
Finite State Machine Synthesis for At-Speed Oscillation Testability
Katherine Shu-Min Li

1
, Chung Len Lee

1
, Tagin Jiang

2
, Chauchin Su

3
, Jwu E. Chen

4

1
Department of Electronics Engineering, National Chiao Tung University, Hsichu, Taiwan

2
Via Technologies, Inc.

3
Department of Electronic Control, National Chiao Tung University, Hsichu, Taiwan

4
Department of Electrical Engineering, National Central University, Chungli, Taiwan

ABSTRACT

In this paper, we propose an oscillation-based test

methodology for sequential testing. This approach provides

many advantages over traditional methods. (1) It is at-speed

testing, which makes delay-inducing defects detectable. (2)

The ATPG is much easier, and the test set is usually smaller.

(3) There is no need to store output responses, which greatly

reduces the communication bandwidth between the

Automatic Test Equipment (ATE) and Circuit under Test

(CUT). We provide a register design that supports the

oscillation test, and give an effective algorithm for

oscillation test generation. Experimental results on MCNC

benchmarks show that the proposed test method achieves

high fault coverage with smaller number of test vectors.

1. Introduction

Decreasing feature sizes and increasing clock speeds

have combined to alter the defect effects dramatically.

Recent evidence indicates that delay-inducing defects can

no longer be ignored nor go untested [1-2]. For circuits

designed with 130nm or more advanced technologies, the

transition fault is considered essential to achieve the

acceptable defect level. The detection of delay fault requires

at-speed test techniques, which create signal transitions to

be captured at normal speed. In the past, it was typically

accomplished with functional patterns, but it was

undesirable mainly due to the cost consideration. Scan-

based test techniques [3-4] offer a viable alternative for at-

speed testing. However, there are many complicating factors

when moving from relatively slow scan-based tests for

stuck-at faults to testing for delay faults. As to design

methodologies such as multiple clock domains, mixed

negative and positive edge clocking, and so on, all pose

challenges to the implementation of successful and high

coverage delay tests. The cost associated with such design

methodologies is also an ever increasingly important issue.

We propose an oscillation-based test methodology for

sequential testing in this paper. This approach provides three

major advantages over traditional scan-based approaches. (1)

In this architecture, testing is conducted at-speed, which

makes delay-inducing defects detectable. This is due to that

the oscillation test is triggered by system clock and thus

operates at normal speed. (2) Test vectors can be derived

directly from the finite-state machine (FSM) model in our

Oscillation Test Pattern Generation (OTPG) algorithm, and

it greatly simplifies the ATPG process accordingly. (3) Our

method does not need complex test clocks, which is

required for two-pattern tests used in transitional delay tests.

(4) The correctness of CUT is determined by simply

observing whether there are oscillation signals in the outputs,

and there is no need to store and analyze output responses.

Besides, the number of vectors is roughly the same as scan

tests. Thus, the communication bandwidth between the ATE

and CUT is greatly reduced, which partly solves the

problem of test data compression in SOC testing.

Oscillation based test is an efficient and effective

method to detect faults in a circuit or a device [5-6]. An

oscillation ring is a closed loop with an odd number of

signal inversions. If the CUT is fault-free, an oscillation

signal will appear on the ring. Otherwise, the CUT is

deemed faulty. Recently oscillation ring test is applied for

system-level interconnects [7].

In order to conduct the oscillation test, the state-holding

elements must be modified to generate oscillation signals in

test mode. In this paper, we develop a Modified State

Register (MSR) cell for this purpose, and give an algorithm

to generate tests with the help of MSR cells. The proposed

MSR design requires extra silicon area. However, in deep

submicron designs, silicon area is no longer the major issue.

Other issues, including delay fault and soft fault testability,

low-power testing, etc., become the more important

concerns. For example, Intel proposes a scan-cell design

targeted for soft faults [8]. This cell-level design uses

1.08X-1.24X area with power overhead of 2.02X-2.26X,

while chip-level design suffers from power overhead by

4.0X-5.0X [8]. The proposed MSR cell can be combined

with other register designs to achieve highly testable and

reliable systems.

Experimental results on MCNC benchmark circuits

show that the proposed oscillation test method achieves high

fault coverage with smaller number of test vectors.

 The remaining sections are organized as follows. In

Section 2, we introduce the proposed Oscillation Test

architecture and MSR cell designs for both asynchronous

and synchronous circuits. Section 3 gives Oscillation Test

Pattern Generation (OTPG) algorithm. Experimental results

are shown in Section 4, and some brief conclusions are in

Section 5.

2. Oscillation Test for Sequential Circuits

2.1 Oscillation Ring Test Architecture

The oscillation ring test architecture for sequential

circuits is shown in Figure 1. In this architecture, we replace

the flip-flops by MSR cells. In the normal mode operation,

the MSR cells work as state-holding elements. In the

oscillation test mode, MSR cells transform the target

sequential circuits into asynchronous circuits with odd-

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

inversion feedback paths, and oscillation signals show on

these loops (rings) accordingly.

(a)

(b)

(c)

Figure 1. Oscillation test architecture for sequential circuits:

(a) Oscillation Rings, (b) MSR states are controlled through

scans, and (c) Oscillation Test is controlled by the system

clock.

With appropriate inputs, oscillation signals can be

propagated to at least one primary output through some

sensitized paths in Figure 1(a). Stuck-at faults on wires

passed by oscillation signals will stop these oscillation

signals; while delay (transition) faults will change the

oscillation frequency. The faults are detected by observing

the oscillation signals in the primary outputs.

In order to construct oscillation rings in sequential

circuits, we need to set up appropriate connections in MSR

cells. Figure 1(b) shows how to set the states in MSR cells.

The control signals for each MSR cell are fed to the cell

through the scan paths.

It is usually difficult to implement the asynchronous test

architecture. Whenever there are multiple oscillation signals,

there is always a race problem. To solve this problem, we

may use the system clock to control the feedback paths,

which makes the design synchronous, as shown in Figure

1(c). The circuit is forced to move between states e and f,
whose outputs are 0 and 1, respectively, when the input X is

held at X=1. As a result, we can see that the output changes

every cycle.

2.2 Modified State Register (MSR) Design

2.2.1 MSR Design for Asynchronous Test

The MSR cell design for asynchronous oscillation test is

shown in Figure 2, and the control states for the MSR cells

are shown in Figure 3.

(a)

(b)

Figure 2. MSR cells for asynchronous oscillation test: (a)

normal mode, and (b) oscillation test mode.

Under normal operation in Figure 2(a), the D-Type Flip

Flops (DFFs) connected to Sin[0] are used as state-holding

elements. Under the oscillation test mode in Figure 2(b), an

MSR cells operate in four states: Hold 0, Hold 1, INV and

Bypass. Hold 0 and Hold 1 provide steady output values of

0 and 1, respectively. INV and Bypass are used to set up

odd-inversion loops to generate oscillation signals. A loop

(ring) consists of two paths: one forward path in the

combinational circuit, and a feedback path passing an MSR

cell. If the number of signal inversion in the forward path is

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

odd, the MSR cell is set to the “Bypass” state; otherwise, it

is set to the “INV” state.

Sin[1] Sin[0] Operation

0 0 Hold 0

0 1 Hold 1

1 0 INV

1 1 Bypass

Figure 3. Control state table of an MSR cell for

asynchronous sequential circuit test.

2.2.2 MSR Design for Synchronous Sequential

 Circuits

In order to avoid the race conditions caused by the

asynchronous test, we use system clock to sample the

oscillation signals, as shown in Figure 1(c).

(a)

(b)

Figure 4. MSR cells for synchronous oscillation test: (a)

normal mode, (b) oscillation test mode.

An MSR cell’s design and its operations for the

synchronous oscillation test are illustrated in Figure 4, and

the control states for MSR cells are given in Figure 5.

Sin[2] Sin[1] Sin[0] Operation

- 0 0 Hold 0

- 0 1 Hold 1

0 1 - INV

1 1 - Bypass

Figure 5. Control state table of MSR cells for synchronous

sequential circuits test.

3. Synchronous Oscillation Ring Test

The synchronous oscillation ring test is preferred for

several reasons. The most important advantage is that it

avoids race problems, which is very difficult to handle in the

asynchronous approach. Secondly, it also simplifies the

ATPG process. The test patterns can be obtained directly

from the FSM model. The drawback of this approach is that

an MSR cell is significant larger. This large hardware

overhead can be partly offset if we can restrict the number

of operations required in an MSR cell, and this can be

achieved through state assignment for the given FSM. In the

remaining part of the paper, we shall concentrate on the

synchronous oscillation test.

3.1 Constructing Oscillation Signals from FSM

An example on how to find test patterns from an FSM

model is given in Figure 6, which shows the state transition

and output table of an FSM. The output table gives the

candidates for oscillating outputs. For example, when the

primary input X is held at 1 (X=1) and the FSM is in either

state e or f, the FSM moves back and forth between these

two states. Since the outputs corresponding to states e and f
with X=1 are 0 and 1, respectively, we shall see oscillating

signals at the output. This oscillation condition is shown in

Figure 1(c), in which the least significant bit (LSB) of the

state vector is an oscillating signal.

Next State Output
Present State

X=0 X=1 X=0 X=1

a 000 a 000 c 010 1 0

b 001 d 011 b 001 1 0

c 010 f 101 d 011 1 1

d 011 c 010 a 000 0 1

e 100 e 100 f 101 0 0

f 101 b 001 e 100 1 1

Figure 6. State transition and output table of an FSM.

In the above example, an oscillation signal is generated

without using MSR cells. This is achievable when both the

next states and outputs of a state pair are alternating.

Unfortunately, no other state pairs satisfy the oscillation

condition. We shall use MSR cells to force state pairs to

alternating if only their corresponding outputs are different.

All the candidate state pairs are listed below. With X = 0,

the following state pairs generate the opposite output values:

(a, d), (a, e), (b, d), (b, e), (c, d), (c, e), (f, d), (f, e). With

X=1, the possible choices include: (a, c), (a, d), (a, f), (b, c),

(b, d), (b, f), (e, c), (e, d), (e, f).

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

3.2 MSR State Transition Algorithm (MSR STA

Algorithm)

In order to generate oscillation signals in the test mode,

we need to change the next state functions for the selected

state pair with the help of MSR cells. An example is shown

in Figure 7, which modifies the state transition table of

Figure 6 in the test mode to produce oscillation signals.

For example, since state pair (b, e) in Figure 6 produces

different outputs when X=0, it is a candidate for generating

oscillation signals. To do this, in the test mode we need to

change the next states of (b, e) from (d, e) to (e, b) when

X=0, as indicated in Figure 7.

Next State Output Present

State X=0 X=1 X=0 X=1

a 000 a 001 c 010 1 0

b 001 d 011 b 001 1 0

c 010 f 101 d 011 1 1

d 011 c 010 a 000 0 1

e 100 e 100 f 101 0 0

f 101 b 001 e 100 1 1

Figure 7. Modified state transition table.

Bit Transition OP Value

0 -> 0 Low

0 -> 1 Rising

1 -> 0 Falling

1 -> 1 High

(a)

2nd Operand OP

Value L H R F

L Bypass INV Hold 0 Fail

H INV Bypass Fail Hold 1

R Hold 0 Fail INV Bypass

1
st

 O
p

er
an

d

F Fail Hold 1 Bypass INV

(b)

Figure 8. (a) Truth table of a state bit transition, (b)

Operation table of an MSR cell state.

The modification of next state functions in the test mode

can be achieved by setting MSR cells to appropriate states.

We present an algorithm to select the MSR states in this

section. Two tables are used in this algorithm: (1) Truth

table of a state bit transition (Figure 8(a)), and (2) Operation

table of an MSR cell state (Figure 8(b)).

In Figure 8(a), the state bit transition shows the bit

change between current state and next state. There are four

operation definitions: (1) when both current and next states

are “0”, the operation value is “Low”; (2) when both current

and next states are changed from “0” to “1”, the operation

value is “Rising”; (3) when both current and next states are

changed from “1” to “0”, the operation value is “Falling”; (4)

when both current and next states are “1”, the operation

value is “High”.

In Figure 8(b), the operation table of an MSR cell state

defines the state transition relationship between normal next

state in normal mode (i.e. operation value 1) and alternate

next state in test mode (i.e. operation value 2). “Fail” state is

not defined in the MSR cell due to conflicts between two

operation values. Please note this table is symmetric due to

binary commutative characteristic, and the inverse diagonal

is full of “Fail” entries. As to how the operation entries are

derived, we show in the following paragraphs.

In Figure 8(b), there are four types of operation

definitions in the MSR operation table. The first type in

Figure 9 is the “Bypass” state in the MSR cell. It means that

the MSR cell’s output is the same as its input. As shown in

Figure 9(a), two state bits in Present State (PS) are “0”, and

two state bits in Next State (NS) are also “0” in the alternate

state pair. According to the truth table of a state bit, both

operation values are “Low”, which leads to “Bypass” state.

The “Bypass” state satisfies the state transition condition

that present and next states are the same. Another example

for “Bypass” is in Figure 9(b). The difference between

Figure 9(a) and 9(b) is that there are oscillation signals in

Figure 9(b) since one PS bit is “0” while the other is ”1”. In

summary, when two operation values are {L, L}, {H, H}, or

{R, F}, MSR Cell State is set to “Bypass”.

PS NS OP MSR Cell PS

0 0 L => Bypass => 0

0 0 L => => 0

(a)

PS NS OP MSR Cell PS

0 1 R => Bypass => 1

1 0 F => => 0

(b)

Figure 9. Operation values of (a) {L, L}, (b) {R, F}.

The second type in Figure 9 is the “INV” state in an

MSR cell. It means that the MSR cell’s output is the

complement of its input. As in Figure 9(c), two state bits in

Present State (PS) are “0” and two state bits in Next State

(NS) are “1” in the alternate state pair. To achieve this, the

MSR cell state must be “INV”. According to the truth table

of a state bit in Figure 8(a), both operation values are

“Rising”. Another example for “INV” is in Figure 9(d). The

difference between Figure 9(c) and 9(d) is that there is

oscillation signals in Figure 9(d) since current bits (PS) are

“0” ”1” alternate. In summary, when two operation values

are three types of {R, R}, {F, F} or {H, L}, MSR Cell State

is set to “INV”.

PS NS OP MSR Cell PS

0 1 R => INV => 0

0 1 R => => 0

e

b

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

(c)

PS NS OP MSR Cell PS

1 1 H => INV => 0

0 0 L => => 1

(d)

Figure 9. Operation values of (c) {R, R}, (d) {H, L}.

The third type in Figure 9 is the “Hold” State (either

“Hold 0” or “Hold 1”). As in Figure 9(e), two state bits in

Present State (PS) are static “0” while two state bits in Next

State (NS) are “1” and “0”. This requires the MSR cell state

in “Hold 0”. Figure 9(f) is for “Hold 1” since current states

have two static “1” and next states are “1” and “0”. In

summary, when two operation values are {R, L}, MSR Cell

State is set to “Hold 0”; and {F, H} corresponds to MSR

Cell State “Hold 1”.

PS
NS OP MSR Cell PS

0 1 R => Hold 0 => 0

0 0 L => => 0

(e)

PS NS OP MSR Cell PS

1 0 F => Hold 1 => 1

1 1 H => => 1

(f)

Figure 9. Operation values of (e) {R, L}, (f) {F, H}.

PS NS OP MSR Cell PS

0 1 R => Fail => 1

1 1 H => => 0

(g)

PS NS OP MSR Cell PS

1 0 F => Fail => 0

0 0 L => => 1

(h)

Figure 9. Operation values of (g) {R, H}, (h) {F, L}.

The forth type in Figure 9 is the “Fail” state, which

means that the MSR cell can not satisfy the given circuit

conditions. As in Figure 9(g), the two Present States are “1”

and ”0” and two Next State bits are static “1”, which is not

possible. Another example for “Fail” is in Figure 9(h). In

summary, when two operation values are types of {R, H} or

{F, L}, MSR Cell State is set to “Fail”.

3.3 Test Pattern Generation Algorithm for

 Oscillation Test (OTPG Algorithm)

The test generation algorithm for oscillation testability is

outlined below. The input of the algorithm is an FSM model.

Each state transition is a four-tupple (x, p, n, y), which

represents input vector, present state, next state, and output

vector, respectively. Let the distance between two vectors

d(v1, v2) be the number of bit differences where the two

vectors are different. For example, d(-00, 11-) = 1, where –

indicates a don’t-care bit. This d(v1, v2) is also known as

Hamming distance.

Algorithm: Oscillation Test Pattern Generation (OTPG)

Input: a set of state transition function T

Output: a set of test vectors

for each (ti, tj ∈ T)

if (d(yi, yj) > 0 && d(xi, xj) > 0) {

x xi ∩ xj;

 calculate MSR states from Operation Table;

if (no “Fail” state)

 record valid state pairs pi, pj with input x;

 }

For example, consider state pair (a, e) under X=0 in

Figure 6. After MSR State Transition Algorithm, we get the

vector of the MSR cell state[2..0]=[INV, Bypass, Bypass] in

Figure 10.

state b2b1b0 OP value

Present state a 0 0 0
1st

Next state a 0 0 0
L L L

Present state e 1 0 0
2nd

Next state e 1 0 0
H L L

 INV Bypass Bypass

Figure 10. The MSR cell state for state pair (a, e).

4. Experimental Results

We have conducted experiments on LGSyn91 of MCNC

benchmark circuits whose statistics are shown in Table I. In

order to make the proposed method effective, we should

have enough oscillation signals in the outputs. Therefore,

circuits with very few outputs and output signal transitions

are not included in the experiment.

In the symbolic states of the first 16 LGSynth91

benchmark circuits, the states are symbolic and NOVA [9]

is used for state assignment. In the remaining 5 ISCAS89

circuits, the binary codes of the states are known. The

proposed oscillation TPG (OTPG) algorithm is called to

generate oscillation test vectors. The FSMs are then

synthesized and the test vectors are evaluated for stuck-at

test efficiency. The results are shown in Table II. Columns 2

to 4 give the results of the proposed method. The column

under #t (osc) indicates the number of oscillation tests

generated by our algorithm, while TE is the test efficiency

achieved by this set of tests. The forth column (#t (scan))

gives the number of extra scan test vectors required to

achieve 100% test efficiency. The last column (#stv)

indicates the number of test vectors to achieve 100% test

efficiency if only scan test is used. Our pure oscillation test

(#t(osc)) provides average test efficiency of more than

90.11%, and 100% test efficiency can be achieved by

adding extra scan test (#t (scan)). Under the same 100%

fault coverage and test efficiency for stuck-at faults, our

proposed method (#t (osc)+#t (scan)) requires almost same

total/average numbers of test patterns compared to the pure

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

scan test, and it outperforms the pure scan tests at the

average ratio of 2:1 in the test cases.

5. Concluding Remarks

We present a novel oscillation test architecture for

sequential circuits, in which at-speed testing is possible. As

a result, delay related faults are detectable. We develop

MSR cells for this architecture, and propose an efficient

algorithm for oscillation test generation. The proposed

method requires approximately the same amount of test

vectors as scan tests to achieve 100% test efficiency for

stuck-at faults, and it outperforms the pure scan tests at the

average ratio of 2:1 in the test cases. In the future, we shall

also consider state assignment method that makes 100% test

efficiency possible with the oscillation test only.

References

[1] P. Nigh, W. Needhan, K. Butler, P. Maxwell, and R. Aitken,

“An experimental study comparing the relative effectiveness

of functional, scan, IDDQ, and delay-fault testing,” in Proc.

IEEE VLSI Test Symp., pp. 459-464, 1997.

[2] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional

and structural tests,” in Proc. IEEE Int’l Test Conf., pp. 400-

407, 2000.

[3] C.C. Liaw, S.Y. Su, and Y.K. Malaiya, “Test generation for

delay faults using stuck-at-fault test set,” in Proc. IEEE Int’l

Test Conf., pp. 167-175, 1980.

[4] N. Tendolkar, R. Raina, R. Woltenberg, X. Lin, B. Swanson,

and G. Aldrich, “Novel techniques for achieving high at-

speed transition fault test coverage for Motorola’s

microprocessors based on PowerPCTM instruction set

architecture,” in Proc. IEEE VLSI Test Symp., pp. 3-8, 2002.

[5] M. Kaneko and K. Sakaguchi, “Oscillation fault diagnosis for

analog circuits based on boundary search with perturbation

model,” in Proc. IEEE Intnl Symp on Circuits and

Systems, pp93-96, 1994.

[6] K. Arabi and B. Kaminska, “Oscillation-based test strategy

for analog and mixed-signal integrated circuits,” in Proc.

IEEE VLSI Test Symp., pp. 476-482, 1996.

[7] K. S.-M. Li, C.-L. Lee, C. Su, and J. E Chen, “Oscillation

Ring Based Interconnect Test Scheme for SOC,” Proc. IEEE

ASPDAC, pp. 184-187, 2005.

[8] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K.S. Kim, “Robust

system design with built-in soft-error resilience,” IEEE

Computer, Volume 38, Issue 2, pp. 43-52, Feb. 2005.

[9] T. Villa and Sangiovanni-Vincentelli, “NOVA: State

assignment of finite state machine of optimal two-level logic

implementation,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. no. 9, pp. 905-924, 1990.

Table I. Statistics of benchmark circuits

Circuit #input #output #states

bbsse 7 7 16

cse 7 7 16

dk14 3 5 7

dk15 3 5 4

dk16 2 3 27

dk17 2 3 8

dk27 1 2 7

dk512 1 3 15

lion 2 1 4

mc 3 5 4

planet 7 19 48

s1 8 6 20

sand 11 9 32

sse 7 7 16

styr 9 10 30

tbk 6 3 32

s27 4 1 6

s298 3 6 218

s386 7 7 13

s1488 8 19 48

s1494 8 19 48

Table II. Comparison of experimental results between

Oscillation Test Pattern Generation (OTPG) and Pure Scan.

Proposed Circuit

#t (osc) TE (%) #t(scan)

#stv

(scan only)

bbsse 28 83.87 21 52

cse 50 87.35 23 76

dk14 20 96.09 6 36

dk15 5 60.61 15 24

dk16 60 98.66 5 65

dk17 15 98.15 1 21

dk27 5 90.74 2 11

dk512 17 98.31 1 24

lion 4 90.00 3 8

mc 7 100.00 0 10

planet 120 97.08 20 128

s1 88 92.48 20 105

sand 152 99.60 3 140

sse 28 83.87 21 52

styr 154 98.35 9 157

tbk 87 57.81 119 189

s27 6 97.37 1 11

s298 42 98.87 7 30

s386 26 75.12 21 42

s1488 115 95.34 17 135

s1494 116 92.58 27 154

Average 90.11

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

