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ABSTRACT 

In this paper, we propose an oscillation-based test 

methodology for sequential testing. This approach provides 

many advantages over traditional methods. (1) It is at-speed

testing, which makes delay-inducing defects detectable. (2) 

The ATPG is much easier, and the test set is usually smaller. 

(3) There is no need to store output responses, which greatly 

reduces the communication bandwidth between the 

Automatic Test Equipment (ATE) and Circuit under Test 

(CUT). We provide a register design that supports the 

oscillation test, and give an effective algorithm for 

oscillation test generation. Experimental results on MCNC 

benchmarks show that the proposed test method achieves 

high fault coverage with smaller number of test vectors. 

1. Introduction 

Decreasing feature sizes and increasing clock speeds 

have combined to alter the defect effects dramatically. 

Recent evidence indicates that delay-inducing defects can 

no longer be ignored nor go untested [1-2]. For circuits 

designed with 130nm or more advanced technologies, the 

transition fault is considered essential to achieve the 

acceptable defect level. The detection of delay fault requires 

at-speed test techniques, which create signal transitions to 

be captured at normal speed. In the past, it was typically 

accomplished with functional patterns, but it was 

undesirable mainly due to the cost consideration. Scan-

based test techniques [3-4] offer a viable alternative for at-

speed testing. However, there are many complicating factors 

when moving from relatively slow scan-based tests for 

stuck-at faults to testing for delay faults. As to design 

methodologies such as multiple clock domains, mixed 

negative and positive edge clocking, and so on, all pose 

challenges to the implementation of successful and high 

coverage delay tests. The cost associated with such design 

methodologies is also an ever increasingly important issue. 

We propose an oscillation-based test methodology for 

sequential testing in this paper. This approach provides three 

major advantages over traditional scan-based approaches. (1) 

In this architecture, testing is conducted at-speed, which 

makes delay-inducing defects detectable. This is due to that 

the oscillation test is triggered by system clock and thus 

operates at normal speed. (2) Test vectors can be derived 

directly from the finite-state machine (FSM) model in our 

Oscillation Test Pattern Generation (OTPG) algorithm, and 

it greatly simplifies the ATPG process accordingly. (3) Our 

method does not need complex test clocks, which is 

required for two-pattern tests used in transitional delay tests. 

(4) The correctness of CUT is determined by simply 

observing whether there are oscillation signals in the outputs, 

and there is no need to store and analyze output responses. 

Besides, the number of vectors is roughly the same as scan 

tests. Thus, the communication bandwidth between the ATE 

and CUT is greatly reduced, which partly solves the 

problem of test data compression in SOC testing. 

Oscillation based test is an efficient and effective 

method to detect faults in a circuit or a device [5-6]. An 

oscillation ring is a closed loop with an odd number of 

signal inversions. If the CUT is fault-free, an oscillation 

signal will appear on the ring. Otherwise, the CUT is 

deemed faulty. Recently oscillation ring test is applied for 

system-level interconnects [7].  

In order to conduct the oscillation test, the state-holding 

elements must be modified to generate oscillation signals in 

test mode. In this paper, we develop a Modified State 

Register (MSR) cell for this purpose, and give an algorithm 

to generate tests with the help of MSR cells. The proposed 

MSR design requires extra silicon area. However, in deep 

submicron designs, silicon area is no longer the major issue. 

Other issues, including delay fault and soft fault testability,

low-power testing, etc., become the more important 

concerns. For example, Intel proposes a scan-cell design 

targeted for soft faults [8]. This cell-level design uses 

1.08X-1.24X area with power overhead of 2.02X-2.26X, 

while chip-level design suffers from power overhead by 

4.0X-5.0X [8]. The proposed MSR cell can be combined 

with other register designs to achieve highly testable and 

reliable systems. 

Experimental results on MCNC benchmark circuits 

show that the proposed oscillation test method achieves high 

fault coverage with smaller number of test vectors. 

 The remaining sections are organized as follows. In 

Section 2, we introduce the proposed Oscillation Test 

architecture and MSR cell designs for both asynchronous 

and synchronous circuits. Section 3 gives Oscillation Test 

Pattern Generation (OTPG) algorithm. Experimental results 

are shown in Section 4, and some brief conclusions are in 

Section 5. 

2. Oscillation Test for Sequential Circuits 

2.1 Oscillation Ring Test Architecture 

The oscillation ring test architecture for sequential 

circuits is shown in Figure 1. In this architecture, we replace 

the flip-flops by MSR cells. In the normal mode operation, 

the MSR cells work as state-holding elements. In the 

oscillation test mode, MSR cells transform the target 

sequential circuits into asynchronous circuits with odd-
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inversion feedback paths, and oscillation signals show on 

these loops (rings) accordingly. 

(a)

(b)

(c)

Figure 1. Oscillation test architecture for sequential circuits: 

(a) Oscillation Rings, (b) MSR states are controlled through 

scans, and (c) Oscillation Test is controlled by the system 

clock. 

With appropriate inputs, oscillation signals can be 

propagated to at least one primary output through some 

sensitized paths in Figure 1(a). Stuck-at faults on wires 

passed by oscillation signals will stop these oscillation 

signals; while delay (transition) faults will change the 

oscillation frequency. The faults are detected by observing 

the oscillation signals in the primary outputs. 

In order to construct oscillation rings in sequential 

circuits, we need to set up appropriate connections in MSR 

cells. Figure 1(b) shows how to set the states in MSR cells. 

The control signals for each MSR cell are fed to the cell 

through the scan paths. 

It is usually difficult to implement the asynchronous test 

architecture. Whenever there are multiple oscillation signals, 

there is always a race problem. To solve this problem, we 

may use the system clock to control the feedback paths, 

which makes the design synchronous, as shown in Figure 

1(c). The circuit is forced to move between states e and f,
whose outputs are 0 and 1, respectively, when the input X is 

held at X=1. As a result, we can see that the output changes 

every cycle. 

2.2 Modified State Register (MSR) Design 

2.2.1 MSR Design for Asynchronous Test 

The MSR cell design for asynchronous oscillation test is 

shown in Figure 2, and the control states for the MSR cells 

are shown in Figure 3.  

(a)

(b)

Figure 2. MSR cells for asynchronous oscillation test: (a) 

normal mode, and (b) oscillation test mode.

Under normal operation in Figure 2(a), the D-Type Flip 

Flops (DFFs) connected to Sin[0] are used as state-holding 

elements. Under the oscillation test mode in Figure 2(b), an 

MSR cells operate in four states: Hold 0, Hold 1, INV and 

Bypass. Hold 0 and Hold 1 provide steady output values of 

0 and 1, respectively. INV and Bypass are used to set up 

odd-inversion loops to generate oscillation signals. A loop 

(ring) consists of two paths: one forward path in the 

combinational circuit, and a feedback path passing an MSR 

cell. If the number of signal inversion in the forward path is 
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odd, the MSR cell is set to the “Bypass” state; otherwise, it 

is set to the “INV” state. 

Sin[1] Sin[0] Operation 

0 0 Hold 0 

0 1 Hold 1 

1 0 INV

1 1 Bypass 

Figure 3. Control state table of an MSR cell for 

asynchronous sequential circuit test. 

2.2.2 MSR Design for Synchronous Sequential     

 Circuits 

In order to avoid the race conditions caused by the 

asynchronous test, we use system clock to sample the 

oscillation signals, as shown in Figure 1(c). 

(a)

(b)

Figure 4. MSR cells for synchronous oscillation test: (a) 

normal mode, (b) oscillation test mode. 

An MSR cell’s design and its operations for the 

synchronous oscillation test are illustrated in Figure 4, and 

the control states for MSR cells are given in Figure 5. 

Sin[2] Sin[1] Sin[0] Operation 

- 0 0 Hold 0 

- 0 1 Hold 1 

0 1 - INV

1 1 - Bypass 

Figure 5. Control state table of MSR cells for synchronous 

sequential circuits test. 

3. Synchronous Oscillation Ring Test 

The synchronous oscillation ring test is preferred for 

several reasons. The most important advantage is that it 

avoids race problems, which is very difficult to handle in the 

asynchronous approach. Secondly, it also simplifies the 

ATPG process. The test patterns can be obtained directly 

from the FSM model. The drawback of this approach is that 

an MSR cell is significant larger. This large hardware 

overhead can be partly offset if we can restrict the number 

of operations required in an MSR cell, and this can be 

achieved through state assignment for the given FSM. In the 

remaining part of the paper, we shall concentrate on the 

synchronous oscillation test. 

3.1 Constructing Oscillation Signals from FSM 

An example on how to find test patterns from an FSM 

model is given in Figure 6, which shows the state transition 

and output table of an FSM. The output table gives the 

candidates for oscillating outputs. For example, when the 

primary input X is held at 1 (X=1) and the FSM is in either 

state e or f, the FSM moves back and forth between these 

two states. Since the outputs corresponding to states e and f
with X=1 are 0 and 1, respectively, we shall see oscillating 

signals at the output. This oscillation condition is shown in 

Figure 1(c), in which the least significant bit (LSB) of the 

state vector is an oscillating signal. 

Next State Output 
Present State 

X=0 X=1 X=0 X=1 

a    000 a   000 c   010 1 0 

b    001 d    011 b   001 1 0 

c    010 f    101 d   011 1 1 

d    011 c    010 a   000 0 1 

e    100 e   100 f   101 0 0

f    101 b   001 e   100 1 1

Figure 6. State transition and output table of an FSM. 

In the above example, an oscillation signal is generated 

without using MSR cells. This is achievable when both the 

next states and outputs of a state pair are alternating. 

Unfortunately, no other state pairs satisfy the oscillation 

condition. We shall use MSR cells to force state pairs to 

alternating if only their corresponding outputs are different. 

All the candidate state pairs are listed below. With X = 0, 

the following state pairs generate the opposite output values: 

(a, d), (a, e), (b, d), (b, e), (c, d), (c, e), (f, d), (f, e). With 

X=1, the possible choices include: (a, c), (a, d), (a, f), (b, c), 

(b, d), (b, f), (e, c), (e, d), (e, f). 
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3.2 MSR State Transition Algorithm (MSR STA 

Algorithm) 

In order to generate oscillation signals in the test mode, 

we need to change the next state functions for the selected 

state pair with the help of MSR cells. An example is shown 

in Figure 7, which modifies the state transition table of 

Figure 6 in the test mode to produce oscillation signals. 

For example, since state pair (b, e) in Figure 6 produces 

different outputs when X=0, it is a candidate for generating 

oscillation signals. To do this, in the test mode we need to 

change the next states of (b, e) from (d, e) to (e, b) when 

X=0, as indicated in Figure 7. 

Next State Output Present 

State X=0 X=1 X=0 X=1 

a   000 a   001    c 010 1 0 

b   001 d  011    b 001 1 0

c   010 f  101    d  011 1 1 

d   011 c   010    a  000 0 1 

e   100 e   100    f  101 0 0

f   101 b   001    e  100 1 1 

Figure 7. Modified state transition table. 

Bit Transition OP Value 

0 -> 0 Low

0 -> 1 Rising

1 -> 0 Falling

1 -> 1 High

(a)

2nd Operand OP 

Value L H R F

L Bypass INV Hold 0 Fail

H INV Bypass Fail Hold 1 

R Hold 0 Fail INV Bypass

1
st

 O
p

er
an

d
 

F Fail Hold 1 Bypass INV 

(b)

Figure 8. (a) Truth table of a state bit transition, (b) 

Operation table of an MSR cell state.

The modification of next state functions in the test mode 

can be achieved by setting MSR cells to appropriate states. 

We present an algorithm to select the MSR states in this 

section. Two tables are used in this algorithm: (1) Truth 

table of a state bit transition (Figure 8(a)), and (2) Operation 

table of an MSR cell state (Figure 8(b)).  

In Figure 8(a), the state bit transition shows the bit 

change between current state and next state. There are four 

operation definitions: (1) when both current and next states 

are “0”, the operation value is “Low”; (2) when both current 

and next states are changed from “0” to “1”, the operation 

value is “Rising”; (3) when both current and next states are 

changed from “1” to “0”, the operation value is “Falling”; (4) 

when both current and next states are “1”, the operation 

value is “High”. 

In Figure 8(b), the operation table of an MSR cell state 

defines the state transition relationship between normal next 

state in normal mode (i.e. operation value 1) and alternate 

next state in test mode (i.e. operation value 2). “Fail” state is 

not defined in the MSR cell due to conflicts between two 

operation values. Please note this table is symmetric due to 

binary commutative characteristic, and the inverse diagonal 

is full of “Fail” entries. As to how the operation entries are 

derived, we show in the following paragraphs. 

In Figure 8(b), there are four types of operation 

definitions in the MSR operation table. The first type in 

Figure 9 is the “Bypass” state in the MSR cell. It means that 

the MSR cell’s output is the same as its input. As shown in 

Figure 9(a), two state bits in Present State (PS) are “0”, and 

two state bits in Next State (NS) are also “0” in the alternate 

state pair. According to the truth table of a state bit, both 

operation values are “Low”, which leads to “Bypass” state. 

The “Bypass” state satisfies the state transition condition 

that present and next states are the same. Another example 

for “Bypass” is in Figure 9(b). The difference between 

Figure 9(a) and 9(b) is that there are oscillation signals in 

Figure 9(b) since one PS bit is “0” while the other is ”1”. In 

summary, when two operation values are {L, L}, {H, H}, or 

{R, F}, MSR Cell State is set to “Bypass”. 

PS NS OP  MSR Cell  PS

0 0 L => Bypass => 0 

0 0 L =>  => 0 

(a)

PS NS OP  MSR Cell  PS

0 1 R => Bypass => 1 

1 0 F =>  => 0 

(b)

Figure 9. Operation values of (a) {L, L}, (b) {R, F}.

The second type in Figure 9 is the “INV” state in an 

MSR cell. It means that the MSR cell’s output is the 

complement of its input. As in Figure 9(c), two state bits in 

Present State (PS) are “0” and two state bits in Next State 

(NS) are “1” in the alternate state pair. To achieve this, the 

MSR cell state must be “INV”. According to the truth table 

of a state bit in Figure 8(a), both operation values are 

“Rising”. Another example for “INV” is in Figure 9(d). The 

difference between Figure 9(c) and 9(d) is that there is 

oscillation signals in Figure 9(d) since current bits (PS) are 

“0” ”1” alternate. In summary, when two operation values 

are three types of {R, R}, {F, F} or {H, L}, MSR Cell State 

is set to “INV”. 

PS NS OP  MSR Cell  PS

0 1 R => INV => 0 

0 1 R =>  => 0 

e

b
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(c)

PS NS OP  MSR Cell  PS

1 1 H => INV => 0 

0 0 L =>  => 1 

(d)

Figure 9. Operation values of (c) {R, R}, (d) {H, L}.

The third type in Figure 9 is the “Hold” State (either 

“Hold 0” or “Hold 1”). As in Figure 9(e), two state bits in 

Present State (PS) are static “0” while two state bits in Next 

State (NS) are “1” and “0”. This requires the MSR cell state 

in “Hold 0”. Figure 9(f) is for “Hold 1” since current states 

have two static “1” and next states are “1” and “0”. In 

summary, when two operation values are {R, L}, MSR Cell 

State is set to “Hold 0”; and {F, H} corresponds to MSR 

Cell State “Hold 1”. 

PS 
NS OP  MSR Cell  PS 

0 1 R => Hold 0 => 0 

0 0 L =>  => 0 

(e)

PS NS OP  MSR Cell  PS 

1 0 F => Hold 1 => 1 

1 1 H =>  => 1 

(f) 

Figure 9. Operation values of (e) {R, L}, (f) {F, H}.

PS NS OP  MSR Cell  PS

0 1 R => Fail => 1 

1 1 H =>  => 0 

(g) 

PS NS OP  MSR Cell  PS

1 0 F => Fail => 0 

0 0 L =>  => 1 

(h) 

Figure 9. Operation values of (g) {R, H}, (h) {F, L}. 

The forth type in Figure 9 is the “Fail” state, which 

means that the MSR cell can not satisfy the given circuit 

conditions. As in Figure 9(g), the two Present States are “1” 

and ”0” and two Next State bits are static “1”, which is not 

possible. Another example for “Fail” is in Figure 9(h). In 

summary, when two operation values are types of {R, H} or 

{F, L}, MSR Cell State is set to “Fail”.

3.3 Test Pattern Generation Algorithm for 

 Oscillation Test (OTPG Algorithm) 

The test generation algorithm for oscillation testability is 

outlined below. The input of the algorithm is an FSM model. 

Each state transition is a four-tupple (x, p, n, y), which 

represents input vector, present state, next state, and output 

vector, respectively. Let the distance between two vectors 

d(v1, v2) be the number of bit differences where the two 

vectors are different. For example, d(-00, 11-) = 1, where – 

indicates a don’t-care bit. This d(v1, v2) is also known as 

Hamming distance. 

Algorithm: Oscillation Test Pattern Generation (OTPG) 

Input: a set of state transition function T

Output: a set of test vectors 

for each (ti, tj ∈ T)

if (d(yi, yj) > 0 && d(xi, xj) > 0) { 

x xi ∩ xj;

 calculate MSR states from Operation Table; 

if (no “Fail” state) 

     record valid state pairs pi, pj with input x;

    } 

For example, consider state pair (a, e) under X=0 in 

Figure 6. After MSR State Transition Algorithm, we get the 

vector of the MSR cell state[2..0]=[INV, Bypass, Bypass] in 

Figure 10. 

state b2b1b0 OP value 

Present state a 0 0 0 
1st 

Next state a 0 0 0 
L L L 

Present state e 1 0 0 
2nd 

Next state e 1 0 0 
H L L 

    INV Bypass Bypass

Figure 10. The MSR cell state for state pair (a, e).

4. Experimental Results 

We have conducted experiments on LGSyn91 of MCNC 

benchmark circuits whose statistics are shown in Table I. In 

order to make the proposed method effective, we should 

have enough oscillation signals in the outputs. Therefore, 

circuits with very few outputs and output signal transitions 

are not included in the experiment. 

In the symbolic states of the first 16 LGSynth91 

benchmark circuits, the states are symbolic and NOVA [9] 

is used for state assignment. In the remaining 5 ISCAS89 

circuits, the binary codes of the states are known. The 

proposed oscillation TPG (OTPG) algorithm is called to 

generate oscillation test vectors. The FSMs are then 

synthesized and the test vectors are evaluated for stuck-at 

test efficiency. The results are shown in Table II. Columns 2 

to 4 give the results of the proposed method. The column 

under #t (osc) indicates the number of oscillation tests 

generated by our algorithm, while TE is the test efficiency 

achieved by this set of tests. The forth column (#t (scan))

gives the number of extra scan test vectors required to 

achieve 100% test efficiency. The last column (#stv) 

indicates the number of test vectors to achieve 100% test 

efficiency if only scan test is used. Our pure oscillation test 

(#t(osc)) provides average test efficiency of more than 

90.11%, and 100% test efficiency can be achieved by 

adding extra scan test (#t (scan)). Under the same 100% 

fault coverage and test efficiency for stuck-at faults, our 

proposed method (#t (osc)+#t (scan)) requires almost same 

total/average numbers of test patterns compared to the pure 
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scan test, and it outperforms the pure scan tests at the 

average ratio of 2:1 in the test cases. 

5. Concluding Remarks 

We present a novel oscillation test architecture for 

sequential circuits, in which at-speed testing is possible. As 

a result, delay related faults are detectable. We develop 

MSR cells for this architecture, and propose an efficient 

algorithm for oscillation test generation. The proposed 

method requires approximately the same amount of test 

vectors as scan tests to achieve 100% test efficiency for 

stuck-at faults, and it outperforms the pure scan tests at the 

average ratio of 2:1 in the test cases. In the future, we shall 

also consider state assignment method that makes 100% test 

efficiency possible with the oscillation test only. 
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Table I. Statistics of benchmark circuits 

Circuit #input #output #states 

bbsse 7 7 16 

cse 7 7 16 

dk14 3 5 7 

dk15 3 5 4 

dk16 2 3 27 

dk17 2 3 8 

dk27 1 2 7 

dk512 1 3 15 

lion 2 1 4 

mc 3 5 4 

planet 7 19 48 

s1 8 6 20 

sand 11 9 32 

sse 7 7 16 

styr 9 10 30 

tbk 6 3 32 

s27 4 1 6 

s298 3 6 218 

s386 7 7 13 

s1488 8 19 48 

s1494 8 19 48 

Table II. Comparison of experimental results between 

Oscillation Test Pattern Generation (OTPG) and Pure Scan. 

Proposed Circuit

#t (osc) TE (%) #t(scan)

#stv

(scan only) 

bbsse 28 83.87 21 52 

cse 50 87.35 23 76 

dk14 20 96.09 6 36 

dk15 5 60.61 15 24 

dk16 60 98.66 5 65 

dk17 15 98.15 1 21 

dk27 5 90.74 2 11 

dk512 17 98.31 1 24 

lion 4 90.00 3 8 

mc 7 100.00 0 10 

planet 120 97.08 20 128 

s1 88 92.48 20 105 

sand 152 99.60 3 140 

sse 28 83.87 21 52 

styr 154 98.35 9 157 

tbk 87 57.81 119 189 

s27 6 97.37 1 11 

s298 42 98.87 7 30 

s386 26 75.12 21 42 

s1488 115 95.34 17 135 

s1494 116 92.58 27 154 

Average 90.11
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