
AMUEM 2009 - International Workshop on Advanced Methods for Uncertainty Estimation in Measurement
Bucharest, Romania, 6-7 July 2009

The Mean Estimation of the Combined Quantities by the
Asymptotic Minimax Optimization

Wen-Hui Lo, Member, IEEE and Sin-Homg Chen, Senior Member, IEEE

National Chiao Tung University, Taiwan

hs3341.cm90g@nctu.edu.tw, schen@cc.nctu.edu.tw

variables of normal, triangular or rectangular distribution to
generate a linearly weighted sum as output, i.e.

In the basic formulation of the Fotowicz's algorithm, the
output of those weighted sums can be approximated by an
R*N distribution, which is the convolution of a rectangular
function and a normal distribution. The shape of R*N
distribution depends on UR known as the uncertainty ratio and
expressed by

Abstract-The mean value estimation for the output quantity
of com bined random variables is one of the major issues in
measurement. In this paper, a new quantile-based maximum
likelihood estimation (QMLE) method for mean value
estimation is proposed. It fuses the concept of both empirical
and symmetric quantile to incorporate the order statistics into
the QMLE. Unlike Sample mean derived basing only on the
maxim um likelihood criterion, the QMLE also considers
MMSE defined using the quasi symmetric quantiles (QSQ), i.e.,
the first- and last-order samples. Simulation results confirm
that the proposed QMLE mean estimator outperforms the
conventional Sam pIe mean estimator. This work also gives a
looking-up table for the refinement corresponding to the QSQ
adjustments. UR := ----;:::::=:::::::::IM=ax=[U=i(x=)]==1=-

~u~ (x) - Max[ui (X)]2
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Fig. 1: Zero mean of R*N distribution for different uncertainty ratio (UR)

where K; is a normalization constant. Fig.l displays the
R*N pdffor four different values of UR.
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II. PAPER REVIEW

Sample mean is the general usage for the mean value
estimation. Its use is convenient because of free pdf
assumption for any random variables. If we want to predict
the mean value of a combined quantity accurately, the only
way is to take Sample mean on heavy observations. The basic

where Ui (x) is the standard uncertainty of the i-th input
random variable which is of rectangular distribution, and
uc(x) is the combined standard uncertainty. An example of
the pdfof R*N distribution is given as

I. INTRODUCTION

In accordance with the Joint Committee for Guides in
Metrology (JCGM) Evaluation of measurement data [1], it
proposed the concept of quantity expression as a result of
propagation of probability distributions. Besides this
suggestion, it also considers a generic procedure to determine
an estimation for the values of various input quantities which
form a hybrid quantity. Up till now, it is convenient and
popular to apply the Law of Uncertainty of Propagation to
model the standard uncertainty for the combined quantities.
But it still lacks a proper formulation to describe the mean
value of combined quantities except Sample mean. We
would like to cure this weak point via formulating a new
mean estimator basing on Sample mean with goal of
improving its efficiency.

In our plan, we would like to take the estimator, designed
for normal distribution, to estimate the mean value of the
output of combined quantities with non-normal pdf
Uncertainty can be regarded as a quantization index to
measure the performance ofan estimator, hence we introduce
the "uncertainty ratio (UR)" as the basic unit to represent the
uncertainty. In the formulation of uncertainty for the output
of combined quantities, Fotowicz [2, 3] gave a brief
description for the case that there is at least one quantity
which is submitted to the rectangular distribution. This
occurs at a typical occasion of mixing several input random
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Here, the value x p is called the p-quantile of population (or

the output of combined quantities).

volume of requirement for one digit accuracy in
measurement is 106 observations for 95% coverage interval
[4]. Sometimes, there are not enough samples to support this
rule so that the middle- or small-size sampling plans are also
taken frequently. It is known that Sample mean is a uniformly
minimum variance unbiased estimator (UMVUE) as well as
the random variable of central limit theorem (CLT).
Matching to our ideas, we regard Sample mean of the
combined quantity as different random variables added
together. Bowen [5] has pointed out that CLT may be
explained as the sum of independent process whose
characteristic function is the product of the component
characteristic functions. If we can discard the unbiased
requirement, there are still some biased estimators that
outperform Sample mean. Stearls [6], and GIeser [7],
addressed a new approach for the given coefficients of
variation of Sample mean. Ashok et al. [8] further proposed a
realistic method to adjust the coefficients of variation of
Sample mean to improve its performance.

In this paper, a new method of mean value estimation,
referred to as the quantile-based maximum likelihood
estimator (QMLE), is proposed. In the single-quantile
application, Giorgi and Narduzzi [9] gave a quantile
estimation for the self-similar process. Different from the
single quantile, our topic focuses on the special style of
couple-quantiles, the symmetric quantiles. The classical
application of quantiles is the general usage of empirical
quantiles, Koenker and Bassett [1 0] extended the empirical
quantiles to the regression quantiles, which is especially
useful to predict the bounding information. Gilchrist [11]
collected many studies about the estimation, validation, and
statistical regression with quantile models. Recently,
Heathcote, et al. [12] addressed the quantile maximum
likelihood estimation of the response time distribution. But it
involved a time-consuming numerical computation for the
inverse of the quantile function, which is typically the
cumulative distribution function (cdfJ.

In the proposed QMLE, the quantiles are determined by
the maximum percentage of its original population, i.e.,
coverage. The coverage-constrained quantiles will obey the
properties of symmetric quantiles so that the QMLE will be
efficient and robust, whose variance asymptotically
approaches to the Cramer-Rao lower bound [15]. The
symmetric quantiles were described with a strict definition in
[15], but we consider them with a more flexible operation to
be the ranked variables of the first-order sample xl:n and the
last-order sample xn:n • So, they are both empirical quantiles
and quasi-symmetric quantiles (QSQ). We plan to derive the
QMLE basing on the order statistics; hence the
coverage-constrained quantiles are the endpoints ofthe range.
That is, it can support not only the concept of empirical
quantiles but also the quasi-symmetric quantiles; otherwise it
still needs a quantile function defined below to link quantiles
andMLE:
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with the constraint u* > 0 and x is Sample mean.

where

* C;p:n (n(x - x p :n ) )
u==------

p 2n

We plot the QSQ of equal variance rectangular pdf as the
blue line in Fig.2. It is easily observed that the dispersion of
the equal variance ofrectangular QSQ is always less than that
of the normal QSQ, while the expectations of their pdf are
close to each other. Huber [13] ever addressed the following
robust statistical method via the least possible variance
searching and now we plan to take it:

III. THE PROPOSED QUANTILE-BASED MEAN
ESTIMATOR

We derive the QMLE by solving the problem of
maximizing QMLE(f.1,u) defined by

{

QMLE (P ,O) = (-~log21l"-nloga)- t (x; - ~)2
2 i=l 2u (5)

f.1 == xp :n - UC;p:n· for p == 1 or n

where xp :n is the minimum order (for p=l) or maximum

order (for p=n) of samples Xi , 1~ i ~ n ; and C;p:n is a

standard normal random variable normalized from xp :n ; and

n is the sample size. The solution derived in detail in
Appendix is given below:

IV. QMLE CONDITIONED ON RELIABLE QUANTILES

If we emulate the pdf of combined quantities as a
quasi-normal, its extreme shape may be like a rectangular pdf,
e.g., the case of UR=3.2 in Fig. 1. As inspecting the
distributions of first-order and last-order samples of the
rectangular and normal random variables with the same
standard uncertainty, we find that the dispersion-areas of
QSQ of the rectangular pdf are more concentrated than the
normal pdf

Fig. 2: Standard normal pdf combined with its CLT pdf and QSQ pdf for
sample size= 11.

(4)Q(p) == Pr(X < xp ) == p
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We can then apply the minimax operation to Eq.(9) to
maximize the objective function.

(9)!2(Xp :n - flPS)2
2 as

1 {(( * xl:n - flps ) )2-- X -a· -II2 l:n 1 ras

_i Xi -Xp:n • X p:n - Jips

i=l a as

1( * 2 * 2)ArgMax{QMLE(a,flps)-- (fl1 -fl) +(fln-fl) }
JL ps 2

n 1~ Xi - Xpon 2= Arg Max{(--log27Z"-nloga)-- L.,( 0 )

JL ps 2 2 i=l a

D. MMSE criterion applied to the asymptotic minimax
optimization
Motivated by the fact that QMLEs are efficient and robust

[12], we propose a new QMLE mean estimator incorporating
the order statistics for the normal distribution. In accordance
with Eq.(9), we realize the optimization ofobjective function
in two stages. The first stage takes the roots of differentiation
in terms of QMLE, and the second stage takes the QSQ of
MMSE under the CLT constraint. By our opinion, QMLE
does not guarantee the minimum variance for non-normal
data so that we may try the QMLE of normal in association
with the MMSE with respect to the QSQ, xl:n and xn:n. We
have shown that the QSQ are reliable quantiles in Fig. 2 and
its relative formulation as Eq.(9).
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C. Minimax operations
We define a new objective function via adding an error

term to Eq.(5):

0.2

B. Least variance
It is shown in Fig. 3 that the MMSE corresponds to the

case that (f.1p s - f.1) approaches to zero conditioned on heavy

trials. Thus, we may infer to say that the QMLE may
probably converge to the population mean for a single trial
and is guaranteed to converge to the population mean on
heavy trials. Hence, QMLE is near the least variance basing
on the MMSE criterion.

(Differences)

Fig. 3: Average MSE of QMLE versus difference= (flps - fl) for three

normal distributions. Note that C;l:n is calculated using true standard
deviation a .

0.05

a* is calculated by Eq.(7). We denote it as a;. The final

mean estimate is obtained by Eq.(6), i.e., u; = xp:n - a;C;p:n
for p = 1 or n.

We define the MSE for performance measure by

1 1000 ((/-/ (i) - fl )2 + (fl * (i) - fl )2)
MSE=-L 1 ps n ps (8)

1000 i=l 2
We take the error between the pseudo mean and real mean,
(flps - fl ) , as the reference and set the inspection interval of

flps to be [fl- 2a / .j;", fl + 2a / .j;,,], which is the 95%

coverage of population mean according to CLT. The
inspection interval is determined based on CLT for choosing
the best MMSE candidates which only count the two
endpoints of range. Remember that the sample variance for
the censoring scheme is always smaller than the
non-censoring one on heavy data testing. It is thus reasonable
to examine the quasi-symmetric quantiles represented by the
two endpoints of range, and choose the one with smaller
MSE as the best efficient estimator.

We take 50 pseudo means distributed uniformly over the
interval. Fig. 3 displays the average MSE of QMLE versus
(f.1ps - f.1) .It can be found from the figure that all the three

curves of average MSE look like convex sets within the CLT
searching interval. So, we can conclude that, for all the three
test cases using different normal distributions, the average
MSEs of QMLE are characterized as convergence curves to
become smaller as the absolute value of the difference
between flps and fl decreases. Each convergence curve acts

as a convex set.

Asymptotic minimax results: Let K be a convex
compact set of distribution F on the real line. To find a
sequence T; of estimators of location which have a small
asymptotic variance over the whole of K ; more precisely,
the supremum over K of the asymptotic variance should
be least possible.

There are three components in the asymptotic minimax
result: convex set, minimum variance, and minimax
operation. We layout them in details in the following:

A. Convex set
Eq.(5) is a quadratic equation so that there is a global

minimum in its curve near the population mean. We use three
normal distributions with different mean and variance to
demonstrate this assumption. They are N (10,12

) ,

N(2.3,0.8 2
) and N(3.7,1.2 2

) . In each test, 1,000 trials with
15 samples in each trial are performed. In each trail, the 15
samples are firstly sorted in the ascending order to find the
two endpoints, x1:n and xn:n. They are then transformed into

the standard normal distributed versions, C;l:n and C;n:n' by
using a pre-assumed pseudo mean f.1ps and the true standard

deviation a , or the sample standard deviation

(J"s = ..!.- i (Xi - xl if (J" is unknown. Then, the estimate
n i=l



QSQ are the wide-sense symmetric quantiles and they
have been proved to be more efficient than the regression
quantiles [14, 15]. Besides, Chiang et al. [16] suggested to
use symmetric quantiles and showed that they are more
efficient than the empirical quantiles when the percentage of
quantiles is very small or large. Now we denote the two-stage
estimator, including applying MMSE-CLT to QSQ for
QMLE evaluation, as Q2MMSE-CL T. A sub-optimal
searching interval for finding the most possible MMSE
candidates can be defined to be uniformly distributed in
Lu - 20-/ .J;z, f.1 + 20-/ .J;z]. Here, 0- may be replaced by
samples' standard uncertainty o-s ifit is unknown. It is worth
to note that the interval covers about 95% coverage of the
random variable of Sample mean. It is reasonable to take the
MMSE ofthe candidates as the best solution to the combined
mean value in the sub-optimal searching interval.

V. EXPERIMENTS ON COMBINED QUANTITIES:
Now we evaluate its robustness by simulations using

combined quantities formed by input quantities of different
pdfs with at least one rectangular pdf We directly test the
realistic case that both f.1 and 0- are unknown. Suppose we
are given four random quantities as input and they are four
independent random variables, including two normal random
variables, Zl --- N(0.1,1 2

) and Z2 --- N(2.15,1.5 2
) , and two

rectangular random variables,
Z3 --- rect[-2.J3 -1.05, 2.J3 -1.05] and

Z4 --- rect[-1 0.J3 +1.45,10.J3 +1.45] .

(10)

The uncertainty ratio computed according to Eq.(2) is 3.7.
Our scope is to test for sample size in the rangeof 11---40. We
generate 500,000 samples of the combined quantities and
uniformly select the needed observations. We test 5,000 trials
for the output of combined quantities for each sample size.

Both Q2MMSE-CL T and Sample mean are estimated in
each trial. Table 2 lists the experimental results. Notice that
all MSEs are normalize with respect to the square of
combined standard uncertainty. After such processing, all the
values are in the equal base. There are four conditions
encountered in the setting of the searching interval of
Q2MMSE-CLT. We list them in the following:

1. Condition A: The CLT searching interval is known and
set as [-20- / .J;z +u, 20-/ .J;z + f.1] . The combined
standard uncertainty is known as 0-. If Sample mean is
larger than 20-/ .J;z + u , set it as 20-/ .J;z + f.1 ; and if

Sample mean is smaller than -20- / .J;z + f.1 , set it as

-20- /.J;z + f.1 .

2. Condition B: The CLT searching interval is unknown and
set as [-20- /.J;z + X, 20-/.J;z + x] . The combined
standard uncertainty is known as 0- .

3. Condition C: The combined standard uncertainty is
unknown. Use the given combined mean and the samples'

standard uncertainty, o-s , to determine the CLT

searching interval as [-20-s /.J;z +u, 20-s / .J;z + f.1] . If
Sample mean is out of the searching interval, set it to the
bound of the interval, [-20-s /.J;z +u, 20-s /.J;z + f.1] .

4. Condition D: Both the combined standard uncertainty and
combined mean are unknown Set the CLT searching
interval as [-20-s /.J;z +x, 20-s /.J;z +x] .

TABLE 1: TABLE OF CONFUSION FOR THE CONDITIONS OF COMBINED MEAN
AND STANDARD UNCERTAINTY

Population Mean

(CLT searching interval)

Known Unknown

STU of Known A B

combined Unknow
quantities C D

n

It can be found from Table 2 that Q2MMSE-CLT
significantly outperforms Sample mean for Condition A, and
is slightly better for Condition D.

TABLE 2: AVERAGE MSEs RESPECT TO THE SQUARE OF COMBINED
STANDARD UNCERTAINTY, 5,000 TRIALS, UNIT IS NORMALIZED TO THE
SQUARE OF COMBINED STANDARD UNCERTAINTY, u: (x) / n, S: SAMPLE
MEAN, UR=3.7;
Sample S A D

Sample S A Dsize size
11 1.050 0.872 1.044 26 0.938 0.860 0.935

12 0.958 0.827 0.952 27 0.954 0.876 0.951

13 1.025 0.861 1.022 28 0.975 0.860 0.971

14 1.007 0.906 1.001 29 0.911 0.818 0.908

15 0.960 0.821 0.956 30 0.941 0.836 0.940

16 0.941 0.844 0.936 31 0.937 0.831 0.934

17 1.049 0.942 1.046 32 0.941 0.861 0.938

18 1.003 0.877 0.997 33 0.958 0.884 0.956

19 1.019 0.884 1.015 34 1.021 0.914 1.018

20 0.947 0.865 0.944 35 1.011 0.909 1.008

21 1.098 0.940 1.094 36 1.019 0.882 1.017

22 1.065 0.935 1.063 37 1.056 0.944 1.054

23 0.866 0.777 0.863 38 0.999 0.894 0.997

24 0.974 0.878 0.969 39 0.940 0.844 0.939

25 0.925 0.823 0.923 40 1.015 0.910 1.013

VI. IMPROVE THE PERFORMANCE BY QSQ ADJUSTMENTS
We have stated earlier that the QSQ expectations of the

pseudo-normal pdf are near the QSQ expectations of the



quasi-normal pdf with the same combined standard
uncertainty. Should we adjust the QSQ expectations of the
pseudo-normal more closely to the QSQ expectations of the
quasi-normal pdf in order to improve the performance of
Q2MMSE-CLT? This session discusses the method of
improvement and result.

We know that the expectation of coverage IS

(n -1) / (n +1) for different sample size, [17, 18 , 19 ].

According to our standard normal transform, N(0,I 2
) , its

corresponding rectangular distribution with equal standard
uncertainty is rect[-.J3, .J3] . So, the expectation of the
first-order sample for the ranked random variable is
-.J3 +2.J3 / (n +1) . Thus, we may consider adjusting the
standard uncertainty of the pseudo-normal pdfto get a better
performance. We try to solve the integral equation from the
cdfof normal distribution as:

where a is the adjustment factor multiplying to the original
standard uncertainty and we get the following looking-up
tables for the value of a depending on the sample size
ranging from 11----40:

TABLE 3: THE CALI BRATION TABLE FOR SAMPLE SIZE RAGING FROM 11~ 40
Sample Adjust Sample Adjust Sample Adjustsize size size

11 1.46 21 1.12 31 0.99

12 1.40 22 1.10 32 0.98

13 1.35 23 1.08 33 0.97

14 1.31 24 1.07 34 0.96

15 1.27 25 1.05 35 0.96

16 1.24 26 1.04 36 0.95

17 1.21 27 1.03 37 0.94

18 1.18 28 1.02 38 0.93

19 1.16 29 1.01 39 0.93

20 1.14 30 1.00 40 0.92
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Fig. 4: Prior-Posterior comparison, Condition C, UR=I1.1, 4 combined
quantities.

Fig. 6: Prior-Posterior comparison, Condition A, UR=I1.1, 4 combined
quantities.

Fig. 5: Prior-Posterior comparison, Condition B, UR=I1.1, 4 combined
quantities.

(11)
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The testing data are four combined quantities:
Zl ---- N(0.1,I 2

) Z2 ---- N(2.15,I.5 2
)

Z3 ---- rect[-2.J3 -1.05, 2.J3 -1.05] and

Z4 ---- rect[- 30.J3 +1.45,30.J3 +1.45] . Fig. -l-Fig. 7 display
the experimental results for the four conditions shown in
Table 1. It can be found from Figs.5 and 6 that the refined
method works very well for both Condition A and Condition
B. We also find from Figs. 4 and 7 that the These figures
show that the refined method works well for small sample
size, but fails when the sample size is greater than 30.



1.1,....---------..-----"""'T"""--------, where

Fig. 7: Prior-Posterior comparison, Condition D, UR=I1.1, 4 combined
quantities.

VIII. ApPENDIX:

The Quantile-based mean estimator: By substituting

f.1 == xp:n - UC;p:n' for p == 1 or n , into QMLE(f.1,u) defined

in Eq.(5), we obtain

VII. CONCLUSIONS

In this paper, the issue of applying quantile-based
maximum likelihood estimation (QMLE) to mean value
estimation ofnormal distribution in sparse data condition was
addressed. It proposed to incorporate order statistics into
QMLE to take the maximum coverage as quantiles so as to
conform to the requirement of symmetric quantiles. The
asymptotic minimax principle was successfully applied to
realize the QMLE mean estimation for combined quantities.
The new QMLE estimator combined with the MMSE-CLT to
form a new Q2MMSE-CLT algorithm. Simulation results
have confirmed that the new Q2MMSE-CLT performs very
well to outperform the conventional Sample mean estimator.
We showed that the Q2MMSE-CLT earns the greatest gain
when the combined mean is known and obtained the least
benefit if we take the Sample mean to substitute for
population mean in the setting of searching range. The
looking-up table only supports the robust estimation on
sparse data condition.
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Taking the partial derivative of Eq.(12) with respect to a
and setting it to zero, we obtain

n n

na' -C;p:nL(xi -xp:nP- L(xi -Xp:n)2 == 0
i=l i=l

(13)

Solve Eq.(13) to obtain an estimate of the standard deviation
of the population:

• BO" ±~(B"f +4nC"u == ---------
2n

(14)


