
U N T E S T A B L E  F A U L T S  

Identifying Untestable 
Faults in Sequential Circuits 

UNTESTABU FAULTS in a circuit 
are faults that no input patterns can 
detect. They cause difficulty in test 
generation, especially in generat- 
ing tests for sequential circuits. To 
improve test generation perfor- 
mance, we want to identify these 
untestable faults before rather than 
during the test generation process. 

We classify untestable faults into 
two types: combinationally redun- 
dant and sequentially untestable. 
Redundant circuit lines cause com- 
binationally redundant faults, and 
we usually identify such faults with- 
in one time frame using a test gen- 
eration process. 

Sequentially untestable faults, 
however, can be further classified 
into sequentially redundant and ir- 
redundant-but-untestable faults. 
These sequentially redundant 
faults do not affect the original cir- 
cuit’s function. That is, when we 
apply an input sequence, the fault- 
free and faulty circuits have equiv- 
alent output responses. Irredun- 
dant-but-untestable faults are usu- 
ally caused by the inability to ini- 
tialize flipflops in fault-free or faulty 

_circuits, which hinders the test 
generator’s search for a test se- 
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quence. During test generation, 
identifying sequentially untestable 
faults usually needs many time 
frames, and sometimes may not 
succeed within the limited time 
available. The search for such 
faults consumes time and reduces 
the efficiency of the test generation 
process. Several researchers have 
developed techniques for identify- 
ing these faults; see the Identifying 
faults box for more information. 

We propose a method that 
quickly identifies untestable faults 
for the single observation time strat- 
egy. Without extracting a combi- 
national model from the sequential 
circuit or using a test generator, we 
identify untestable faults by calcu- 
lating the controllability and sym- 
bolically simulating a circuit to 
obtain the defined characteristics. 
According to the controllability of 
each circuit line and the charac- 
teristics of the simulated fault-free 
and faulty circuits, we classify cir- 
cuit lines into two types of uncon- 
trollable lines. Then we identify 
invalid states and four types of de- 
fined, untestable faults. We incor- 
porated this untestable-fault 
identification method into a’se- 
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Identifying faults 

Researchers have proposed several 
methods to identify combinationally re- 
dundant faults,’-5 some based on ana- 
lyzing the structure’ or the circuit’s 
controllability and observability.* The 
method of Abramovici, Miller, and Roy 
relied on test-covering relations among 
faults. Other methods used the process- 
es of test generation and fault simula- 
tion repeatedly4 or in one pass5 to find 
redundant faults. A sequential-circuit 
test generator can use these methods to 
identify combinationally redundant 
faults in sequential circuits. 

For sequentially untestable faults, 
Chengbadopted an approach defining 
a feedback-free circuit model in which 
he cut several feedback lines from the 
original circuit to obtain a combina- 
tional model. He found so-called feed- 
back-free sequential redundancies 
from the combinational model using a 
test generator. Results depended on the 
selected feedback lines. 

Moondanos and Abraham’ used For- 
mal verification techniques to identify re- 
dundant faults, taking advantage of the 
fact that faulty circuits with redundant 
faults and the fault-free circuit have equiv- 
alent state tables. This method is compli- 
cated, especialb for large circuits, since 
it requires building state transition tables 
for the good circuit, and (for each fault 
modeled) the faulty circuits. Agrawal and 
Chakradhafl used a combinational test 
generator to target certain faults in an it- 
erative array model of finite length de- 
rived from a sequential circuit. 

Recently, lyer and Abramovici9 pro- 
posed a method based on the simple 
concept that a fault requiring an illegal 
combination of values as a necessary 
condition for its detection is  untestable. 
They also expanded sequential circuits 
into a finite number of time frames and, 
from this combinational iterative-array 
model, used implications to find faults 
whose detection requires conflicts on 

certain lines in the circuit. Pomeranz 
and Reddy’O distinguished the testing 
strategies with no reset states to single 
and multiple observation time strate- 
gies. Single observation time strategy 
finds an input sequence to synchronize 
both the fault-free and faulty circuits to 
have different output responses at a 
specific time. On the other hand, multi- 
ple observation time strategy’O also 
finds an input sequence, uses multiple 
observations of the circuit response, 
and detects a fault if the fault-free and 
faulty responses differ at some time unit. 
So, multiple observation time strategy 
may detect some faults identified 
untestable by single observation time 
strategy, especially when the fault-free 
or faulty circuits have no synchronizing 
input sequences. The methodlo still re- 
quired a test generator and showed re- 
sults only for small benchmark circuits 
and for faults that a single observation 
time test generator failed to find. 

w~ I 

quential-circuit test generator based on , 
the backward-justification” algorithm. ~ 

Experimental results show that our I 

able faults than other methods6 8 9  ’ I  l 3  i Figure 1. Circuit where line a cannot 
method quickly identifies more untest- 

~ 

and, as a result, greatly enhances the 1 have definite value I 
test generator’s efficiencv. ~ 

Uncontrollable lines 
For a sequential circuit with un- 

known initial states, under single ob- 
servation time strategy, there may exist 
some circuit lines that cannot have def- 
inite values 0 or 1 no matter what input 
sequences we apply to the primary in- 
puts. These are uncontrollable lines, for 
which there are two cases: 

Case 1-The circuit line is combi- 
nationally redundant. For exam- 
ple, in Figure 1, line a cannot have 
the definite value 1 since it is com- 

binationally redundant at 0. 

Case 2-The unknown initial flip- 
flop states always determine the 
value of the circuit line. Figure 2 
shows an example where line b 
cannot have the definite value 1 if 
the flip-flop’s initial state is un- 
known. 

We can identify case-1 lines in one 
time frame because they are combina- 
tionally redundant. But for case-2 lines, 
we may need more than one time 

~ Figure 2. Circuit where line b cannot 
’ have definite value 1;  Q and D are the 

output and input signals for a D Hip-flop. 

frame, During test generation, espe- 
cially during justification of a circuit 
line to some definite value, the test gen- 
erator usually wastes time justifying the 
uncontrollable values on case-2 lines. 
Therefore, it is desirable to obtain in- 
formation on these uncontrollable 
lines before test generation. In addi- 
tion, as we will show later, these un- 
controllable lines help identify invalid 
states and untestable faults. 
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Figure 3. Finding circuit line characteristics: initial assignment (a), propagating characteristics in the first time frame {b), and after 
all circuit lines reach their final, stable characteristics (c). 
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Figure 4. A two-input AND gate (a) and 
its characteristic propagation table (6). 

Controllabilities and characteris- 
tics. Controllabilities CYl (z] and CYO(i) 
of circuit line i are measures of this line 
that we can control to be 1 or 0 from in- 
puts. We calculate controllabilities for a 
sequential circuit using the following 
procedure. 

First, assign 0.5 to the CYl and CYQ of 
all the primary inputs and all the output 
lines of flipflops. Second, calculate the 
controllability of each gate from a low- 
er to higher level using 

CYl(i) = r I C Y l ( k )  
kcl, 

Crn(z] = 1 .o - CYI ( I ]  

where I ,  is the set of its input lines, and 
if the gate is an AND gate. For an OR 
gate, use 

ksl,  

Cy1 (z] = 1 .O - CM(z] 

Third, given that i, and om are the in- 
put and output lines of flipflop m, if both 

then stop calculating. (E is a preset 
small value, say 0.01). If not, propagate 
the controllability of the input line for 
each flip-flop to its output line and cal- 
culate the controllability of the next 
frame. 

Four symbols represent the circuit 
line states and identify the uncontrol- 
lable lines of a circuit. Under the single 
observation time strategy, for a se- 
quential circuit with unknown initial 
states, characteristic CH(z] of a circuit 
line i describes our ability to justify the 

line to a definite value during test gen- 
eration. CH(I] can be one of the fol- 
lowing four values: 

U if we cannot justify either values 
1 and 0 on line i; that is, line i is al- 
ways in an unknown state 
U1 if we cannot justify the value 1 
on line i 
U0 if we cannot justify the value 0 
on line i 
G if we can justify both values 1 and 
0 on line i 

We use Figure 3’s example circuit to 
demonstrate the process of finding cir- 
cuit line characteristics. In Figure 3a, we 
initially assign all the primary inputs G 
since they can have the definite values 1 
and 0. At the same time, we assign all the 
flip-flop outputs U to reflect their initial- 
ly unknown states. To find the charac- 
teristic of each circuit line, we propagate 
(or simulate) these initial characteristics 
through the circuit one time frame after 
another until the circuit reaches astable 
condition, as explained later. 

To propagate characteristics, we de- 
fine characteristic propagation tables 
for each type of gate. As an example, 
Figure 4 shows the table for a two-input 
AND gate. Figure 3b shows the result of 
propagating characteristics through the 
circuit for the first time frame. In the fig- 
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ure, input characteristic U1 of flipflop 
FF2 is different from its output charac- 
teristic U, which means that the propa- 
gation is not yet stable. The U1 of FF2 
needs to be further propagated in the 
next time frame until all the circuit lines 
reach their final stable values. The ex- 
ample circuit of Figure 3 needed three 
time frames of propagation to achieve 
a stable condition. Figure 3c shows the 
final results 

Uncontrollable lines of fault-free 
and faulty circuits. From the defini- 
tion of characteristic CH and the ob- 
tained controllability and charac- 
teristics, we identify uncontrollable cir- 
cuit lines. According to controllability, 
lines with CYl = 0 cannot have definite 
value 1, and lines with CY0 = 0 cannot 
have definite value 0 because these val- 
ues cannot be controlled from primary 
inputs. They are equivalent to lines with 
characteristics U1 and UO. 

That is, lines for which Cff(i2 equals 
U cannot have the definite values 1 or 0 
no matter what input sequence we a p  
ply to the circuit. Flipflop values, rather 
than primary input, control these lines. 
Since the associated flip-flops are in un- 
known states, these lines cannot have 
definite values, either. Thus, we define 
two types of uncontrollable lines 

1-uncontrollable lines have CY1 
equal 0 or CH(Q equal U1 or U 
0-uncontrollable lines have CY0 
equal 0 or CH(Q equal U0 or U 

For example, in Figure 3c, line m is a 1- 
uncontrollable line, and line k is a @un- 
controllable line. 

The characteristics and uncontrol- 
lable lines just described are for fault- 
free circuits. We can apply a similar 
process to identify the characteristics 
and uncontrollable lines in a faulty cir- 
cuit with injection of a target fault. For 
example, considering the stuck-at-1 
fault on line m in Figure 3, we can ap- 
ply a similar process to derive the final 
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Figure 5. Final characteristics of Figure 
3’s faulty circuit with the stuckat- I fault 
on line rn. 

characteristics of each line in the faulty 
circuit, as shown in Figure 5. 

Identifying invalid states and 
untestable faults 

We use the characteristics and un- 
controllable lines in fault-free and faulty 
circuits to identify invalid states and 
untestable faults. Invalid states are states 
that cannot be reached no matter what 
input sequences we apply. We classify 
untestable faults into four types: unex- 
citable, unpropagatable, undrivable, 
and unsensitizable. 

Initialization and invalid states. 
We cannot initialize asequential circuit 
if all the flipflops cannot reach definite 
values for any applied input sequence. 
We derive the following rules to identify 
whether or not we can initialize a circuit 
and also to identify the invalid states in it: 

Rule 1-We cannot initialize a se- 
quential circuit if all the flipflop in- 
put lines are both 1-uncontrollable 
and @uncontrollable lines. 
Rule 2-For a sequential circuit, if 
the input line of one flip-flop is 1- 
uncontrollable (or O-uncontrol- 
lable), the states of this flip-flop 
that are composed of 1 (or 0) are 
invalid states. 

U 
+e Stuck-at-1 fault 1: +e Stuck-at-0 fault 

Figure 6. Total faults of the example circuit 
after co//apshg the equivalent faults. 

In Figure 3c, we know from rule 2 that 
states 10 and 11 are invalid states be- 
cause line r is l-uncontrollable. States 
01 and 11 are invalid states because line 
s is 1-uncontrollable. 

We will use the circuit of Figure 3 as 
an example to describe how to use in- 
formation on uncontrollable lines and 
characteristics to identify the four types 
of untestable faults. We collapse the 
equivalent faultsI4 to obtain 30 faults for 
this circuit (Figure 6). 

Unexcitable faults. A fault is unex- 
citable if the associated circuit line can- 
not be set to the fault-free value 
opposite the fault. From the definitions 
for 1- and 0-uncontrollable lines, we 
have the following rule: 

Rule 3-Stuck-at-1 faults on 0-un- 
controllable lines and stuck-at-0 
faults on 1-uncontrollable lines are 
unexcitable faults (UEFs). 

Of the 30 faults in Figure 6, we iden- 
tified ten UEFs using rule 3 and show 
them in Figure 7 on the next page. 

Unpropagatable faults. A fault is 
unpropagatable if there exist no input 
sequences to propagate the fault. We 
can also use information on uncon- 
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* Stuck-at-0 fault 

Figure 7. Unexcitable faults of the 
example circuit. 

trollable lines in the fault-free circuit to 
identify this type of untestable fault. Let 
G be a logic gate with noncontrolling 
input value a, where a equals 1 for an 
AND gate and 0 for an OR gate. If we 
can propagate a fault effect through 
gate G, then we should be able to justi- 
fy the input lines of G, except those 
through which the fault effect will prop 
agate, to have the value a. So if we can- 
not justify any one of these lines to have 
the value a, we cannot propagate the 
fault effect through gate G. From this 
we derive two rules to identify UPFs. 

Rule 4-Let line 1 be an input line 
of gate G that has the noncontrol- 
ling input value a. If line I is a-un- 
controllable, then the stuck-at 
faults on all the input lines except 
line 1 of G are UPFs. 
Rule 5-Let line 1, be the line 
where the fault is and let P be the 
set of all paths that we can propa- 
gate the fault effect through from 
line I,. If each path in P has at least 
one gate that blocks propagation 
of the fault effect through that 
path, the faults on line I, are UPFs. 

Rule 4 identifies type-1 unpropagat- 
able faults (UPFls), and Rule 5 identi- 
fies type-2 unpropagatable faults 

h U0 

U 

Figure 8. Unpropagatable faults of the 
example circuit: UPF 1 s and UPF2s 
(shaded arm). 

(UPF2s). For the example circuit, after 
deleting the UEFs from the total faults 
list, we obtain four UPFls and four 
UPF2s (Figure 8). 

Undrivable faults. In addition to the 
fault-free circuit characteristics, we also 
use faulty-circuit characteristics to iden- 
tify another type of untestable faults. We 
use the stuck-at-1 fault on line m of the 
example circuit to explain this idea. 
With this fault present, we apply a prG 
cedure (similar to that for the fault-free 
circuit) to derive the faulty-circuit char- 
acteristics and obtain final results. 
As shown in Figure 5, to detect this 

fault, we must propagate the fault effect 
to line n and have faulty value 1 on this 
line. This is because line n is on the only 
path to the primary output for this fault 
effect. However, CH(n) equals U, which 
means we cannot set the faulty value of 
line n to 1. Hence, we know that this 
fault cannot be detected and is an 
untestable fault. We call this an undriv- 
able fault (UDF) since the fault effect it- 
self blocked propagation of this fault. 
Rule 6 identifies this type of fault. 

rn Rule 6-After injecting a fault and 
propagating characteristics, we 
identify the injected fault as an 
UDF if the fault effect cannot go 
through all the paths from the 

faulty site to primary outputs. 

A UDF differs from both a UEF and a 
UPF. In Figure 3c, CH(m) equals U1, 
which means that the fault-free value of 
line m may be set to the value 0 to ex- 
cite the stuck-at-1 fault on line m. 
Hence, this fault is not a UEF. In Figure 
3c, at the same time, CH(k) equals UO, 
which means that the fault-free value 1 
on line k may be justified while propa- 
gating the fault. So this fault is not a UPF 
either. However, it is an untestable fault 
(as we have seen in Figure 5) where line 
n cannot have the faulty value 1 be- 
cause CH(n) equals U. The fault effect 
cannot be propagated to line n or any 
primary output. We categorize these 
types of faults as UDFs. 

Unsensitizable faults. Finally, there 
is another type of untestable faults that 
we cannot propagate to any primary 
outputs because there are no paths b e  
tween these faults and those outputs. 
These are unsensitizable faults (USFs). 
For example, Figure 9 shows the USFs 
found in the example circuit after we 
have deleted the other three types of 
untestable faults. We now easily find un- 
sensitizable faults by checking whether 
there are paths for the remaining faults 
to reach primary outputs. 

Convergence of symbolic simula- 
tion. We model a sequential circuit as 
a semi-infinite iterative array of combi- 
national circuits C, in Figure 10. PI,, SI, 
and PO, represent primary inputs, 
pseudoprimary inputs, and primary out- 
puts for the circuit in the ith time frame. 
Assume we start propagating charac- 
teristics from CO by assigning all char- 
acteristics CH(Plo) to G, all CH(.So) to U, 
and all CH(PfJ, where k > 0, to G. After 
propagating characteristics through the 
iterative array, for each line i, in C,, 
CH(i,) will belong to one of four cases. 

CH(i,, = C. In this case, the charac- 
teristic Gs coming from the primary in- 
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puts of this and/or previous time frames 
have propagated to line i,. Once this oc- 
curs, all characteristics for line i in sub- 
sequent time frames will be G. That is, 
when a line has a characteristic G in the 
kth time frame, its characteristic will not 
change to U, U1, or U0 at any mth time 
frame (m > k ) .  This means the charac- 
teristic of this line is G. 

CHCJ = Ul .  In this case, the value 1 
cannot be set, but we may set the value 
0 on line i, by controlling some primary 
inputs of this and/or previous time 
frames. From the first case, line i, will al- 
ways be controllable to 0 for C, (m > k ) .  
This means that CH(i,) cannot become 
U or UO. So CH(i,,,) can only be G or U1. 
For the former, CH(i) converges to G, 
and for the latter, CH(i] is stable at U 1. 

CH(iJ = UO. This is similar to case 2. 
CH(i) will finally stabilize at U0 or G. 

CH@J = U. From the first three cases, 
CH(i,) form < k ,  cannot be G, U1, or UO; 
that is, CH(i,) is U. For m > k ,  C H ( Q  
may become G, U1, UO, or U where the 
first three cases will be stable at G, U1, 
or UO, and the last one is stable at U. 

CH(r] will finally converge to one of 
these four characteristics. 

Experimental results 
We incorporated these methods into 

a sequentialcircuit test generation sys- 
tem and identified untestable faults be- 
fore test generation to save time. Since 
we removed most untestable faults b e  
forehand, the test generation process 
spent much less time generating test 
patterns for the remaining faults. 

We ran our experimental results on 
a Sparc classic workstation using a se- 
quentialcircuit test generator based on 
the line justification strategy." Our se  
quentialcircuit fault simulator used sin- 
gle-event equi~a1ence.l~ 

For the example circuit, we used our 
rules to identify 10 UEFs, four UPFls ,  
four UPF~S,  two USFs, and one UDF. The 

est generator identified another 
intestable fault and found two patterns 
Dr all eight detectable faults in 0.017 sec- 
mds. This was three times faster than 
vhen we did not identify untestable 
aults beforehand. To show the effi- 
:iency of this system, we also used it on 
equential benchmark circ~its.'~J' 

Table 1 shows that the system spent 
ittle time calculating controllability, 
ropagating characteristics to obtain 
he final stable values, and identifying 
he initializability and invalid states of 
:ircuits. The table lists the number of 
lipflops which cannot be controlled to 
or 0. In this column, for circuits s208, 

420, s499, s838, and s5378, the identifi- 
:ation scheme identified flip-flops us- 
ng the controllability calculation 
trategy. If a flip-flop had characteristic 
J,  we counted it twice since it cannot 
)e controlled to either 1 or 0. 

The table also lists the number of 
rames needed to reach a stable con- 
lition. We find that the number of 
rames was rather small and indepen- 

1-2- Stuck-at-0 fault 1 
Figure 9. Unsensitizable faults of the 
example circuit. 

PI, PI, 

Figure 10. Sequential circuit modeled as 
a semi-infinite iterative array of 
combinational circuits. 

able 1. Results of identifying flip-flops with unknown initial states. 

No. of flip-flops No. CPU 
Circuit Total U frames time (s) 

s208 
420 
s499 
s510 
s641 
s713 
s838 
s953 
s967 
s99 1 
sl269 
sl512 
s5378 
s9234 
sl3207 
sl5850 
~38584 

8 
16 
22 
6 
19 
19 
32 
29 
29 
19 
37 
57 

1 79 
228 
669 
597 

1,452 

3 
1 1  
44 
12 
4 
4 
27 
45 
45 

17 
46 
37 
344 
91 7 
654 
101 

3a 

10 
18 
43 

1 
5 
5 
34 
3 
3 
1 
3 
4 
27 
14 
26 
42 
39 

0.02 
0.05 
0.35 
0.00 
0.02 
0.02 
0.1 2 
0.03 
0.03 
0.03 
0.02 
0.07 
0.68 
5.53 

103.65 
50.1 3 
8.77 
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Table 2. Results of untestable fault identification. 

No. of faults Ratio* 
Circuit Total UEF UPF 1 UPF2 USF UDF Untestable (%) CPU time (5) 

s208 
s420 
s499 
s510 
s64 1 
s713 
s838 
s953 
s967 
s991 
sl269 
sl512 
s5378 
s9234 
sl3207 
s 1 5850 
~38584 

21 5 
430 
583 
564 
467 
58 1 
857 

1,079 
1,066 
91 0 

1,343 
1,357 
4,603 
6,927 
9,967 

1 1,753 
36,611 

29 
99 
583 
564 
27 
33 
255 
61 8 
626 
593 
269 
527 
371 

5,147 
6,923 
6,126 
4,199 

18 
69 
0 
0 
19 
20 
177 
130 
132 
190 
48 
276 
239 
20 
51 0 
720 
73 1 

Ratio of the number of untestable krults to the total krults 

1 1  
32 
0 
0 
13 
14 
96 
239 
228 
125 
89 
487 
326 
202 

1,120 
4,818 
91 7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1,540 
186 
0 
0 

13 
25 
0 
0 
0 
4 
49 
0 
0 
0 
2 
0 

1 1  
0 
16 
2 
22 

71 
225 
583 
564 
59 
71 
577 
987 
986 
908 
408 

1,290 
947 

6,909 
8,755 

1 1,666 
5,869 

33.02 
52.33 
100.00 
100.00 
12.63 
12.22 
67.33 
91.47 
92.50 
99.78 
30.38 
95.06 
20.57 
99.74 
87.84 
99.26 
16.03 

0.31 
1.75 
0.00 
0.02 
1.21 
2.08 
9.18 
1.05 
0.97 
0.1 7 
58.95 
4.41 

731.30 
509.55 

1,156.73 
2,604.34 

21 1,207.28 

Table 3. Comparison of other results with this work. 

Chenq (Sun 4/2601 lyer and Abramovici (Smrc 21 Our method (SPQK classic) 
No. untestable No. untestable No. untestable 

Circuit faults CPU time (s) faults CPU time (s) faults CPU time (s) 

s208 
s420 
s713 
s5378 
s9234 
sl3207 
sl5850 
~38584 
'No data available 

* 
t 

* 

301 
460 
26 1 
391 

* 

t 

t 

* 

1,130 
3,686 
2,793 
5,926 

* 

57 
206 
32 
21 0 
277 
295 
276 

1,332 

1.1 
6.0 
0.3 
25.6 
126.1 
130.4 
311.0 
235.7 

71 0.3 
225 1.8 
71 2.1 
947 732.0 

6,909 515.1 
8,755 1,260.4 

1 1,666 2,654.5 
5,869 21 1,207.3 

dent of the number of flipflops. The last 
column shows that the time consumed 
for each circuit was very little, even for 
larger circuits. 

Table 2 gives the number of each 
type of untestable fault, as identified us- 
ing our previously described rules. 

In Table 2, the identified untestable 
faults occupy a large percentage (51.5%) 

of the total processed faults. CPU time to 
identify the untestable faults was very 
short for most circuits. The average time 
to process one fault was only 0.38 sec- 
onds. For larger circuits, the time was still 
minor compared to that used by the test 
generator, as we will show later. 

Most research610 focuses on finding r e  
dundant or expected redundant faults. 

It is therefore difficult to compare our r e  
sults to those, since our method finds 
untestable faults that include redundant 
and irredundant-but-untestable faults. 
Nevertheless, we still compare some of 
our results to those of Cheng,G and lyer 
and AbramoviciQ in Table 3. Since not all 
our targeted circuits are the same, we list 
the circuits in common, the number of 
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Table 4. Results of test generation with untestable fault identification. 

No. of faults 
Identified as untesiuble Fault 

Our Test Total coverage Efficiency 
Circuit No. patterns Total Detected method generator untestable Aborted (%) (%I 

s208 
s420 
s499 
s510 
s64 1 
s713 
s838 
s953 
s967 
s99 1 
sl269 
sl512 
s5378 
s9234 
sl3207 
sl5850 
~38584 

1 79 
151 
0 
0 

338 
365 
21 6 
20 
22 
1 
58 
16 

1,255 
5 

31 1 
12 

5,561 

21 5 
430 
583 
564 
467 
58 1 
857 

1,079 
1,066 
910 

1,343 
1,357 
4,603 
6,927 
9,967 

1 1,753 
36,611 

137 
179 
0 
0 

404 
476 
254 
89 
76 
2 

240 
66 

3,090 
18 
654 
85 

8,893 

71 
225 
583 
564 
59 
71 
577 
987 
986 
908 
408 

1,290 
947 

6,909 
8,755 

1 1,666 
5,869 

7 78 
26 25 1 
0 583 
0 564 
3 62 
34 105 
26 603 
3 990 
4 990 
0 908 

684 1,092 
1 1,291 

148 1,095 
0 6,909 

160 8,915 
2 11,668 

1,693 7,562 

0 63.72 
0 41.63 
0 0.00 
0 0.00 
1 86.51 
0 81.93 
0 29.64 
0 8.25 
0 7.13 
0 0.22 

1 1  17.87 
0 4.86 

418 67.13 
0 0.26 

398 6.56 
0 0.72 

20,156 24.29 

1 00.00 
100.00 
100.00 
100.00 
99.79 
100.00 
100.00 
100.00 
100.00 
100.00 
99.1 8 
100.00 
90.92 
100.00 
96.01 
100.00 
44.95 

identified untestable faults, and CPU 
time. For these circuits, Table 3 shows 
that our method used a moderate 
amount of time to identify many more 
untestable faults. 

Table 4 shows results for test genera- 
tion and fault simulation. During test 
generation, we used information on un- 
controllable lines and invalid states ob- 
tained in the previous processing to 
improve test generator performance. In 
the table, efficiency = (detected + total 
untestable faults) / total faults x 100 
Those faults that the test generator failed 
to identify as untestable and did not gen- 
erate test patterns for are aborted faults. 

Table 5 shows the CPU time required 
for test generation and fault simulation. 
Total time spent for untestable fault iden- 
tification is the sum of the times in Tables 
1 and 2. For circuits in which most faults 
are untestable, we see that this process 
occupied the major part of the total test 

Table 5. CPU time in seconds for untestable fault identification and test generation. 

Test Fault 
Circuit Identification generation simulation 

s208 
s420 
s499 
s510 
s64 1 
s713 
s838 
s953 
s967 
s991 
sl269 
sl512 
s5378 
s9234 
31 3207 
s 1 5850 
~38584 

0.33 
1.80 
0.35 
0.02 
1.23 
2.10 
9.30 
1.08 
1 .oo 
0.20 
58.97 
4.48 

732 
51 5 

1,260 
2,654 

21 1,216 

0.67 
2.27 
0.40 
0.07 
13.26 
46.75 
10.83 
1.30 
1.30 
0.78 

7.31 
5,858 

201,076 
522 

28,415 
4,045 

430,121 

0.95 
1.65 
0.00 
0.00 
2.12 
2.62 
12.92 
1.23 
1.92 
0.05 
10.13 
1.32 

204 
2 

748 
22 

27,806 
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G 

Figure I 1. Example circuit for which a 9- 
value set of characteristics fails to identifr 
a I -uncontrollable line b. 

generation time. For these circuits, iden- 
tifying untestable faults prevented the 
test generator from wasting time finding 
test patterns for untestable faults. 

For circuits with a few untestable 
faults, identification occupied a small 
part of the total test generation time, but 
the process identified almost all the 
untestable faults within each circuit. 
This means that our untestable-fault 
identification process identified most of 
the untestable faults in a very short time. 

The test generator achieved 100% or 
over 90% efficiency for most circuits ex- 
cept ~38584. We know of no other re- 
sults for test generation on ~38584, 
however. Comparing the numbers of 
generated patterns and detected faults 
with other we find that our 
method achieved higher efficiencies 
and fault coverages with fewer patterns 
in moderately less time. 

In defining circuit line characteris- 
tics, we did not consider the inversion 
of characteristic U. Thus, some combi- 
nationally redundant lines may be in- 
correctly identified. For example, in 
Figure 1, if the signal to the input line 
comes from a flip-flop, line a will have 
characteristic U. However, the correct 
characteristic should be U1, since the 
line is redundant at 0. 

To eliminate this error, we used a 9- 
value - sgof characteristics. They are U, 
U, U1, U1, UO, 6, SI, SO, and G, where 
S1 and SO mean that a line sticks to 1 and 
0. This set of characteristics is more rig- 
orous than the 4-value set, yet it yields 

Design and test in Taiwan 

With the largest PC production ca- 
paciiyinheworklandthewutid’sfwrth 
largestsalesdumeinICs(dingto 
Dataquest), Taiwan is becoming a cen- 
ter of intense design and test M a p -  
ment. This is evident at an annual 
VLSi/CAD workshop held in Taiwan, 
where researchers presented over 70 
papen last year. Papen shawcased ma- 
ior research results from approximately 
10 universities and colleges in Taiwan, 
as well as government and private re- 
search institutes. Approx~mately 20 pa- 
pers were on testing. 

Heavy design work goes on in Tai- 
wanese industry, with over 50 design 
houses and IO fabrication factories ca- 
pable of designing 16-Mbyte DRAMS 
and 486-compatible CPUs. However, 
most testing research activities occur at 
institutions such as Chiao Tung, Tsing 
Hwa, Taiwan, Cheng Kung, Central, 
and Chung Cheng Universities, and 
Chung Hua Polytechnic College. Alto- 
gether, approximately 1 O professors 

results that may not identify some un- 
controllable lines. For example, in the 
circuit of Figure 1 1, we cannot justify the 
value 1 on line b. That is, line b is a I-un- 
controllable line but the !+value set of 
characteristics cannot identify it. Hence, 
the identification scheme will detect 
fewer untestable faults. 

In our experiment, we used a 9-value 
set of characteristics to identify 
untestable faults for benchmark cir- 
cuits. Only two circuits, s991 and 
~13207, had fewer untestable faults (by 
5%) using the Svalue set. For s991, the 
9-value set identified 863 untestable 
faults compared to 908 identified with 
the 4-value set. For ~13207, those num- 
bers were 8,491 versus 8,775. Actually, 
our test generator has verified that, for 
these two circuits, all the untestable 
faults identified by the 4-value set but 

and over 50 graduate students en- 
gage in design and test research. Their 
research areas cover almost every as- 
pect of testing, including high-level, 
gate-level, and delay testing; fault sim- 
ulation; design and synthesis for testa- 
bility; BIST; lDW, PIA, and memory 
testing; design verification; defect 
analysis; yield prediction; and test 
management. Every year, researchers 
in Taiwan publish more than 40 papers 
in these areas. 

in addition to the activities in acad- 
emic circles, some development work 
also occurs in government-sponsored 
organizations and private companies. 
For example, a software house, 
Syntest, located in Hsin Chu Scientific 
industry Park, dedicates itself to de- 
veloping software tools and consulta- 
tion services in design and test. 

With an increasing number of pro- 
fessionals concerned with design and 
test, Taiwan is an excellent choice to 
host the 1996 Asian Test Symposium. 

not the $value set were real untestable 
faults. This means that the 4-value set 
gives correct results for most practical 
circuits. Even if an error does occur, it 
occupies only a very small percentage 
of the total untestable faults. 

1NFORmATlON ON characteristics 
helps identify uncontrollable lines in s e  
quential circuits and is thus useful in a p  
plications such as circuit optimization 
to eliminate uncontrollable lines. We 
can also use such information to select 
flip-flops for partial scan and increase 
circuit testability. Such an approach is 
attractive since computing characteris- 
tics is simple and takes much less time 
than other methods, such as structure 
analysis, testability analysis, and test- 
generation-based methods. We are cur- 
rently pursuing such research. @ 
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