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Environment Prediction for a Mobile
Robot in a Dynamic Environment

Charles C. Chang and Kai-Tai Song

Abstract—The problem of navigating a mobile robot among moving
obstacles is usually solved on the condition of knowing the velocity
of obstacles. However, it is difficult to provide such information to
a robot in real time. In this paper, we present an environment pre-
dictor that provides an estimate of future environment configuration
by fusing multisensor data in real time. The predictor is implemented
by an artificial neural network (ANN) trained using a relative-error-
backpropagation (REBP) algorithm. The REBP algorithm enables the
ANN to provide output data with a minimum relative error, which
is better than conventional backpropagation (BP) algorithms in this
prediction application. The mobile robot can, therefore, respond to
anticipated changes in the environment. The performance is verified by
prediction simulation and navigation experiments.

Index Terms—Artificial neural networks, environment prediction, mo-
bile robots, moving obstacles, training algorithm.

I. INTRODUCTION

To be useful in the real world, a mobile robot should be able
to navigate safely in an unstructured environment and accomplish
given tasks despite unexpected changes in its surroundings. Many
studies have been conducted on motion planning in uncertain but
static environments [13]. In the real world, however, obstacles are
not always stationary. When obstacles move, navigation methods
designed for static environments do not work unless they adopt larger
safety margins or shorter sampling times. These remedies may not
be easy to realize and they are not efficient solutions. Therefore, new
approaches are needed to resolve navigation problems that involve
moving obstacles.

Some researchers proposed to plan a global trajectory before the
robot moves. Not only a path to the goal is planned, but also the
time that the robot would arrive at every intermediate position. One
approach is to plan a possible path at first, then plan a trajectory
or velocity by considering the trajectories of obstacles [10]. Another
approach is to consider time an additional dimension and make a
plan on space–time [6], [8], [17]. All these methods require that the
robot knows obstacle motion trajectories before it makes a plan. Their
applications will be limited, because the obstacle information cannot
always be obtained from on-board sensor system and the obstacle
motion may change after the robot moves.

Several methods have been proposed to use on-board sensors for
handling immediate moving obstacles. In these methods, a mobile
robot pre-plans a path to the goal; while traveling along this path, it
refines its motion to deal with moving and unexpected obstacles ac-
cording to sensing information. Different types of sensing information
has been used in these methods. For instance, the navigation method
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proposed by Sharma [16] simply needs the obstacle positions. The
method developed by Kyriakopoulos and Saridis [11] must work with
a precise prediction of collision time and position. The approaches
used by Tsubouchiet al. [18] and Zhu [19] need precise position
estimation of obstacles. In Fiorini and Shiller’s method [7], the
relative velocity information must be available.

All the methods mentioned above offer no experiments to verify
their feasibility. Some of them need only current position information
about obstacles. These methods can possibly be realized, but since
the motion of obstacles is ignored, the performance may not be ac-
ceptable. Other methods may have difficulties in experiment because
they do not have adequate sensor system to provide detail obstacle
information. One exception involving experiments is the work done
by De Lamadrid and Gini [12]. Their method, however, can only
work in a slowly changing environment. The robot’s speed and that
of the obstacles in their experiment were slower than 2 cm/s. If an
obstacle moves faster, the motion estimation error may be too large,
forcing the robot to replan its trajectory frequently, therefore making
real-time operation impossible.

We conclude from the methods surveyed above that currently
available sensor systems can hardly provide reliable explicit obstacle
motion estimates (i.e., their speeds and directions) in real time.
An alternative may be to find implicit information, like next-time
positions of obstacles. In this paper, we present a practical approach
that allows mobile robots to predict implicit motion information of
moving obstacles. We propose to use an artificial neural network
(ANN) environment predictor to process ultrasonic sensor data for
this purpose. The ANN predictor outputs what the future sensor
readings will be, i.e., where obstacles will be relative to the robot
if the robot and obstacle motion patterns stay the same. Using
this information, the robot can respond to anticipated environmental
changes in advance. This will result in better navigation performance
than a system without motion information.

The prediction concept has been used in robot perception. The
authors’ previous work [3] proposed to use an ANN structure to
process ultrasonic sensor data for environment prediction, but it was
just a realization of a simple idea and the accuracy of prediction
needed further improvement. Dickmannset al. [5] proposed to use
the Kalman filter approach for prediction in an active vision system.
Image data are first processed to initialize a four-dimensional [4-
D; three-dimensional (3-D) space plus time] object model. Then,
exploiting dynamic models for those objects allows the prediction of
object states. Baluja and Pomerleau [1] proposed an ANN structure
for predicting the next-time input image to help the mobile robot
focus its attention on the important features.

The ANN approach has also been used to steer a mobile robot
according to sensory data. Biewald [2] trained several ANN’s to steer
an indoor mobile robot in different static-environment conditions. The
simulation with 25 ultrasonic sensor inputs shows the generalization
capability of the ANN approach. Pomerleau [14] developed a vision-
based guidance system using a neural network to steer a road vehicle.
Both the above methods are not aimed to deal with moving obstacles.
In dynamic environments, the robot speed in addition to the steering
should be taken into consideration. In this case, it would be very
difficult to train an ANN for generating direct motion command based
on sensor data from different time instants. This is because there are
many adequate motion commands for a single condition.

Although the backpropagation (BP) [15] is the most used algorithm
for training an ANN, new training methods can be beneficial for a
particular application. For their classification problem, Hampshire and
Waibel [9] proposed an objective function called classification figure
of merit (CFM), which seeks to maximize the difference between the
output activation of the node representing the correct classification

and all other nodes (representing incorrect classifications). In this
paper, we develop a relative-error-backpropagation (REBP) algorithm
for training the ANN environment predictor. The REBP algorithm
seeks to minimize the relative output error and is more appropriate
for this application.

The rest of this paper is organized as follows. We present the
structure of the ANN predictor and the REBP training algorithm in
Section II. Section III shows the performance of the ANN predictor
by simulation. Section IV shows the experimental results of using
the ANN predictor for mobile robot navigation in a dynamic en-
vironment. Section V offers a discussion, and Section VI concludes
the paper.

II. ANN ENVIRONMENT PREDICTOR

Robots need to know obstacle motion information to effectively
deal with moving obstacles. Most existing robot navigation methods
[7], [8], [11] assume the trajectories (or the speeds and directions) of
moving obstacles are known and apply algorithms to determine the
action of the mobile robot. However, it is difficult to get this kind
of information precisely in real time using on-board sensor systems
and data-fusion techniques. Some navigation methods simply use the
current sensor information to deal with moving obstacles. However,
this does not consider the motion of obstacles, so navigation will not
be very efficient. To provide the information about obstacle motion
and meet the real-time requirement, we propose a simple but very
practical strategy that provides motion information between the two
extremes above—very explicit and none.

Many existing mobile robots are equipped with rangefinders for
obstacle detection. Rangefinders such as ultrasonic sensors have
difficulty identifying obstacles. Only the nearest distance to an object
within the ultrasound beam is obtained, so the object’s shape, size,
and detected point are difficult to determine. As a result, the velocity
calculation of obstacles will have large degrees of uncertainty. In
our method given below, rangefinders are not used to identify the
precise location of each obstacle. We only use the sensor system
to tell the robot what area will be occupied by obstacles. This is
an implicit form of considering the motion of obstacles. Thus, it is
termed an environment predictor rather than a motion estimator. The
environment predictor is possible if we succeed in fusing multiple
sensor data to obtain the correlation among them. One possibility is
to predict future sensor readings. Note that the measurement from
any given sensor must have a relationship to historical measurements
from sensors nearby if the motions of the robot and obstacles follow
certain fixed patterns when sensory data are taken. If we can find
this relationship, the sensor’s future measurement can be predicted.
Knowing the future measurements of rangefinders is equivalent to
knowing what area will be occupied by obstacles. It is helpful for
navigation among moving obstacles because the robot can respond
to anticipated changes in the environment.

A. Structure of the ANN Predictor

In our design, a ring of equally-spaced ultrasonic transducers
is used to detect obstacles. Although other types of sensors may
also be suitable, we chose ultrasonic sensor mainly because of its
simplicity and relative low cost. The environment predictor is actually
constructed of multiple sensor predictors. Each of them predicts next-
time measurement of a sensor according to historical sensory data.
We can obtain such a sensor predictor if the relationship among
measurements made at different instants can be formulated. However,
it would be difficult to find a mathematical model for this relationship
because of the following reasons. First, fusing multisensor data
containing temporal relationship is usually very complex. Particularly
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Fig. 1. Structure of the ANN sensor predictor.

in our application, the ultrasonic transducer has a cone shape of an
emissive beam and an object may travel through the beams from
one sensor to the other. Second, an obstacle may be detected by
more than one sensor at the same time (especially when the beams
of neighboring sensors overlap). This cannot be distinguished from
the multiple-obstacle case. Moreover, obstacle size is not uniform.
It is difficult to know how many sensors will detect the obstacle(s)
at next instant. Therefore, the relationship among historical sensor
measurements is uncertain. Third, it is impossible to locate an obstacle
precisely because of the large beam opening angle and other sources
of uncertainty associated with ultrasonic sensors. Fourth, multiple
sensors are installed at different positions in different directions.
The relation between data from different observations is nonlinear.
Also, the sensor range limit will cause a prediction saturated, which
is another source of nonlinearity. These conditions suggest that
formulating predictions can take advantage of the ANN structure,
which is model-free, suitable for nonlinear mapping problems, and
able to deal with noisy data. Furthermore, the ANN can be realized
with hardware and, therefore, the on-board computer can save data
processing time.

In determining the structure of the ANN sensor predictor, we first
have to clarify how it will be used and what the motion patterns
are for the robot and obstacles. The predictor is used to predict
future sensor readings by assuming the robot will not change its
motion before the next-time instant. The assumption does not mean
the robot motion has to stay the same to have a good prediction. In
fact, after obtaining predictions, the robot determines its new motion
immediately according to the predictions. The maximum direction-
change rate of the robot is assumed to be 12.5�/s. Our consideration
is as follows. First, we want the robot to behave like a human being

who normally moves smoothly among obstacles. According to our
observations, a person rarely takes a turn sharper than this limit.
Second, this limit makes the robot motion tend rectilinearly, thus
simplifying the prediction problem. Because no knowledge about the
obstacles is available, we assume their motion is rectilinear and of
constant speed, which is reasonable for most short-term observations.
On these conditions, the last two sensor readings are sufficient to
predict the next one. Fig. 1 shows the structure of the ANN sensor
predictor. In the figure,si(t) represents the data from sensori
at sample instantt; and the symbolm indicates this predictor is
to predict sensorm. The inputs to the predictor are the historical
measurements of sensors near the sensor whose reading in the next-
time instant is being predicted. Before the measurements enter the
ANN module, their difference must be taken [i.e.,si(t)� si(t� 1)],
and both the current measurements and the differences are normalized
to a value between zero and one. The larger the measured distance,
the closer the value to one. The output of the ANN is the normalized
sensor data prediction, which is also a value between zero and one.
To convert it into the predicted sensor data, the denormalization
module multiplies it by the maximum sensor range. The number
of neighboring sensors considered in the predictor depends on the
velocities of the robot and obstacles. It also depends on the sensor
arrangement of the robot. For the case of a ring of 24 sensors, it is
adequate to use seven sensors to predict one sensor reading. The
environment predictor is therefore constructed of 24 ANN’s (see
Fig. 2). Because of the symmetrical sensor arrangement, only one
ANN is trained for all 24 predictors.

B. Training Algorithm Minimizing Relative Output Error

In our previous work [3], the ANN was originally trained by the
BP algorithm [15]. The BP algorithm propagates output errors back to
previous layers and adjusts weights in each layer accordingly. Results
with minimal output errors can be achieved in this way. We found
the average prediction error for short-distance (within one meter)
obstacle is around 48 cm, which was not acceptable. Considering
this environment prediction problem, we thought a greater prediction
error for distant obstacles could be tolerated because it would not
be dangerous in this situation. Any navigation deviation resulting
from this error can be compensated for later. On the other hand, the
allowable prediction error for nearby obstacles is more important
and should be kept smaller because inappropriate navigation can
cause a collision in this situation. For this reason, we figured out the
conventional BP algorithm, which minimizes the prediction errors
for both distant and nearby obstacles may not be the best training
scheme. To meet the problem characteristics as described above,
minimizing the relative output error [(output error)/(desired output)]
is more suitable. Therefore, we developed a training algorithm that
uses relative output errors as feedback to update the weights. The
following is the derivation of the training algorithm that minimizes
relative output errors. This algorithm is termed REBP, which is an
abbreviation of “relative error backpropagation.”

Suppose the ANN hasN -layers (including input and output layers).
DenoteAn; j as the output of thejth neuron of thenth layer, then

An; j = f(netn; j) (1)

where f( ) is the activation function andnetn; j is a summation
function. We adopt the activation function as

f(x) =
1

1 + e�x
(2)
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Fig. 2. Environment predictor for the mobile robot.

and the summation function is

netn; j =

i

Wn; ijAn�1; i � �n; j (3)

whereWn; ij is the weight between theith neuron of the(n� 1)th
layer and thejth neuron of thenth layer;�n; j is the bias for thejth
neuron of thenth layer.

Define error functionE as

E
�
= 1

2

j

[(TN; j �AN; j)=TN; j ]
2 (4)

whereAN; j andTN; j are the actual and desired outputs of thejth
neuron of the output layer. We can achieve the minimal relative error
by minimizing E. To minimize E we adopt the gradient-descent
method to adjust weights. The weights are updated according to the
following formulas:

4Wn; ij = ��n; jAn�1; i (5)

4�n; j =���n; j (6)

where� is the learning rate and�n; j is for hidden layers

�n; j =

k

�n+1; kWn; jk Hn; j(1�Hn; j) (7)

(Hn; j is thejth neuron output of thenth layer); for the output (N th)
layer

�N; j =
(TN; j � Yj)Yj(1� Yj)

T 2N; j

(8)

(Yj is the jth neuron output of the output layer).

Fig. 3. Environment for generating the training data.

C. Training the ANN Predictor

The ANN predictor is trained off line. The sensor data for training
are generated by an ultrasonic sensor model. The sensor model and
related environmental considerations for generating training data are
summarized as follows.

1) The ultrasonic sensor has a cone-shaped beam angle of 22.5�

and an obstacle can be detected within this angle at any distance
between 40–500 cm. The sensing range is determined according
to the navigation requirement.

2) Movable obstacles are assumed to have rough surfaces so that
specular reflection will not occur, i.e., moving obstacles can
always be detected.

3) Static obstacles have two types. One is like walls, docking
stations, etc. They are assumed to be of smooth plane surface.
When the ultrasonic wave’s incident angle is beyond 23�,
specular reflection will occur and the sensor cannot detect this
type of obstacle. The other type of static obstacle is zero-
velocity movable obstacles.
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Fig. 4. Error decay curve during training process.

Fig. 5. Explanation of excessive prediction error.

4) The robot is cylindrical and has a diameter of 60 cm, while
the moving obstacles are also cylindrical1 but have a diameter
of 40 cm.

5) The maximum speeds of robot and obstacles are 200 cm/s.
6) The robot is assumed to take sensor data every 500 ms. The

measurement time of sensors is assumed so short that can be
neglected.

With the above considerations, the training data are generated
randomly according to the following procedure.

Step 1.) The robot is placed at a random location in a 25 m�
25 m-square room; a 7.5 m� 7.5 m object occupies
one corner (Fig. 3). This environment contains convex
and concave corners—typical environmental features for
indoor robots.

Step 2.) In this step, two alternatives are used by turns. For
odd turns, a moving obstacle randomly positioned (more

1The obstacle shape is not important, and the ultrasonic sensor cannot
distinguish the shapes. What we are concerned with in the prediction is the
nearest point of an obstacle. However, we need an obstacle model to generate
the training data. Cylindrical shape is simple and good for this purpose.

Fig. 6. Picture of the experimental mobile robot.

obstacles are not needed, as explained later) within the
range of the robot’s sensors. This is for the robot to learn
the motions of movable obstacles. For even turns, there is
no moving obstacles, so the sensor detects a plane wall.
This is for learning the relative motion of a static object.
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TABLE I
COMPARISON OF REBP AND CONVENTIONAL BP METHOD

Step 3.) The velocities of the robot and obstacle are set at random
within their speed limits.

Step 4.) Calculate sensor data for five sample instants. Taking the
same number of samples for each situation allows the
trained ANN to make roughly equally good predictions
in all situations.

Step 5.) Repeat Steps 1) through 4) two hundred times to cover
the problem space.

After several trials, we determined to adopt a two-hidden-layer
network as the sensor predictor. The first hidden layer had 30
processing elements; the second hidden layer had 20. The whole
training data for the ANN consisted of 22 000 sets of sensor readings.
Initial weights were randomly set between 1 and�1. During the
training, every set of training data was put into the ANN and then the
weights were adjusted accordingly. All the training data were used
cyclically until the output error of the ANN converged. Since the
initial weights affect the results because of the local-error-minimum
problems, several sets of initial weights had to be tried. It took about
14 h CPU time on a SUN SPARC 2 workstation to train the ANN
to convergence. Fig. 4 shows the error decay curve of the training
process. In the figure, the relative error (RE) is defined as

RE=

M

jda � dpj

da
=M (9)

whereda is the actual distance,dp is the predicted distance, andM
is the number of sample data in the training set.

III. SIMULATION OF THE ANN PREDICTOR

After the training phase, the ANN predictor was tested under
various environment conditions. The test data were generated by
using the same procedure as that of generating the training data.
Table I summarized the simulation results of environment prediction.
We compared the prediction error computed by using the REBP ANN
predictor, using the conventional BP ANN predictor, using a simple
linear predictor, and using the current sensor data to predict the next
one. The linear predictor is formulated by the following equation:

ŝi(t+ 1) = si(t) + [si(t)� si(t� 1)] (10)

where ŝi(t + 1) is the prediction of sensori at time t + 1 and the
value is limited to the effective sensor range. Using the current sensor
data means using the present data as the prediction for the next-
time instant measurements. In Table I, the environment conditions
are distinguished by the robot speed (Vr) and the obstacle speed
(Vo). If there is no moving obstacle then no obstacle speed is listed.
Using the linear predictor can obtain better predictions than using the
current sensor data. However, the linear predictor does not consider
the correlation between sensors, so the prediction performance is
limited. Let us focus on the conventional BP ANN and the REBP
ANN predictors. Both improved the predictions much more than the
linear predictor did. Define error reduction (ER) as

ER=
jEp � Ecj

Ep

(11)
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TABLE II
COMPARISON OF REBP AND CONVENTIONAL BP METHOD AT DIFFERENT DISTANCES

TABLE III
COMPARISON OF CASES WITH DIFFERENT NUMBER OF OBSTACLES

whereEp is the prediction error using an ANN predictor andEc is the
error using the current data. In the general environment (Vr: 20–200
cm/s; Vo: 20–200 cm/s), the error reduction is 77.1% on using the
REBP ANN and 37.8% on using conventional BP ANN. Also the
error reductions of both ANN predictors are better in environments
that change faster (see the last two columns of the fourth, sixth, and
eighth rows in Table I). Finally, it can be seen that the REBP ANN
predictor performs better than the conventional BP ANN predictor in
every environment condition in which we tested.

Table II shows comparison of errors at different prediction dis-
tances. It was obtained by classifying the test data according to the
distance range to be predicted. It can be seen that the short-distance
predictions made by the REBP ANN are much better than those made
by the conventional BP ANN. Although the REBP algorithm does not
improve much in the long-distance predictions, the relative error is
already small and acceptable. According to the error functions used,
the prediction error using BP ANN and the relative error using the
REBP ANN should be similar at each distance. However, from the
test results shown in Table II, one can find that the errors are larger
than expected when the predicted distance is smaller than 200 cm.
The reason for this phenomenon is that the ultrasonic wave beam is
narrow over short distances. This can easily result in erroneous sensor
predictions: obstacles are mispredicted by neighboring sensors. As
shown in Fig. 5, sensor 1 should detect a short-distance obstacle at
next sample instant, but it predicts no obstacle and has a maximum-
sensor-range prediction. Therefore, the sensor prediction error is
large. In this particular situation, the obstacle is predicted instead by

the neighboring predictor, i.e., sensor predictor 2. Sensor predictor 2
also has a large prediction error because it should predict no obstacle.
These errors, which are apt to occur over short distances, result in
larger (relative) prediction errors over near-distance ranges. Although
the (relative) prediction errors for both the sensors are large, the error
of obstacle prediction is not that large because the actual obstacle
position is just beside the predicted one. This type of erroneous
prediction does not affect the navigation much.

From the above simulation results, we conclude that both ANN
predictors improve the predictions. However, the ANN predictor
trained by the REBP algorithm is better than the conventional BP
ANN in this particular application. Therefore, minimizing the relative
output error of the ANN is more suitable.

During the training of the ANN predictor, we considered cases
with only one moving obstacle. Therefore, the relating sensory data
at different sample instants are relatively simple. If there were more
obstacles within the sensing range of an ANN sensor predictor,
the relating sensory data would be more complex and tend toward
ambiguity. We now consider the prediction results with the data
collected in the environment where more than one moving obstacle
exists. In addition to the ANN predictor trained with one moving
obstacle, we trained ANN predictors with two and three obstacles,
respectively. We proceeded to generate three sets of test data, with
one, two, or three obstacles in the environment. Table III is a
comparison of test results obtained by using each of these three ANN
predictors on each of the data sets in turn. It can be seen that the ANN
trained with one moving obstacle performs better than the other two
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Fig. 7. An experimental result of dynamic navigation with one moving obstacle approaching the robot head on. (The obstacle started to move from
sample instant zero at the speed of 27 cm/s.)

Fig. 8. An experimental result showing a collision occurs if without the predictor. (The obstacle started to move from sample instant zero at the
speed of 27 cm/s.)

on all sets of test data. The reason for this phenomenon can be that too
many moving obstacles create excessive ambiguity for the ANN to
learn effectively. Ambiguity here means the difficulty in identifying
which two sensory data at different sample instants are caused by
the same obstacle. Thus, training data from cases in which there are
more moving obstacles will only deteriorate learning. Therefore, we
concentrated on only one moving obstacle when training the ANN
predictor. Table III also indicates that no matter with which training
situation, prediction will be worse when more obstacles are cluttered
together (i.e., multiple obstacles are within the prediction range of a
single sensor). This is unavoidable when using relatively inaccurate
sensors. However, this does not necessarily mean the prediction will
be worse when there are more obstacles around the robot. If obstacles

are not in the same predictor range, the prediction will not be affected.
If several obstacles move together as a group, they can be regarded as
one obstacle and do not affect the prediction either. Problems occur
when two or more obstacles are in the beam opening angle of the
same sensor. In this case, inaccurate predictions may occur because
only the nearest obstacle can be detected by the ultrasonic sensor.

IV. EXPERIMENTAL RESULTS

Navigation experiments have been carried out to show that a mobile
robot using the predictor indeed navigates better than that without
the predictor. They also demonstrate mobile robot navigation using
the predictor in a dynamic environment. Fig. 6 is a picture of the
experimental mobile robot developed in our laboratory. It has two
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Fig. 9. Navigation experiment of avoiding a slow obstacle. (The obstacle started to move from sample instant zero at the speed of 27 cm/s.)

Fig. 10. Navigation experiment of avoiding a faster obstacle. (The obstacle started to move from sample instant zero at the speed of 40 cm/s.)

driving wheels and two casters for balance. Its maximum speed
is 40 cm/s. A ring of 16 ultrasonic sensors is installed alternating
at heights of 30–60 cm with equal angle spans. The effective
range of each sensor is 43–300 cm. A cycle of all 16 ultrasonic
sensor measurements takes 150 ms. The sample time for navigation
command is 560 ms. Because the angle span is larger than that
used in the previous simulation, the ANN predictor for a single
sensor was modified to take the input data from five neighboring
sensors. It should be noted that navigation algorithms utilizing range
data can benefit from the predictor if a proper design is applied.
Here we employed the algorithm proposed in [4], which directly
uses the predicted information and goal position to generate motion
commands. In the experiment, we tested with people as the moving
obstacles.

Figs. 7 and 8 are the experimental results with and without the
environment predictor, respectively. In each figure, there are two parts
shown: the trajectory window (left), and the wheel-velocity window
(right). In the trajectory windows, we recorded the trajectories by
putting a circle at each sample command time. Every tenth instant, the
circle is depicted in black. The small circles represent the trajectories

of moving obstacles; the big circles represent the robot. In Fig. 7
the obstacle was predicted to endanger the robot at the third sample
instant, so it turned right to avoid the obstacle and then safely
moved toward the goal. On the contrary, in Fig. 8 the robot began
to turn right at the fourth sample instant. Without the predictor, it
not only turned right too late but also turned too little. Therefore, it
could not avoid the approaching moving obstacle. To guarantee the
robot’s safety without the predictor, it has to consider all possible
movement that obstacles may have because the robot does not know
the motions of obstacles. Therefore, the robot must use a navigation
algorithm with a large safe margin, which usually results in unsuitable
avoidance.

Figs. 9–11 show the predictor provides useful information to the
robot for avoiding obstacles with different speeds. In these three
experiments, an obstacle coming from left would cross the robot
path. Although the robot at first all predicted an obstacle at the front
left and turned right, it generated a suitable motion according to each
situation. When the obstacle was slow, the robot passed it in front of it
(Fig. 9). When the obstacle was a little bit faster, the robot predicted
the obstacle earlier and slowed down its speed. Therefore, the robot
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Fig. 11. Navigation experiment of avoiding a very fast obstacle. (The obstacle started to move from sample instant zero at the speed of 60 cm/s.)

Fig. 12. Navigation experiment with static and moving obstacles. (Obstacle ob1 started to move from sample instant 30 at the speed of 25 cm/s; Obstacle
ob2 started to move from sample instant 45 at the speed of 35 cm/s.)

was not able to pass the obstacle in front of it. As shown in Fig. 10,
at the 14th sample instant, the robot predicted the obstacle would be
on its front right, so it turned left and passed over behind the obstacle.
When the obstacle moved even faster, as shown in Fig. 11, the robot
only first slowed down a little and went to the goal along an almost
straight path. These experimental results show that the robot can be
more adaptable to obstacle speed when using the predictor.

Fig. 12 shows the robot can deal with static obstacles as well as
moving obstacles using the ANN predictor. In the experiment, the
robot at first moved forward right because of the static obstacle (a
person) in front of it. After the robot passed the person, it turned left to
avoid other obstacles (they were a rectangle carton, two round chairs,
and a stopped rectangle mobile robot). At the 35th sample instant,
the robot predicted the moving obstacleob1 (a person). However,
because there was another static obstacle on the right, the robot could
only decrease its speed and slightly turn right. Note that if the robot
did not use the predictor and thus applied a large safe margin, it
could not move toward the goal. On the contrary, it would move
backward to avoid the obstacle, which will not be acceptable. At the
50th sample instant, the robot predicted another moving obstacleob2

(another person). In this case, the robot could not pass beforeob2.
Therefore, it slowed down and turned left. Until at the 56th sample
instant, it predicted thatob2 would not block the path to the goal,
so it began to turn right. Because it was already near the goal, it
moved slowly toward the goal. If without the predictor, the robot
will employ a large safe margin, then it would turn away from the
goal when metob2. The mobile robot is very difficult to accomplish
its task in this case.

V. DISCUSSIONS

To mimic humans’ behavior and simplify the predictor design,
we assumed that the robot has a limit of the maximum direction-
change rate of 12.5�/s. From the general navigation tests, as shown in
Fig. 12, it can be seen that this assumption holds for almost any three
consecutive positions, even though the complete recorded path is very
curvy. To consider the mobile robot may have sharper maneuvering,
we may use the wheel velocities as extra inputs to the ANN predictor.
In this case, the nonlinear part of the robot motion can also be learned
by the ANN, and the sensor data from only two time instants are
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still sufficient to predict next-time sensor data. According to our test
results, using this kind of ANN structure has advantage over using no-
wheel-velocity one when the robot takes sharp turns often. However,
if the robot does not take sharp turns, the additional learning space
will not benefit the predictions, but on the contrary, it deteriorates
them because the ANN has to adapt its weights to many different
situations. We have used the ANN with the wheel-velocity input to
learn the case as shown in Section II, where the robot motion was
not very curvy. It made the prediction error decrease by only 0.87
cm. Therefore, we adopted the present ANN structure to simplify the
calculation and reduce the burden of the on-board computer.

There is one more point that can be realized to improve the predic-
tion. When training the ANN predictor, because of the symmetrical
sensor arrangement we used data from all sensors to train one ANN
and this ANN was used as the predictor for each sensor. However,
our experimental mobile robot is equipped with two independent drive
wheels, and its motion is not omnidirectional. Therefore, the sensors
are not completely symmetrical in terms of motion and the workspace
for each sensor is different. In this situation, training only one ANN
with data from all sensors has a larger learning space than training
an ANN for each sensor with separately local data. In practice,
a larger learning space will slightly affect the mapping accuracy.
Therefore, separately training each ANN predictor will be better. We
have made a simulation to verify this design. The 24 sensors were
divided into seven groups according to the motion symmetry. There
was an ANN trained for each group of sensors. The prediction error
indeed decreased, but by only 0.53 cm on average.

VI. CONCLUDING REMARKS

The obstacle motion information is of essential importance for
mobile robots in a dynamic environment. However, most of the
existing research on the dynamic navigation did not consider the
capacity of the present sensor system. We develop a real-time envi-
ronment predictor, which provides dynamic environment information
in acceptable detail. The prediction information consists of next-
time measurements of ultrasonic rangefinders, which is equivalent
to knowing the relative future positions of obstacles. The predictor
takes advantage of an ANN structure to fuse multiple ultrasonic
sensor data. For navigation application, a greater prediction error for
distant obstacles could be tolerated; the allowable prediction error
for nearby obstacles is more important and should be kept smaller.
Therefore, minimizing relative prediction error is more suitable
than minimizing prediction error itself. We developed a learning
algorithm termed relative-error-backpropagation (REBP) algorithm,
which is useful for problems in which minimizing relative errors
is more meaningful. Simulation results show that, for short-distance
prediction, the prediction error in using the REBP algorithm is only
about 25% of that in using the conventional BP algorithm. Navigation
experiments demonstrate that the predictor is indeed useful for
dynamic navigation. However, because the predictor only provides
motion information implicitly, the robot cannot have a long-term
navigation strategy. The future work is to expand this method to
involve more delicate sensors, such as CCD cameras so that it can
be applied in multirobot navigation in complex environments.
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