrix of remaining dominance variable (N = 23, B = 11500) 

Link 2 3 4 5 6 8 9 14 I5 16 17 I8 20 21 23 WIN(i) 

2 0000000 0 0 0 0 0 0 0 0 0 
3 0000000 0 0 I 0 0 0 0 0 I 
4 I I 0 I IO 0 0 0 I 0 0 1 I 0 I 
5 01001000 0 I 0 0 0 1 0 4 
6 0000000 0 0 I 0 0 0 0 0 I 
8 I I 0 I I 0 0 0 0 I 0 0 1 1 0 7 
9 0000000 0 0 0 0 0 0 0 0 0 

I4 0000000 0 0 0 0 0 0 0 0 0 
15 I 1 OOlOI 0 0 I I 1 0 0 0 7 
I6 0000000 0 0 0 0 0 0 0 0 0 
I7 10000010 0 0 0 0 0 0 0 2 
I8 10000010 0 0 0 0 0 0 0 2 
20 0000000 0 0 0 0 0 0 0 0 0 
21 0000000 0 0 0 0 0 0 0 0 0 
23 0000000 0 0 0 0 0 0 0 0 0 

LOSS(i) 5 4 0 2 4 0 3 0 0 6 1 1 2 3 0 31 

Table 7 Comparison of CRCS and CRCS’ methods 

N Algorithm Reduced candidate set New constraints 

I5 CRCS 1, 2, 8, 14, I5 
CRCS’ I, 2, 8, 12, 14, I5 I 
Optimality 8, 12 

20 CRCS 1, 334, 6, 7, 8, 13, 17, 19, 20 
CRCS’ 1, 3, 4, 6, 7, 8, 13, 16, 17, 19, 20 12 
Optimality 3, 6, 7, 8 

23 CRCS I, 3, 4, 5, 6, 7, 8, 9, II, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. 23 
CRCS’ 2, 3, 4, 5, 6, 8, 9, 14, 15, 16, 17, 18, 20, 21, 23 31 
Optimality I, 2,4, 5, 7, 8, 11, 12, 13, 15, 17, I8 

28 CRCS 3, 5, IO, 12, 13, 17, 25, 26, 27 
CRCS’ 3, 5, IO, 12, 13, 15, 16, 17, 25, 26, 27 4 
Optimality 15, 16, 27 

CRCS algorithm, we conclude the 
following. 

The revised constrained range 
search method obtains the low- 
er and upper bounds of optim- 
ality more accurately and tightly 
than Yang’s method, making 
further squeezing procedures 
unnecessary. 
The count of the reduced candi- 
date set is almost the same in 
Yang’s CRCS and the revised 
CRCS, but our method ensures 
that the optimal solution is in 
the reduced set. 
When we use the reduced 
candidate set to find the opti- 
mal solution, we can use infor- 
mation on the dominated sets 
to generate new constraints in 
order to make the search pro- 
cedure more efficient, i.e. if we 
know link i dominates link j, 
then we can generate the new 
constraint Xi - Xi 3 0, and 
thereby make the optimality 
search procedure more efti- 
cient. 

Note that with both Yang’s origi- 
nal CRCS search method and our 
revised method, the tightness of the 
number of links is the key factor 
that determines which links should 
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be retained or discarded in the 
reduced candidate set search. Un- 
der what circumstances will the 
lower bound be far away from the 
upper bound in the constrained 
range search? The answer will de- 
pend upon the variation in the link 
cost: if the cost of the links varies 
from 0 to the total budget (the worst 
case), then the constrained range 
search method will not find the 

exact number of links easily, and 
the reduced candidate search meth- 
od will become less effective 
(although the decision rule to rule 
out links which satisfy 
LOSE(i) 9 UL will still be valid). 
In this case, however, it would be 
equally as difficult to solve this 
problem using other methods such 
as dynamic programming or the 
Lagrangian relaxation method. 
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