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Exchange interaction in diluted magnetic semiconductors: Crystal-structure-induced anisotropy
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In this paper, we employ the model developed by Larson et al. to calculate the exchange interaction
between magnetic ions in diluted magnetic semiconductors in a method that incorporates explicitly the
intrinsic symmetry of the host crystals. We find that the symmetry of the wave function, and thus the in-
teraction matrix element, could induce strong directional dependence of the exchange interaction despite
the fact that superexchange is mediated via virtual excitations near the center of the Brillouin zone,
where the band energy is essentially isotropic.

Recently, the magnetic properties of semiconductors
containing a few percent of magnetic ions have received
considerable attention. For these diluted magnetic semi-
conductors (DMS's) that crystallize in the structure of
the nonmagnetic semiconductor host (e.g. , zinc-blende
for Cd, Mn Te), experinmntal results have shown evi-
dence of antiferromagnetic interaction between Mn + lo-
cal moments. In the high-temperature limit, the behavior
of the magnetic susceptibility can be described rather
well by the Curie-Weiss law with a negative paramagnetic
Curie-Weiss temperature. At the early stage of theoreti-
cal research, the dominant exchange interaction in
DMS's is attributed to the Bloembergen-Rowland rnecha-
nism. ' The work of Larson et al. , ' through detailed
energy-band calculation, demonstrates the importance of
p-d hybridization, and thus the dominance of Anderson
superexchange in elaborated fourth-order perturbative
formalism, which allows a unified treatment, and thus a
direct comparison of Anderson super exchange and
Bloembergen-Rowland mechanism. In evaluating the ex-
change constants, however, they use the matrix element
and the band energy along I -X in the Brillouin zone (BZ)
and then make the isotropic approximation. From our
previous study, it is concluded that the symmetry of the
wave function, and thus the matrix element, might play
an important role in the determination of the exchange
interaction in DMS s. So, the purpose of this paper is to
calculate the exchange interaction in a method which in-
corporates explicitly the symmetry of the wave function
and the matrix element. We have decided to use the
semiempirical linear-combination-of-atomic-orbitals
(LCAO) method to simulate the band structure of the II-
VI semiconductor host. This method is chosen because,
not only is the local syrnrnetry of a state well represented
by the atomic basis set, but, also, the crystal symmetry is
rejected in LCAO band energy and wave functions.
With the nonmagnetic band structure known, we calcu-
late the exchange interaction between magnetic ions by
the fourth-order perturbation theory. In evaluating the
energy shift of the system, the double BZ integration is
carried out by the linear analytic tetrahedron method. '

With the sampling of finite energy bands near the
energy-gap region as the only limitation, the variation of

the symmetry of both band energy and wave functions in
the realistic BZ are treated exactly.

In the LCAO formulation, the wave function of a state
in the nth band is expressed as a linear combination of
atomic orbitals,

ink) =QC„(nk)ipk) . (1)

The LACO basis function
~ pk) is a Bloch sum of atomic

orbitals of local symmetry p centered either at the cation
(or anion) sites,

~pk) =X '~ ge '~p(R;)) . (2)

The matrix representation of the crystal Harniltonian Ho
with respect to LCAO basis functions (1) has been
worked out by Slater and Koster for various crystal
structures. The energy of a band state and the mixing
coefficients can therefore be obtained after diagonalizing
the Hamiltonian matrix. There are eight energy integrals
in the Hamiltonian matrix. We choose their values sem-
iempirically to fit several measured optical and photo-
emission data. The fitted LCAO energy integrals are list-
ed as follows: E „(000)„=—1. 146, E „(—,

'
—,'0)„=0.065,

E„(0—,
'

—,
' )„=0.156, E ( —,

'
—,'0)„=0.070, E„y(0—,

'
—,
' )„= —O. O77, E„,(-,'-,'-,')., =1.176, E„(OOO)„=O.754

+1.60x, E„(—,
'

—,'0)„=0.073 (all in eV). The Mn +-
concentration dependence of the energy gap is taken into
account by E„(000)„.

Following the model Hamiltonian proposed by Larson
et al. , we calculate the exchange interaction between
magnetic ions in DMS's in the fourth-order perturbative
formalism. This approach was developed previously by
Falicov and co-workers in the investigation of the mag-
netic property of rare-earth compounds and NiO. ' '"
The model Hamiltonian to be used is written as

H=H0+H' . (3)
Ho is the unperturbed crystal Hamiltonian. The pertur-
bation H' consists of the correlation of localized Mn 3d
electrons, the Mn 3d —Te Sp hybridization (kinetic ex-
change), and the Mn3d-sp band potential exchange. If
the spin-orbit interaction is neglected, the spin- —, Mn-Mn
exchange in Cd& „Mn Te is of the Heisenberg form,
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H~ =I(R;1 )S; SJ,
with

I(R;J ) = —S

(4)

&flH'II &&I III'II &&I III'II &&I IH'l~ &

(E3 —Eo)(E/ —Eo)(E[—Eo)

(5)
where I„I2, and I3 label intermediate states;
E $ E2 E3 and Eo are the energies of the intermediate
states I„I2, I3, and the ground state, respectively. De-
pending on how the intermediate states permutate, there
are three different cases to consider: hole-hole, hole-
electron, and electron-electron processes. The corre-
sponding exchange constants are denoted by
I„„(R;~), I~, (R,~ ), and I„(R,~ ). I„(R;~) would be identi-
cally equal to zero at T=O K, and should be small at
room temperature, and is thus neglected. By adding the
contributions of all permutation of the intermediate
states, Izz (R;J ) is then

I„(RJ ) =N y lM(n'k')
l

lM(nk) l
e

(nk, n'k')

X [2bE '(n'k') U 'bE '(nk)

+bE '(n'k', nk)[bE '(n'k')

+bE '( n k) ] j +c.c.,

where

M(nk) =QC„(nk)ge ' V &,
p 5.

bE '(n'k') = [Ed+ U E(n'k')—]
bE-'(n'k', nk) = [[E,+ U —E(n'k')]

+[Ed+ U —E(nk)]]

and bE '(nk) = [Ed+ U —E(nk)] '. The double sum-
mation is carried out for the nk, n'k' pair, with n, n' re-
stricted to the upper valence bands and k, k' over the first
BZ. The definition of parameters V~d, Ed, and U is the
same as that of Ref. 5. Ih, (R;~), which contains inter-
mediate states involving the lowest conduction band and
upper valence bands, can be similarly worked out, and
the formula is of the same form as that of Izh(R;~ ), bu. t
with different definition of the excitation energy:
bE '(n'k') = [E(n'k') —E„] ', bE '(n'k', nk)
=[E(n'k') —E(nk)] ', and bE '(nk)=[Ed+ U
—E(nk)] '. For computational convenience, the double
summation of k, k' over the BZ is converted to the double
integration via the following two equivalent versions of
averaging over the BZ:

N Q~Vaz f dk
k BZ

where VBZ is the volume of the first BZ.
In evaluating the double BZ integration, we use the

linear analytic tetrahedron method. ' In this method,
the BZ is divided into micro cells of tetrahedron
geometry. %'hen the integrand exhibits some functional
form of a linear function, the contribution from one
tetrahedron can be integrated analytically, and the result
depends only on the values of the linear function at the
vertices, not on the specific shape of the tetrahedron.
The BZ integration thus reduces to the summation of the
values of the analytically integrated function at the mesh
points established in the BZ. In this problem, however, a
double integration is required and the presence of the
phase factor makes the situation more complicated. In
the modified version of the linear analytic tetrahedron
method, the double integration over the BZ is rewritten
as the double summation of the double integration over
pairs of tetrahedra with index t and t',

Izh(R~)=Vnz g f dkf dk'lM(n'k')l cos(k' R; )[2bE '(n'"k')U 'bE '(nk)
n, n'E v; t, t'EBZ

+bE '(n'k', nk)[bE '(n'k')+bE '(nk)] ] lM(nk)l cos(k R J )+(cos~sin) .

The double integration over each t, t' tetrahedron pair is approximated by the product of the integration of the rapidly
oscillating phase and the average values of other slowly varying terms, i.e., the matrix element and the inverse of excita-
tion energy. The advantage of making such a separation is that the integration of the phase over the tetrahedron can be
performed analytically. Since the sign of the matrix element and the inverse of excitation energy always remain the
same throughout the BZ, this approximation is good even if lR;. l is large, as long as the tetrahedra are small enough to
account for the variation of the matrix element and the inverse of excitation energy in the whole BZ. Under this ap-
proximation,

Igg (R;J )= Vaz
n, n'Ev;t, t'GBZ

lM(n't')l F(t')[2bE '(n't')U 'bE '(nt)+bE '(n't', nt)[bE '(n't')+bE '(nt)] ]

x lM(nt)l'F(r)+(F~G),

where M(nt) is the average of M(nk) over the tetrahed-
ron t, F(t) and G(t) are the integration of cos(k.R;~ ) and
sin(k. R; ) over the tetrahedron t, bE '(nt) is the aver-
age of bE '(nk) over the tetrahedron r, and
bE '(n't', nt) is the average of bE '(n'k', nk) over the

tetrahedron pair t, t'. The integration of cos(k.R;f) [or
sin(k. R;~ )] over one tetrahedron is readily obtained via a
linear transformation, and the result depends only on the
volume of the tetrahedron and the values of k-R; at the
four vertices of the tetrahedron, as expected. The aver-
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age of bE '(nk) over the tetrahedron t is, by definition,

bE '(nt)=uo ' f dkhE '(nk), (10)

and the integration can be carried out once the band en-

ergy is linearly interpolated inside the tetrahedron t.
The average of hE '(n'k', nk) over the tetrahedron pair
t, t' is, by definition,

bE '(n't', nt}=uo 'uu ' f dk' f dk bE '(n'k', nk},

and the integration can be similarly carried out. Since
for the II-VI semiconductors under investigation the
dispersion of the conduction band is smaller, it is
sufficient to approximate the second integration by the
average of the first integration at the four vertices of the
tetrahedron t'. As for the average of the matrix element
over one tetrahedron, we directly use the value at the
center of the tetrahedron. Since b,E '( n 't '),
b.E '(n't', nt), and AE '(nt) with t' and t taken from
any of et' and et are all equal, we may first sum
lM(n't')l F(t') over et' and sum lM(nt)l F(t) over et,
thus contracting the double summation of t, t' into the ir-
reducible part of the BZ:

Ihi, (R, }—VBz.
n,n', t'H et'

t, t ' H irred. BZ

lM( n't') 'lE(t')

X[DE '(n't')U 'bE '(nt)

+DE ( n't', nt)[A E '(n't')+&E '(«)] ]

x y IM(«)l F(t) +(F G),

where e t indicates the set of tetrahedra derived from the
tetrahedron t by applying on it the symmetry operations
of the point group of the crystal. We would like to point
out that it is crucial to preserve the symmetry of the ma-
trix element while performing summation over e t to con-
tract the double integration over the BZ into over its
irreducible parts. For example, if lM(nk)l for
k=(+k„, +k», +k, ) is proportional to lC„+C +C, l,
then lM(nk)l for another symmetry related
k =(+k, —k, —k, ) would be proportional to
lC —

C»
—C, [ . They may be quite different; the isotro-

pic approximation, however, treats them as equal. It is
seen that sphericalization of the matrix element would be
improper, and may result in numerical inaccuracy. The
double BZ integration program is tested in two ways via
the following relation:

First, the integration of (13) is identically equal to zero
for any lattice vector R,»

=R; —R» except R,» =0.
Second, if R," is replaced by some nonlattice vector R,
the integration is generally not equal to zero and should
be independent of the total number of tetrahedra estab-
lished in the BZ, since the integration formulas of
cos(k.R J ) are exact. Calculated I(R;J ) for Cd, „Mn„Te
with a mesh of 73 728 tetrahedra established in the BZ

k~O = —
[ [S(S+1)]/3X] +I(R J ),

l, »

(15)

where N is the total number of magnetic ions and the
summations of R; and R. run over the actual positions of
magnetic ions. The experimental data of concentration-
dependent O(x) for Cd& „Mn„Te can be fitted approxi-
mately as 8(x)=00x.' This implies that a completely
random distribution of Mn + ions in the host latt(ce is a
reasonable assumption. Under this assumption, we get

00= —{[S(S+1)]/3k~ ]QI(R; ), (16)

where the summation over R now runs over all the sites
of a fcc lattice. The value of 00 for Cd, Mn„Te deter-
mined from experimental data is —470+34 K, ' which is
close to the values of our calculation: —457, —461, and—464 K for x =0.05, 0.35, and 0.65, respectively.

From our results we see that Iqz(R;J ), being always an-
tiferromagnetic, mediates the dominant exchange interac-
tion for the nearest neighbors; Iz, (R;1 ), being ferromag-
netic in the long range, decays more slowly than Ihz(R;J )

and becomes dominant for R; beyond the nearest neigh-
bors, which confirms the previous conclusion reached by
Larson et al. However, there is a strong directional
dependence in the obtained exchange constants. For ex-
ample, the exchange constants for R," along [100] are
much smaller than those for R," along other directions.
As argued by Larson et al. , the sphericalization pro-
cedure, which assumes E(nk) and M(nk) depend on lkl
according to analytical expressions obtained along I -X in
the BZ, is a reasonable approximation because the main
contribution to I(R;~) arises from the central region of

TABLE I. Calculated exchange constants l(R,") (in K) of
Cd& „Mn Te of the nearest four neighbors for x =0.05, 0.35, and 0.65.

'j 2 2 0» 0 2 2 0 (1,1,0)RO

IItIt ( Rtj ) 1 14 X 10
II„(R,") 8.77 X 10
I(R,j) 1.23 x 10'

IItlt ( Rtj ) 1 16X 10
I~, (R," ) 5.44 X 10
I(R; ) 1.22X10

I~, (Rj ) 3.19X 10

I(R,, ) 1.21x10'

x =0.05
1.16x10 '

3.30X 10
149X10

x =0.35
1.26 X 10
3.68 X 10
1.30 X 10

x =0.65
1.35 X 10

—1.31 X 10

1.22 X 10

5.72 X 10
—5.42 X 10

3.02x10 '

5.47x10 '
—4.52 X 10

9.50 X 10

5.21 X 10
—3.73 X 10

1.48 X 10

2.12 X 10
—2.06 X 10

6.02 X 10

2.01x10 '

—1.72 X 10
2.98 X 10

1.90x10 '

—1.40 X 10

4.97 X 10

(eight divisions along I -X) for x =0.05, 0.35, and 0.65
are listed in Table I.

Now, we compare our numerical results with experi-
mental data. In the high-temperature limit, the magnetic
susceptibihty y obeys the Curie-Weiss 1aw

=C(T 0)
with a negative paramagnetic Curie-Weiss temperature
0, which can be expressed in terms of the exchange cou-
pling constant I(R,~. ) as
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the BZ where E(nk) and M(nk) are isotropic. We
would like to point out that, for the region near the
center of the BZ, the band energy E(nk) is essentially
isotropic; the matrix element M(nk}, however, is no
longer so no matter how small ~k~ is. In order to see why
the strong directional dependence is the case, let us in-
spect more closely the integration in (12) [or (g)]. Since
the LCAO basis functions ~xk), ~yk}, and ~zk} trans-
form like x, y, and z under the point group of the crystal,
the matrix element ~M(nk)~ for k=(+k„,+k~, +k, ) is
proportional to ~+C„+C +C,

~
[refer to (2.1)]. Besides,

for R; along [100], cos(k R; ) for k=(kk„, +k, +k, )

are all equal and sin(k. R; ) for k=(+k„,+k~, +k, ) difFer

by a sign from those for k=( —k„,+k~, +k, ). So, if we
sum ~M(nk)~ cos(k RJ) and ~M(nk)~ sin(k R; ) over
ok, only

~ C& ~
cos(k.R;~ ), with p=x, y, z as well as

C*C,sin(k R; ) and C C,*sin(k R; ) remain. If R; is
along other directions, all 18 terms contribute. Since all
these terms are of the same order of magnitude, the mu-
tual cancellation between terms in ~M(nk)~ cos(k R;J)
and ~M(nk)~ sin(k. R; } when R; along [100] makes the
calculated I(R; ) much smaller. For example, Iz ob-
tained is one order of magnitude smaller than that by
Larson et al. It is seen from the above qualitative argu-
ment that the spherical approximation of the matrix ele-
ment, which neglects the interference between matrix ele-
ments of di6'erent symmetries, always overestimates
I(R;~ ), and the overestimate is more pronounced for R,
along [100]. So the result Iz/I

&
=0.11, reported by Lar-

son et al. , only provides an upper limit. Larson and
Ehrenreich, in their subsequent paper, ' include the
spin-orbit interaction to treat the subject of anisotropic
superexchange, and avoid the spherical approximation in
the BZ summation by the special-points method of Bal-
dereschi. They find that the result for I, is about 26&o
smaller, which confirms the qualitative argument given
above. However, the value of I2 is still not reported. We
emphasize that the anisotropy treated here means the
strong directional dependence of exchange constants of
the isotropic Heisenberg interaction, and is conceptually
di6'erent from the anisotropy usually referred to as depar-
ture from the S;-S. interaction form. So, the results
presented here do not contradict the conclusion by Lar-
son et al. that DM exchange is the dominant anisotropy
interaction, nor the experimental data on electron-
paramagnetic-resonance linewidth.

Escorne et al. ' deduce from the measured x depen-
dence of the spin-glass freezing temperature that

Iz /I& =0.12. In the fitting procedure, they assume an ex-
ponential decrease of I( R,~ ) with

~ R,.J ~
of the

Bloembergen-Rowland mechanism, and equate thermal
energy at the spin-glass freezing temperature with ex-
change energy at the mean distance between Mn + ions.
Since Mn + ions are randomly distributed inside the
semiconductor host and I& is much greater than I2, the
neglect of the formation of magnetic ion clusters would
overestimate the mean distance between Mn + ions, and
thus overestimate I2. Thus, the result Iz/Ij =0.12 given
also only provides an upper limit.

Giebultowicz et aI. ' study the static and dynamic spin
correlation in Cdo 35Mno 65Te by neutron scattering and
by computer simulation. As they explained, in the type-
III antiferromagnetic order of DMS's spins in (100)
planes are aligned antiferromagnetically by I, whereas
the between-plane coupling is maintained only by I2.
This implies that the ratio of the inverse correlation
ranges should be sensitive to the ratio of I2/I, . By com-
paring computer-simulated results and measured correla-
tion ranges, they obtain I2/I, =0.12. This also does not
exclude the possibility of small I2, since, in addition to
I2, I3 and I4 also contribute to interplane coupling, and,
according to our calculation, they cannot be neglected
(both I3 and I4 are of the same order of magnitude as I2
for x being 0.65 and the number of the third and the
fourth neighbors are larger than that of the second neigh-
bors). If the efFects of I3 and I& are all lumped into I2,
the e8'ective I2 would be 0.813 K, which is close to the
experimental results.

For DMS's of the zinc-blende structure, the nearest-
neighbor lattice vector is along the [110] direction. If
there is a lattice structure such that the nearest-neighbor
lattice vector lies in the [100] direction, then the magnet-
ic ordering predicted by a theory which takes into ac-
count the exact symmetry of the matrix element and one
based on the isotropic approximation might be entirely
different. We conclude that it is the symmetry of the ma-
trix element, not the slightly anisotropic band energy,
that induces the strong directional dependence of the ex-
change interaction between magnetic ions in DMS's.
Serious calculation should preserve the symmetry of the
matrix element in order that correct numerical results
can be obtained.
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