
U N T E S T A B L E F A U L T S

Identifying Untestable
Faults in Sequential Circuits

UNTESTABU FAULTS in a circuit
are faults that no input patterns can
detect. They cause difficulty in test
generation, especially in generat-
ing tests for sequential circuits. To
improve test generation perfor-
mance, we want to identify these
untestable faults before rather than
during the test generation process.

We classify untestable faults into
two types: combinationally redun-
dant and sequentially untestable.
Redundant circuit lines cause com-
binationally redundant faults, and
we usually identify such faults with-
in one time frame using a test gen-
eration process.

Sequentially untestable faults,
however, can be further classified
into sequentially redundant and ir-
redundant-but-untestable faults.
These sequentially redundant
faults do not affect the original cir-
cuit’s function. That is, when we
apply an input sequence, the fault-
free and faulty circuits have equiv-
alent output responses. Irredun-
dant-but-untestable faults are usu-
ally caused by the inability to ini-
tialize flipflops in fault-free or faulty

_circuits, which hinders the test
generator’s search for a test se-

&

14

I HSING-CHUNG LIANG

CHUNG LEN LEE

National Chiao Tung

University

JWU E. CHEN

Chung-Hua Polytechnic

Institute

This article proposes an efficient

0740-7475/95/$04.00 Q 1995 IEEE

quence. During test generation,
identifying sequentially untestable
faults usually needs many time
frames, and sometimes may not
succeed within the limited time
available. The search for such
faults consumes time and reduces
the efficiency of the test generation
process. Several researchers have
developed techniques for identify-
ing these faults; see the Identifying
faults box for more information.

We propose a method that
quickly identifies untestable faults
for the single observation time strat-
egy. Without extracting a combi-
national model from the sequential
circuit or using a test generator, we
identify untestable faults by calcu-
lating the controllability and sym-
bolically simulating a circuit to
obtain the defined characteristics.
According to the controllability of
each circuit line and the charac-
teristics of the simulated fault-free
and faulty circuits, we classify cir-
cuit lines into two types of uncon-
trollable lines. Then we identify
invalid states and four types of de-
fined, untestable faults. We incor-
porated this untestable-fault
identification method into a’se-

IEEE DESIGN C TEST OF COMPUTERS

I

Identifying faults

Researchers have proposed several
methods to identify combinationally re-
dundant faults,’-5 some based on ana-
lyzing the structure’ or the circuit’s
controllability and observability.* The
method of Abramovici, Miller, and Roy
relied on test-covering relations among
faults. Other methods used the process-
es of test generation and fault simula-
tion repeatedly4 or in one pass5 to find
redundant faults. A sequential-circuit
test generator can use these methods to
identify combinationally redundant
faults in sequential circuits.

For sequentially untestable faults,
Chengbadopted an approach defining
a feedback-free circuit model in which
he cut several feedback lines from the
original circuit to obtain a combina-
tional model. He found so-called feed-
back-free sequential redundancies
from the combinational model using a
test generator. Results depended on the
selected feedback lines.

Moondanos and Abraham’ used For-
mal verification techniques to identify re-
dundant faults, taking advantage of the
fact that faulty circuits with redundant
faults and the fault-free circuit have equiv-
alent state tables. This method is compli-
cated, especialb for large circuits, since
it requires building state transition tables
for the good circuit, and (for each fault
modeled) the faulty circuits. Agrawal and
Chakradhafl used a combinational test
generator to target certain faults in an it-
erative array model of finite length de-
rived from a sequential circuit.

Recently, lyer and Abramovici9 pro-
posed a method based on the simple
concept that a fault requiring an illegal
combination of values as a necessary
condition for its detection is untestable.
They also expanded sequential circuits
into a finite number of time frames and,
from this combinational iterative-array
model, used implications to find faults
whose detection requires conflicts on

certain lines in the circuit. Pomeranz
and Reddy’O distinguished the testing
strategies with no reset states to single
and multiple observation time strate-
gies. Single observation time strategy
finds an input sequence to synchronize
both the fault-free and faulty circuits to
have different output responses at a
specific time. On the other hand, multi-
ple observation time strategy’O also
finds an input sequence, uses multiple
observations of the circuit response,
and detects a fault if the fault-free and
faulty responses differ at some time unit.
So, multiple observation time strategy
may detect some faults identified
untestable by single observation time
strategy, especially when the fault-free
or faulty circuits have no synchronizing
input sequences. The methodlo still re-
quired a test generator and showed re-
sults only for small benchmark circuits
and for faults that a single observation
time test generator failed to find.

w~ I

quential-circuit test generator based on ,
the backward-justification” algorithm. ~

Experimental results show that our I

able faults than other methods6 8 9 ’ I l 3 i Figure 1. Circuit where line a cannot
method quickly identifies more untest-

~

and, as a result, greatly enhances the 1 have definite value I
test generator’s efficiencv. ~

Uncontrollable lines
For a sequential circuit with un-

known initial states, under single ob-
servation time strategy, there may exist
some circuit lines that cannot have def-
inite values 0 or 1 no matter what input
sequences we apply to the primary in-
puts. These are uncontrollable lines, for
which there are two cases:

Case 1-The circuit line is combi-
nationally redundant. For exam-
ple, in Figure 1, line a cannot have
the definite value 1 since it is com-

binationally redundant at 0.

Case 2-The unknown initial flip-
flop states always determine the
value of the circuit line. Figure 2
shows an example where line b
cannot have the definite value 1 if
the flip-flop’s initial state is un-
known.

We can identify case-1 lines in one
time frame because they are combina-
tionally redundant. But for case-2 lines,
we may need more than one time

~ Figure 2. Circuit where line b cannot
’ have definite value 1; Q and D are the

output and input signals for a D Hip-flop.

frame, During test generation, espe-
cially during justification of a circuit
line to some definite value, the test gen-
erator usually wastes time justifying the
uncontrollable values on case-2 lines.
Therefore, it is desirable to obtain in-
formation on these uncontrollable
lines before test generation. In addi-
tion, as we will show later, these un-
controllable lines help identify invalid
states and untestable faults.

FALL 1995 15

U N T E S T A B L E F A U L T S

G

U0

U1

U

U

(a) (b) (c)

Figure 3. Finding circuit line characteristics: initial assignment (a), propagating characteristics in the first time frame {b), and after
all circuit lines reach their final, stable characteristics (c).

G G U1 U1

G U0 U1 U

U1 U1 U1 U1

U1 U U1 U

Figure 4. A two-input AND gate (a) and
its characteristic propagation table (6).

Controllabilities and characteris-
tics. Controllabilities CYl (z] and CYO(i)
of circuit line i are measures of this line
that we can control to be 1 or 0 from in-
puts. We calculate controllabilities for a
sequential circuit using the following
procedure.

First, assign 0.5 to the CYl and CYQ of
all the primary inputs and all the output
lines of flipflops. Second, calculate the
controllability of each gate from a low-
er to higher level using

CYl(i) = r I C Y l (k)
kcl,

Crn(z] = 1 .o - CYI (I]

where I , is the set of its input lines, and
if the gate is an AND gate. For an OR
gate, use

ksl,

Cy1 (z] = 1 .O - CM(z]

Third, given that i, and om are the in-
put and output lines of flipflop m, if both

then stop calculating. (E is a preset
small value, say 0.01). If not, propagate
the controllability of the input line for
each flip-flop to its output line and cal-
culate the controllability of the next
frame.

Four symbols represent the circuit
line states and identify the uncontrol-
lable lines of a circuit. Under the single
observation time strategy, for a se-
quential circuit with unknown initial
states, characteristic CH(z] of a circuit
line i describes our ability to justify the

line to a definite value during test gen-
eration. CH(I] can be one of the fol-
lowing four values:

U if we cannot justify either values
1 and 0 on line i; that is, line i is al-
ways in an unknown state
U1 if we cannot justify the value 1
on line i
U0 if we cannot justify the value 0
on line i
G if we can justify both values 1 and
0 on line i

We use Figure 3’s example circuit to
demonstrate the process of finding cir-
cuit line characteristics. In Figure 3a, we
initially assign all the primary inputs G
since they can have the definite values 1
and 0. At the same time, we assign all the
flip-flop outputs U to reflect their initial-
ly unknown states. To find the charac-
teristic of each circuit line, we propagate
(or simulate) these initial characteristics
through the circuit one time frame after
another until the circuit reaches astable
condition, as explained later.

To propagate characteristics, we de-
fine characteristic propagation tables
for each type of gate. As an example,
Figure 4 shows the table for a two-input
AND gate. Figure 3b shows the result of
propagating characteristics through the
circuit for the first time frame. In the fig-

16 IEEE DESION C TEST OF COMPUTERS

ure, input characteristic U1 of flipflop
FF2 is different from its output charac-
teristic U, which means that the propa-
gation is not yet stable. The U1 of FF2
needs to be further propagated in the
next time frame until all the circuit lines
reach their final stable values. The ex-
ample circuit of Figure 3 needed three
time frames of propagation to achieve
a stable condition. Figure 3c shows the
final results

Uncontrollable lines of fault-free
and faulty circuits. From the defini-
tion of characteristic CH and the ob-
tained controllability and charac-
teristics, we identify uncontrollable cir-
cuit lines. According to controllability,
lines with CYl = 0 cannot have definite
value 1, and lines with CY0 = 0 cannot
have definite value 0 because these val-
ues cannot be controlled from primary
inputs. They are equivalent to lines with
characteristics U1 and UO.

That is, lines for which Cff(i2 equals
U cannot have the definite values 1 or 0
no matter what input sequence we a p
ply to the circuit. Flipflop values, rather
than primary input, control these lines.
Since the associated flip-flops are in un-
known states, these lines cannot have
definite values, either. Thus, we define
two types of uncontrollable lines

1-uncontrollable lines have CY1
equal 0 or CH(Q equal U1 or U
0-uncontrollable lines have CY0
equal 0 or CH(Q equal U0 or U

For example, in Figure 3c, line m is a 1-
uncontrollable line, and line k is a @un-
controllable line.

The characteristics and uncontrol-
lable lines just described are for fault-
free circuits. We can apply a similar
process to identify the characteristics
and uncontrollable lines in a faulty cir-
cuit with injection of a target fault. For
example, considering the stuck-at-1
fault on line m in Figure 3, we can ap-
ply a similar process to derive the final

FALL 1 995

I c

I I I1

U
I , -[Cl I FF2 D

IL Stuck-at-1 fault I
Figure 5. Final characteristics of Figure
3’s faulty circuit with the stuckat- I fault
on line rn.

characteristics of each line in the faulty
circuit, as shown in Figure 5.

Identifying invalid states and
untestable faults

We use the characteristics and un-
controllable lines in fault-free and faulty
circuits to identify invalid states and
untestable faults. Invalid states are states
that cannot be reached no matter what
input sequences we apply. We classify
untestable faults into four types: unex-
citable, unpropagatable, undrivable,
and unsensitizable.

Initialization and invalid states.
We cannot initialize asequential circuit
if all the flipflops cannot reach definite
values for any applied input sequence.
We derive the following rules to identify
whether or not we can initialize a circuit
and also to identify the invalid states in it:

Rule 1-We cannot initialize a se-
quential circuit if all the flipflop in-
put lines are both 1-uncontrollable
and @uncontrollable lines.
Rule 2-For a sequential circuit, if
the input line of one flip-flop is 1-
uncontrollable (or O-uncontrol-
lable), the states of this flip-flop
that are composed of 1 (or 0) are
invalid states.

U
+e Stuck-at-1 fault 1: +e Stuck-at-0 fault

Figure 6. Total faults of the example circuit
after co//apshg the equivalent faults.

In Figure 3c, we know from rule 2 that
states 10 and 11 are invalid states be-
cause line r is l-uncontrollable. States
01 and 11 are invalid states because line
s is 1-uncontrollable.

We will use the circuit of Figure 3 as
an example to describe how to use in-
formation on uncontrollable lines and
characteristics to identify the four types
of untestable faults. We collapse the
equivalent faultsI4 to obtain 30 faults for
this circuit (Figure 6).

Unexcitable faults. A fault is unex-
citable if the associated circuit line can-
not be set to the fault-free value
opposite the fault. From the definitions
for 1- and 0-uncontrollable lines, we
have the following rule:

Rule 3-Stuck-at-1 faults on 0-un-
controllable lines and stuck-at-0
faults on 1-uncontrollable lines are
unexcitable faults (UEFs).

Of the 30 faults in Figure 6, we iden-
tified ten UEFs using rule 3 and show
them in Figure 7 on the next page.

Unpropagatable faults. A fault is
unpropagatable if there exist no input
sequences to propagate the fault. We
can also use information on uncon-

17

U N T E S T A B L E F A U L T S

U1 U1
1

U1 U1 I U0 .

U

* Stuck-at-0 fault

Figure 7. Unexcitable faults of the
example circuit.

trollable lines in the fault-free circuit to
identify this type of untestable fault. Let
G be a logic gate with noncontrolling
input value a, where a equals 1 for an
AND gate and 0 for an OR gate. If we
can propagate a fault effect through
gate G, then we should be able to justi-
fy the input lines of G, except those
through which the fault effect will prop
agate, to have the value a. So if we can-
not justify any one of these lines to have
the value a, we cannot propagate the
fault effect through gate G. From this
we derive two rules to identify UPFs.

Rule 4-Let line 1 be an input line
of gate G that has the noncontrol-
ling input value a. If line I is a-un-
controllable, then the stuck-at
faults on all the input lines except
line 1 of G are UPFs.
Rule 5-Let line 1, be the line
where the fault is and let P be the
set of all paths that we can propa-
gate the fault effect through from
line I,. If each path in P has at least
one gate that blocks propagation
of the fault effect through that
path, the faults on line I, are UPFs.

Rule 4 identifies type-1 unpropagat-
able faults (UPFls), and Rule 5 identi-
fies type-2 unpropagatable faults

h U0

U

Figure 8. Unpropagatable faults of the
example circuit: UPF 1 s and UPF2s
(shaded arm).

(UPF2s). For the example circuit, after
deleting the UEFs from the total faults
list, we obtain four UPFls and four
UPF2s (Figure 8).

Undrivable faults. In addition to the
fault-free circuit characteristics, we also
use faulty-circuit characteristics to iden-
tify another type of untestable faults. We
use the stuck-at-1 fault on line m of the
example circuit to explain this idea.
With this fault present, we apply a prG
cedure (similar to that for the fault-free
circuit) to derive the faulty-circuit char-
acteristics and obtain final results.
As shown in Figure 5, to detect this

fault, we must propagate the fault effect
to line n and have faulty value 1 on this
line. This is because line n is on the only
path to the primary output for this fault
effect. However, CH(n) equals U, which
means we cannot set the faulty value of
line n to 1. Hence, we know that this
fault cannot be detected and is an
untestable fault. We call this an undriv-
able fault (UDF) since the fault effect it-
self blocked propagation of this fault.
Rule 6 identifies this type of fault.

rn Rule 6-After injecting a fault and
propagating characteristics, we
identify the injected fault as an
UDF if the fault effect cannot go
through all the paths from the

faulty site to primary outputs.

A UDF differs from both a UEF and a
UPF. In Figure 3c, CH(m) equals U1,
which means that the fault-free value of
line m may be set to the value 0 to ex-
cite the stuck-at-1 fault on line m.
Hence, this fault is not a UEF. In Figure
3c, at the same time, CH(k) equals UO,
which means that the fault-free value 1
on line k may be justified while propa-
gating the fault. So this fault is not a UPF
either. However, it is an untestable fault
(as we have seen in Figure 5) where line
n cannot have the faulty value 1 be-
cause CH(n) equals U. The fault effect
cannot be propagated to line n or any
primary output. We categorize these
types of faults as UDFs.

Unsensitizable faults. Finally, there
is another type of untestable faults that
we cannot propagate to any primary
outputs because there are no paths b e
tween these faults and those outputs.
These are unsensitizable faults (USFs).
For example, Figure 9 shows the USFs
found in the example circuit after we
have deleted the other three types of
untestable faults. We now easily find un-
sensitizable faults by checking whether
there are paths for the remaining faults
to reach primary outputs.

Convergence of symbolic simula-
tion. We model a sequential circuit as
a semi-infinite iterative array of combi-
national circuits C, in Figure 10. PI,, SI,
and PO, represent primary inputs,
pseudoprimary inputs, and primary out-
puts for the circuit in the ith time frame.
Assume we start propagating charac-
teristics from CO by assigning all char-
acteristics CH(Plo) to G, all CH(.So) to U,
and all CH(PfJ, where k > 0, to G. After
propagating characteristics through the
iterative array, for each line i, in C,,
CH(i,) will belong to one of four cases.

CH(i,, = C. In this case, the charac-
teristic Gs coming from the primary in-

18 WEE DEMON & TEST OF COMPUTERS

puts of this and/or previous time frames
have propagated to line i,. Once this oc-
curs, all characteristics for line i in sub-
sequent time frames will be G. That is,
when a line has a characteristic G in the
kth time frame, its characteristic will not
change to U, U1, or U0 at any mth time
frame (m > k) . This means the charac-
teristic of this line is G.

CHCJ = Ul . In this case, the value 1
cannot be set, but we may set the value
0 on line i, by controlling some primary
inputs of this and/or previous time
frames. From the first case, line i, will al-
ways be controllable to 0 for C, (m > k) .
This means that CH(i,) cannot become
U or UO. So CH(i,,,) can only be G or U1.
For the former, CH(i) converges to G,
and for the latter, CH(i] is stable at U 1.

CH(iJ = UO. This is similar to case 2.
CH(i) will finally stabilize at U0 or G.

CH@J = U. From the first three cases,
CH(i,) form < k , cannot be G, U1, or UO;
that is, CH(i,) is U. For m > k , C H (Q
may become G, U1, UO, or U where the
first three cases will be stable at G, U1,
or UO, and the last one is stable at U.

CH(r] will finally converge to one of
these four characteristics.

Experimental results
We incorporated these methods into

a sequentialcircuit test generation sys-
tem and identified untestable faults be-
fore test generation to save time. Since
we removed most untestable faults b e
forehand, the test generation process
spent much less time generating test
patterns for the remaining faults.

We ran our experimental results on
a Sparc classic workstation using a se-
quentialcircuit test generator based on
the line justification strategy." Our se
quentialcircuit fault simulator used sin-
gle-event equi~a1ence.l~

For the example circuit, we used our
rules to identify 10 UEFs, four UPFls ,
four UPF~S, two USFs, and one UDF. The

est generator identified another
intestable fault and found two patterns
Dr all eight detectable faults in 0.017 sec-
mds. This was three times faster than
vhen we did not identify untestable
aults beforehand. To show the effi-
:iency of this system, we also used it on
equential benchmark circ~its.'~J'

Table 1 shows that the system spent
ittle time calculating controllability,
ropagating characteristics to obtain
he final stable values, and identifying
he initializability and invalid states of
:ircuits. The table lists the number of
lipflops which cannot be controlled to
or 0. In this column, for circuits s208,

420, s499, s838, and s5378, the identifi-
:ation scheme identified flip-flops us-
ng the controllability calculation
trategy. If a flip-flop had characteristic
J, we counted it twice since it cannot
)e controlled to either 1 or 0.

The table also lists the number of
rames needed to reach a stable con-
lition. We find that the number of
rames was rather small and indepen-

1-2- Stuck-at-0 fault 1
Figure 9. Unsensitizable faults of the
example circuit.

PI, PI,

Figure 10. Sequential circuit modeled as
a semi-infinite iterative array of
combinational circuits.

able 1. Results of identifying flip-flops with unknown initial states.

No. of flip-flops No. CPU
Circuit Total U frames time (s)

s208
420
s499
s510
s641
s713
s838
s953
s967
s99 1
sl269
sl512
s5378
s9234
sl3207
sl5850
~38584

8
16
22
6
19
19
32
29
29
19
37
57

1 79
228
669
597

1,452

3
1 1
44
12
4
4
27
45
45

17
46
37
344
91 7
654
101

3a

10
18
43

1
5
5
34
3
3
1
3
4
27
14
26
42
39

0.02
0.05
0.35
0.00
0.02
0.02
0.1 2
0.03
0.03
0.03
0.02
0.07
0.68
5.53

103.65
50.1 3
8.77

FALL 1995 19

U N T E S T A B L E F A U L T S

Table 2. Results of untestable fault identification.

No. of faults Ratio*
Circuit Total UEF UPF 1 UPF2 USF UDF Untestable (%) CPU time (5)

s208
s420
s499
s510
s64 1
s713
s838
s953
s967
s991
sl269
sl512
s5378
s9234
sl3207
s 1 5850
~38584

21 5
430
583
564
467
58 1
857

1,079
1,066
91 0

1,343
1,357
4,603
6,927
9,967

1 1,753
36,611

29
99
583
564
27
33
255
61 8
626
593
269
527
371

5,147
6,923
6,126
4,199

18
69
0
0
19
20
177
130
132
190
48
276
239
20
51 0
720
73 1

Ratio of the number of untestable krults to the total krults

1 1
32
0
0
13
14
96
239
228
125
89
487
326
202

1,120
4,818
91 7

0
0
0
0
0
0
0
0
0
0
0
0
0

1,540
186
0
0

13
25
0
0
0
4
49
0
0
0
2
0

1 1
0
16
2
22

71
225
583
564
59
71
577
987
986
908
408

1,290
947

6,909
8,755

1 1,666
5,869

33.02
52.33
100.00
100.00
12.63
12.22
67.33
91.47
92.50
99.78
30.38
95.06
20.57
99.74
87.84
99.26
16.03

0.31
1.75
0.00
0.02
1.21
2.08
9.18
1.05
0.97
0.1 7
58.95
4.41

731.30
509.55

1,156.73
2,604.34

21 1,207.28

Table 3. Comparison of other results with this work.

Chenq (Sun 4/2601 lyer and Abramovici (Smrc 21 Our method (SPQK classic)
No. untestable No. untestable No. untestable

Circuit faults CPU time (s) faults CPU time (s) faults CPU time (s)

s208
s420
s713
s5378
s9234
sl3207
sl5850
~38584
'No data available

*
t

*

301
460
26 1
391

*

t

t

*

1,130
3,686
2,793
5,926

*

57
206
32
21 0
277
295
276

1,332

1.1
6.0
0.3
25.6
126.1
130.4
311.0
235.7

71 0.3
225 1.8
71 2.1
947 732.0

6,909 515.1
8,755 1,260.4

1 1,666 2,654.5
5,869 21 1,207.3

dent of the number of flipflops. The last
column shows that the time consumed
for each circuit was very little, even for
larger circuits.

Table 2 gives the number of each
type of untestable fault, as identified us-
ing our previously described rules.

In Table 2, the identified untestable
faults occupy a large percentage (51.5%)

of the total processed faults. CPU time to
identify the untestable faults was very
short for most circuits. The average time
to process one fault was only 0.38 sec-
onds. For larger circuits, the time was still
minor compared to that used by the test
generator, as we will show later.

Most research610 focuses on finding r e
dundant or expected redundant faults.

It is therefore difficult to compare our r e
sults to those, since our method finds
untestable faults that include redundant
and irredundant-but-untestable faults.
Nevertheless, we still compare some of
our results to those of Cheng,G and lyer
and AbramoviciQ in Table 3. Since not all
our targeted circuits are the same, we list
the circuits in common, the number of

20 IEEE DESIGN & TEST OF COMPUTERS

Table 4. Results of test generation with untestable fault identification.

No. of faults
Identified as untesiuble Fault

Our Test Total coverage Efficiency
Circuit No. patterns Total Detected method generator untestable Aborted (%) (%I

s208
s420
s499
s510
s64 1
s713
s838
s953
s967
s99 1
sl269
sl512
s5378
s9234
sl3207
sl5850
~38584

1 79
151
0
0

338
365
21 6
20
22
1
58
16

1,255
5

31 1
12

5,561

21 5
430
583
564
467
58 1
857

1,079
1,066
910

1,343
1,357
4,603
6,927
9,967

1 1,753
36,611

137
179
0
0

404
476
254
89
76
2

240
66

3,090
18
654
85

8,893

71
225
583
564
59
71
577
987
986
908
408

1,290
947

6,909
8,755

1 1,666
5,869

7 78
26 25 1
0 583
0 564
3 62
34 105
26 603
3 990
4 990
0 908

684 1,092
1 1,291

148 1,095
0 6,909

160 8,915
2 11,668

1,693 7,562

0 63.72
0 41.63
0 0.00
0 0.00
1 86.51
0 81.93
0 29.64
0 8.25
0 7.13
0 0.22

1 1 17.87
0 4.86

418 67.13
0 0.26

398 6.56
0 0.72

20,156 24.29

1 00.00
100.00
100.00
100.00
99.79
100.00
100.00
100.00
100.00
100.00
99.1 8
100.00
90.92
100.00
96.01
100.00
44.95

identified untestable faults, and CPU
time. For these circuits, Table 3 shows
that our method used a moderate
amount of time to identify many more
untestable faults.

Table 4 shows results for test genera-
tion and fault simulation. During test
generation, we used information on un-
controllable lines and invalid states ob-
tained in the previous processing to
improve test generator performance. In
the table, efficiency = (detected + total
untestable faults) / total faults x 100
Those faults that the test generator failed
to identify as untestable and did not gen-
erate test patterns for are aborted faults.

Table 5 shows the CPU time required
for test generation and fault simulation.
Total time spent for untestable fault iden-
tification is the sum of the times in Tables
1 and 2. For circuits in which most faults
are untestable, we see that this process
occupied the major part of the total test

Table 5. CPU time in seconds for untestable fault identification and test generation.

Test Fault
Circuit Identification generation simulation

s208
s420
s499
s510
s64 1
s713
s838
s953
s967
s991
sl269
sl512
s5378
s9234
31 3207
s 1 5850
~38584

0.33
1.80
0.35
0.02
1.23
2.10
9.30
1.08
1 .oo
0.20
58.97
4.48

732
51 5

1,260
2,654

21 1,216

0.67
2.27
0.40
0.07
13.26
46.75
10.83
1.30
1.30
0.78

7.31
5,858

201,076
522

28,415
4,045

430,121

0.95
1.65
0.00
0.00
2.12
2.62
12.92
1.23
1.92
0.05
10.13
1.32

204
2

748
22

27,806

FALL 1995 21

U N T E S T A B L E F A U L T S

G

Figure I 1. Example circuit for which a 9-
value set of characteristics fails to identifr
a I -uncontrollable line b.

generation time. For these circuits, iden-
tifying untestable faults prevented the
test generator from wasting time finding
test patterns for untestable faults.

For circuits with a few untestable
faults, identification occupied a small
part of the total test generation time, but
the process identified almost all the
untestable faults within each circuit.
This means that our untestable-fault
identification process identified most of
the untestable faults in a very short time.

The test generator achieved 100% or
over 90% efficiency for most circuits ex-
cept ~38584. We know of no other re-
sults for test generation on ~38584,
however. Comparing the numbers of
generated patterns and detected faults
with other we find that our
method achieved higher efficiencies
and fault coverages with fewer patterns
in moderately less time.

In defining circuit line characteris-
tics, we did not consider the inversion
of characteristic U. Thus, some combi-
nationally redundant lines may be in-
correctly identified. For example, in
Figure 1, if the signal to the input line
comes from a flip-flop, line a will have
characteristic U. However, the correct
characteristic should be U1, since the
line is redundant at 0.

To eliminate this error, we used a 9-
value - sgof characteristics. They are U,
U, U1, U1, UO, 6, SI, SO, and G, where
S1 and SO mean that a line sticks to 1 and
0. This set of characteristics is more rig-
orous than the 4-value set, yet it yields

Design and test in Taiwan

With the largest PC production ca-
paciiyinheworklandthewutid’sfwrth
largestsalesdumeinICs(dingto
Dataquest), Taiwan is becoming a cen-
ter of intense design and test M a p -
ment. This is evident at an annual
VLSi/CAD workshop held in Taiwan,
where researchers presented over 70
papen last year. Papen shawcased ma-
ior research results from approximately
10 universities and colleges in Taiwan,
as well as government and private re-
search institutes. Approx~mately 20 pa-
pers were on testing.

Heavy design work goes on in Tai-
wanese industry, with over 50 design
houses and IO fabrication factories ca-
pable of designing 16-Mbyte DRAMS
and 486-compatible CPUs. However,
most testing research activities occur at
institutions such as Chiao Tung, Tsing
Hwa, Taiwan, Cheng Kung, Central,
and Chung Cheng Universities, and
Chung Hua Polytechnic College. Alto-
gether, approximately 1 O professors

results that may not identify some un-
controllable lines. For example, in the
circuit of Figure 1 1, we cannot justify the
value 1 on line b. That is, line b is a I-un-
controllable line but the !+value set of
characteristics cannot identify it. Hence,
the identification scheme will detect
fewer untestable faults.

In our experiment, we used a 9-value
set of characteristics to identify
untestable faults for benchmark cir-
cuits. Only two circuits, s991 and
~13207, had fewer untestable faults (by
5%) using the Svalue set. For s991, the
9-value set identified 863 untestable
faults compared to 908 identified with
the 4-value set. For ~13207, those num-
bers were 8,491 versus 8,775. Actually,
our test generator has verified that, for
these two circuits, all the untestable
faults identified by the 4-value set but

and over 50 graduate students en-
gage in design and test research. Their
research areas cover almost every as-
pect of testing, including high-level,
gate-level, and delay testing; fault sim-
ulation; design and synthesis for testa-
bility; BIST; lDW, PIA, and memory
testing; design verification; defect
analysis; yield prediction; and test
management. Every year, researchers
in Taiwan publish more than 40 papers
in these areas.

in addition to the activities in acad-
emic circles, some development work
also occurs in government-sponsored
organizations and private companies.
For example, a software house,
Syntest, located in Hsin Chu Scientific
industry Park, dedicates itself to de-
veloping software tools and consulta-
tion services in design and test.

With an increasing number of pro-
fessionals concerned with design and
test, Taiwan is an excellent choice to
host the 1996 Asian Test Symposium.

not the $value set were real untestable
faults. This means that the 4-value set
gives correct results for most practical
circuits. Even if an error does occur, it
occupies only a very small percentage
of the total untestable faults.

1NFORmATlON ON characteristics
helps identify uncontrollable lines in s e
quential circuits and is thus useful in a p
plications such as circuit optimization
to eliminate uncontrollable lines. We
can also use such information to select
flip-flops for partial scan and increase
circuit testability. Such an approach is
attractive since computing characteris-
tics is simple and takes much less time
than other methods, such as structure
analysis, testability analysis, and test-
generation-based methods. We are cur-
rently pursuing such research. @

22 IEEE DESIGN & TEST OF COMPUTERS

Acknowledgments
We thankS.M. Reddy, V.D. Agrawal, and

the reviewers for their helpful comments.

References
1. M. Harihara and P.R. Menon, “Identifi-

cation of Undetectable Faults in Com-
binational Circuits,” Proc. Int’l Conf
Computer Design, IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1989, pp.
290-293.

2. I.M. Ratiu, A. Sangiovanni-Vincentelli,
and D.O. Pederson, “VICTOR: A Fast
VLSI Testability Analysis Program,” Roc.
Int’l Test Conf , IEEE CS Press, 1982, pp.
397-401.

3. M. Abramovici, D.T. Miller, and R.K.
Roy, “Dynamic Redundancy Identifica-
tion in Automatic Test Generation,”
Roc. Int’l Conf Computer-Aided Design,
IEEE CS Press, 1989, pp. 466469.

4. S. Kajihara, H. Shiba, and K. Kinoshita,
“Removal of Redundancy in Logic Cir-
cuits Under Classification of Unde-
tectable Faults,” Proc. Int’l Symp.
Fault-Tolerant Computing, IEEE CS Press,

5. M. Abramovici and M.A. lyer, “OnePass
Redundancy Identification and Re-
moval,” Roc. Int’l Test Conf, CS Press,

6. K.-T. Cheng, “On Removing Redundan-
cy in Sequential Circuits,” Proc. 28th
ACWIEEE Design Automation Conf ,
IEEE CS Press, 1991, pp. 164-169.

7. J. Moondanos and J.A. Abraham, “Se
quential Redundancy Identification Us-
ing Verification Techniques,” Roc. Int’l
Test Conf, IEEE CS Press, 1992, pp. 197-
205.

8. V.D. Agrawal and S.T. Chakradhar,
“Combinational ATPG Theorems for
Identifying Untestable Faults in Se-
quential Circuits,” Roc. European Test
Conf , IEEE CS Press, 1993, pp. 249253.

9. M.A. lyer and M. Abrarnovici, “Sequen-
tially Untestable Faults Identified With-
out Search (“Simple Implications Beat
Exhaustive Search!”),” Roc. Int’l Test
Conf , IEEE CS Press, 1994, pp. 259266.

10. I. Pomeranz and S.M. Reddy, “The Mul-

1992, pp. 263-270.

1992, pp. 807-815.

tiple Observation Time Test Strategy,”
IEEE Trans. Computers, Vol. 41, No. 5,
May 1992, pp. 627-637.

11. W.-T. Cheng, “The BACK Algorithm for
Sequential Test Generation,“ Proc. Int’l
Conf Computer Design, IEEE CS Press,
1988, pp. 66-69.

12. W.-T. Cheng and S. Davidson, “Sequen-
tial Circuit Test Generator (STG) Bench-
mark Results,” Roc. Int’lSymp. Circuits
and Systems, IEEE, Piscataway, N.J.,
1989, pp. 19391941.

13. T. Niermann and J.H. Patel, “HITEC: A
Test Generation Package for Sequential
Circuits,” Proc. European Design Au-
tomation Conf , EDAC Association,
Washington, D.C., 1991, pp. 214-218.

14. M. Abramovici, M.A. Breuer, and A.D.
Friedman, Digital Systems Testing and
Testable Design, Computer Science
Press, W.H. Freeman and Company,
New York, 1990.

15. C.P. Wu, C.L. Lee, and W.Z. Shen, “ S E E
IM-,4 Fast Synchronous Sequential Cir-
cuit Fault Simulator with Single Event
Equivalence,” Proc. European Design
Automation Conf, CS Press, 1992, pp.
446449.

16. F. Brglez, D. Btyan, and K. Kozminski,
“Combinational Profiles of Sequential
Benchmark Circuits,” Proc. Int’l Symp.
Circuits and Systems, IEEE, 1989, pp.
19291 934.

17. F. Brglez, ACM/SIGDA Benchmarks Elec-
tronic NewsletterDAC93 Edition, Assoc.
for Computing Machinery, New York,
Vol. 23, No. 2, June 1993, pp. 3954.

ber of the IEEE and the IEEE Circuits and
Systems Society.

Chung Len Lee is a professor in the Depart-
ment of Electronics Engineering, National
Chiao Tung University, where his teaching
and research interests focus on integrated cir-
cuits and testing. He received his BS from the
National Taiwan University and MS and PhD
degrees from Carnegie Mellon University.
Presently, heserves on the editorial board of
the Journal of Electronic Testing: Theory and
Applications, and is a member of the IEEE
Asian Test Technology Committee. He is a s e
nior member of the IEEE Circuits and Systems
Society and the IEEE Computer Society.

Jwu E. Chen is an associate professor in
the Department of Electrical Engineering,
Chung-Hua Polytechnic Institute, Taiwan.
His research interests include multiple-val-
ued logic, VLSl testing, synthesis for testa-
bility, reliable computing, yield analysis,
and test management. Chen received BS,
MS, and PhD degrees in electronics engi-
neering from the National Chiao Tung Uni-
versity, Taiwan. He is a member of the IEEE,
the Computer Society, AAAS, and NYAS.

Direct questions concerning this article
to Chung Len Lee, Department of Electron-
ics Engineering, National Chiao Tung Uni-

I

Hsing-Chung Liang is a PhD student at Na-
tional Chiao Tung University, engaging in
research on VLSI testing and design for
testability. Liang holds BS and MS degrees
in electronics engineering from National
Chiao Tung University. He is astudent mem-

versity, 1001 Ta-Hsueh Rd., Hsin-Chu 300,
Taiwan, Republic of China; cllee@cc.
nctu.edu.tw.

FALL 1995 23

