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Abstract 

We analyze spatio-temporal pulse propagation in graded-index Kerr materials with the variational method, and find that if 
the path of propagation provides negative group-velocity dispersion, stable solitary pulses exist for pulse energy smaller than 

a critical value. Spatial and temporal degrees of freedom cannot be analyzed separately due to their coupling through the 
Kerr nonlinarity. Our unified analysis not only elucidates the hidden coupling, but also clarifies relations between parameters 
of the solitary pulse. The analysis is verified by direct numerical simulation of the paraxial wave equation. 

It is well known that optical Kerr nonlinearity gives 
rise to interesting soliton phenomena. In the space do- 
main the combined effects of self-focusing and diffrac- 

tion in two-dimensional media produce spatial soli- 
tons [ 11. In the time domain the combined effects of 
self-phase modulation and group-velocity dispersion 

(GVD) produce temporal solitons [ 1,2] . An interest- 
ing question is whether there exist solitons in both 
space and time domains simultaneously, and if yes, 

what are the characteristics of them. Such solitons look 
like light bullets with its energy localized in both space 
and time domains, and may be called spatio-temporal 
solitons. If the Kerr medium is two-dimensional, the 
answer to the above question is simply negative be- 
cause the wave equation is equivalent to self-focusing 
in three-dimensional Kerr media, which is known to 
have no stable stationary solutions [ 31. Light bullets 
in three-dimensional Kerr media have also been stud- 
ied recently [ 41. They are also found unstable. The 
study reveals that the optical power large enough to 

make the beam self-guided is also large enough to 
cause wavefront instability. 

Recently, cw beam propagation in three-dimensional 

graded-index (GRIN) Kerr materials has been studied 
by several authors [ 5,6]. It is found that there exist 
stationary solutions when the optical power is less than 

a critical value. This is because GRIN helps counter- 
act diffraction, so that the beam profile can maintain 
stationary below the critical power. However, it is still 

not clear whether GRIN Kerr materials can support 
stationary, or quasi-stationary propagation of optical 
pulses, because unlike a cw beam, in which the opti- 
cal power is constant, in an optical pulse the instanta- 
neous power varies greatly from the pulse peak to the 
pulse wings. 

In this letter we investigate the propagation of 
spatio-temporal pulses through GRIN Kerr materi- 
als with the variational method. We find that stable 
spatio-temporal solitary pulses exist if the path of 
propagation provides negative GVD and the pulse 
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energy is less than a critical value. 
A GRIN material is one with a parabolic refractive 

index. 

n(x,y,z,w) =n(w) ( l- G(w) 
T(x2+Y2) . (1) 1 

The propagation of an optical pulse on the axis of a 

GRIN waveguide is described by the following parax- 

ial wave equation: 

- +,z -t y2)u + +,. (2) 

Here u( X, y, 2, t) is the pulse envelope, k, is the prop- 

agation constant in the center of the GRIN material at 

the carrier frequency w,, n, = n(w,), G, = G( w,), 
and n2 is the nonlinear refractive index. 

To simplify notations, we introduce the following 

normalization units: ( 1) distance z: 2/G; (2) 

spatial dimensions x and y: [ k:G,] -‘j4; (3) time t: 

dm; (4) intensity 1~1~: rz,fi/(2nzk,). 

Here the dispersion parameter ki has been assumed 
to be negative. Under these normalization units, 

(3) 

where VT is the transverse gradient operator. By US- 

ing the standard variational approach based on the 
Ritz optimization procedure [ 71, and by assuming that 
the pulse can be described by the following solution 

ansatz: 

u(x,y,z,t) = A(z) exp(iWz)) 

xex+i$$$)SeCh(&)~ 
x exp i’(‘) 

( 
2 +x $_y2)+1- 

.mt2 

1 

9 (5) 

we obtain the following evolution equations for the 

four pulse parameters w, p, wt and pt. 

Fig. 1. Beam width w versus pulse energy E, 

dw 
- = -2pw, 
dz 

dwt 
z = -ptwt7 

%=(P:-&)+$i&. 

(7) 

(9) 

In the solution ansatz Eq. (5)) the pulse envelope 

u(x, y, z, t) is assumed to be separable in the X, Y, t 
dimensions and is circularly symmetric in the x and 

y dimensions. The spatial beam profile is assumed to 
be Gaussian and the temporal profile sech. The pulse 
parameter p is the wavefront curvature, w is the trans- 
verse spatial beam width, pt is the temporal chirp of 

the pulse, and wt is the pulse duration. All the four 

parameters are functions of the propagation distance 

z, and Ep = 2n-A2w2wt is the pulse energy. 
Eqs. (6)-(9) have stationary solutions that are 

given by p = pt = 0: 

4lT 
Wt = -w2, 

EP 
(10) 

bJ2j3 - (w2> + -& = 0. (11) 

Eq. ( 11) is a third order polynomal equation of w2 
and has meaningful solutions (positive w2) onlu when 

Ep 5 25/23-‘& KS 13.5034. (12) 

The stationary solutions for the normalized beam 
width and pulse duration are plotted in Figs. 1 and 2. 
There are two branches of solution. After linearizing 
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1000. 

Fig. 2. Pulse duration w( versus pulse energy Ep. 
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Fig. 3. Amplitude, pulse duration and beam width from numerical 

simulation. 

Eqs. (6)-( 9) near the stationary solutions and exam- 
ining the eigensolutions of the linearized equations, 
we find that only the upper branch of the solution is 
stable. It should be noted that the normalized beam 

width and pulse duration of the solitary pulse are con- 
trolled by a single parameter, the normalized pulse 
energy. At the critical energy given by Eq. ( 12), the 

system is on the edge of stability and the peak power 
of the pulse is exactly equal to the value obtained 
from the cw analysis [ 51. 

To verify the predictions from the variational 
method, we have performed direct numerical simu- 
lation of the paraxial wave equation (3) We take 
advantage of the cylindrical symmetry to reduce the 
computational complexity by one dimension and use 
finite difference beam propagation method to prop- 
agate the pulse. The solutions from the variational 
method are used as the initial conditions. We have 
calculated the peak amplitude, pulse duration and 
beam width for solitary pulses with the normalized 
pulse energy Ep equal to 2,4,6,8,10,12. The pulse 

0 2 4 6 

Normalized Transverse Distance 

Fig. 4. Spatial pulse shapes sampled at z = 0,2,4, . . . . 32 (from 

bottom to top). 

Fig. 5. Temporal pulse shapes sampled at z = 0,2,4, . . . . 32 (from 

bottom to top). 

parameters for Ep = 10 are shown in Fig. 3. The 
evolutions of spatial and temporal pulse shapes are 
shown in Figs. 4 and 5. The pulse duration plot- 

ted in Fig. 3 is defined by the second moment: 

[s t21u(0, 0, z, t) 12dt/ J lu(O,O, z, t) 12dt] ‘j2. For a 

sech pulse, it is equal to 0.9069 wt. The beam width 
is defined in a similar way. We find that the solu- 
tion near the critical energy is sensitive to the initial 
conditions. To get quasi-stationary solutions shown 
in Fig. 3, the actual initial conditions we use are 
A = 1.280, w = 0.9329 and wt = 1.083, of which A 
and wt are 1% smaller than the variational solution. 
For one-dimensional solitons with a pulse duration 
equal to 1, one normalized distance unit is equal to 
2/7r soliton period. Our simulation is carried out up 

to 32 normalized distance units, which should be 
long enough to verify the existence of solitary pulses 
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with a pulse duration around 1. The accuracy of our 
numerical simulation is checked by monitoring the 

pulse energy and the error is found to be of the order 

of 10m5. From Fig. 3, it can be seen that the solution 

is stable and behaves almost like real solitons. From 

Fig. 4 and 5, it can be seen that the pulse shapes 
during propagation stay close to our solution ansatz. 
The small fluctuations of the pulse parameters in Fig. 

3 indicate that the initial pulse parameters and pulse 

shapes we assume are close to, but not exactly the 
real stationary solution. The small mismatch causes 

the solution to oscillate around the stationary solu- 
tion. If we do not make the 1% adjustment of the 

initial A and w,, the solution is still stable but the 
pulse parameters will oscillate with a somewhat larger 

amplitude. For smaller pulse energies Ep 5 8, the 

discrepancy between the variational and numerical 
solution is even smaller. However, for a larger pulse 
energy Ep = 12, the solution seems to be unstable. 

This is because when the pulse energy is close to the 

critical energy, the solution ansatz Eq. (5) may not 
be accurate enough. From our calculation, we numer- 
ically prove the existence of solitary pulses in GRIN 

Kerr materials and find that our variational method 
accurately (within 1%) predicts the pulse parameters 
of solitary pulses for Ep 2 10. We have also tried the 

Gaussian temporal profile in the solution ansatz. The 

discrepancy between the variational and numerical 
solutions will be much larger even when the pulse 

energy is small. This indicates that the choice of 
the solution ansatz is very crucial in the variational 

method in order to achieve quantitative accuracy. 
To generate spatial-temporal solitary pulses exper- 

imentally, the group-velocity dispersion (GVD) has 
to be negative. One possibility is to work in the long 
wavelength regime, where it is easier to find materi- 
als that have negative GVD. Another possibility is by 
off-axially propagating the optical pulse along a helix 
or side-winding trajectory in GRIN materials [8,9]. 
Negative dispersion comes from the spatial dispersion 
which accompanies the winding optical path. In this 
way, one should be able to generate solitary pulses 
at a wide range of wavelengths [ lo]. As a numeri- 
cal example, assuming GVD in units of square see- 

onds per meter D = -2 x 10-26s2/m, a typical value 
that can be obtained in commercial GRIN materials 
by i.e., a SML-W2.0 (Selfoc Micro Lens-W type of 
2.0 mm diameter from NSG America Inc.), at the 630 

nm wavelength, stable spatio-temporal solitary pulses 
exist for pulse energy smaller than 15 nJ. For a pulse 
energy of 1 nJ, the full-width-half-maximum (fwhm) 

beam width is 23.7 pm and the fwhm pulse duration 

is 28 1 fs. Longer pulse duration can be achieved by re- 

ducing the pulse energy. The numbers above indicate 
that it is not difficult to generate such solitary pulses 
with popular femtosecond lasers. 

In conclusion, using both a variational approach and 
direct numerical simulation, we have investigated the 

propagation of spatio-temporal pulses in GRIN mate- 
rials with Kerr nonlinearity. We found that stable soli- 
tary pulses exist when GVD is negative and pulse en- 
ergy less than a critical value. The variational approach 
can accurately predict the pulse parameters when the 

pulse energy is not very close to the critical energy. In 

wavelength regions where material dispersion is pos- 
itive, the required negative GVD can be produced by 
off-axial propagation. The characteristics of solitary 

pulses, i.e., the normalized beam width and pulse du- 
ration, are controlled by a single parameter, the nor- 

malized pulse energy. Our analysis points out a sim- 
ple way to produce spatio-temporal solitary pulses in 

a wide wavelength range. 
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