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We study the asymptotic behavior of positive solutions of the semilinear elliptic
equation Au+f(u)=0in Q,, u=0 on Q,, where Q,={xeR":a<|x|<a+1}
are expanding annuli as a — oc, and f is positive and superlinear at both 0 and cc.
We first show that there are a priori bounds for some positive solutions u,(x) as
a — oo. Then, if we fix any direction, after a suitable translation of u, the limiting
solutions are non-negative solutions on the infinite strip. We can obtain more
detailed descriptions of these limits if u, is radially symmetric, least-energy, or
least-energy with a particular symmetry. 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper we are interested in the asymptotic behavior of positive
solutions of the semilinear elliptic equation

Au+ flu)y=0  in Q, (1.1)
u=0 on 0Q, (12)

where Q=0Q,={xeR":a<|x|<a+1} are expanding annuli in R" as
a— +o00, N22, and f satisfies the following conditions:
(H-0) fe CYR") and f(u) >0 for large u,
(H-1) f(0)=0 and f"(0)<0,
(H-2) there exists o > 0 such that uf"(u)>= (1 + o) f(u) for all u>=0,
(H-3) for large u,

Cu? for some p<(N+2)/(N—2)and C>0if N=3,

f(u)s{exp A(u)  with A(u) = o(u’) as u— o0 if N=2.
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The existence of positive radially symmetric solutions on annular
domains has been studied by many authors [1-3,9, 16, 18,22, 23]. The
existence of positive non-radially symmetric solution on a given fixed
annulus was first observed by Brezis and Nirenberg [4] for f(u) = u”, p less
than and close to (N +2)/(N—2). Regarding the two dimensional case,
Coffman [5] considered f(u)= —u+ u”, where p=2m+1 and m is a
positive integer. He showed that the number of rotationally non-
equativalent non-radial positive solutions is unbounded as a— .
Coffman’s method was to minimize the associated Rayleigh quotients on
the class of all radial functions and the class of functions which are
invariant under the rotating 2zn/k angles with k>2. By choosing
appropriate test functions, he was able to show that the minima become
different as soon as a is large enough. In [25, 26], Suzuki and Nagasaki
gave a simpler proof of Coffman’s results. Later, using the same idea,
Li [12] extended these results to N>=4 and pe(l,(N+2)/(N—2)). He
also treated problems in which the nonlinearity is non-homogeneous.

In [19, 20], the present author took a different approach in studying the
existence of many non-radial solutions. He studied (1.1) and (1.2) on
A,={xeRV:b<|x| <1}, N22, and took b€ (0, 1) as a parameter. He
also studied the linearized eigenvalue problems of (1.1) and (1.2) at radial
solution u,(|x|). When the domain is thin enough, ie., b is close to 1, then
up(|x|) is unstable with respect to certain non-radial modes w and the
associated energy decreases along the direction w. Therefore, some non-
radial solutions with the same symmetry as w can be obtained. In general,
as the domains become thinner, more non-radial solutions with less sym-
metry can be generated. A similar result also holds for expanding domains
as a > + oo

Note that problems on expanding annuli £, are related to those on
shrinking annuli 4, by suitable transformations. Indeed, they are equivalent
when f(u) = u” for the following reason: ii(x)=(a+ 1)'? "2 u((a+ 1) x) is
a solution on A, with b=a/(a+ 1) if and only if » is a solution on Q,.
The problems on thin domains have been studied extensively by Hale and
Raugel in [12-14].

In [17], the author also studied the asymptotic behavior of positive
solutions u,(x) of (1.1) and (1.2) on 4, as b — 0*. After obtaining a priori
bounds for u,, he was able to prove that all positive solutions are
necessarily radially symmetric when b is small enough, and the limits of «,
are positive solutions of (1.1) and (1.2) on a unit ball as 5 — 0*. Therefore,
it is of interest to investigate the other asymptotic problem: what are the
limits of solutions u,(x) as b— 177

Since there are many non-radial solutions with different symmetries as
b— 17, it is reasonable to expect that the limiting behavior of solutions is
relatively complicated.
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In this paper, we study the limits of solutions as » — 1~ by considering
(1.1) and (1.2} on expending annuli, which are easier to work with. We first
show that there are a priori bounds for some positive solutions u,(x) as
a— oc. Then, if we fix any direction £e SV~ !, the unit sphere, after a
suitable translation of u,, the limiting solutions are non-negative solutions
of (1.1) and (1.2) on the infinite strip S;={t+n:1€(0,1), e R" and
&.n=0}. Furthermore, we can obtain more detailed descriptions of these
limits if u, is (i) radially symmetric, (ii) least-energy, or (iii) least-energy
with a particular symmetry.

We also remark that Ni and Takagi [24] studied the asymptotic
behavior of least-energy solutions to a semilinear Neumann problem on a
fixed domain when the diffusion coefficient tends to 0.

The paper is organized as follows. In Section 2, we briefly discuss the
existence of positive non-radially symmetric solutions with a particular
partial symmetry by using a Nehari-type variational method and spectral
analysis. In Section 3, we derive some a priori bounds for several classes
of positive solutions, which including radially symmetric solutions and
least-energy solutions. In Section 4, we study the limits of positive radially
symmetric solutions as a— o0. In Section 5, we study the asymptotic
behavior of least-energy solutions u* as a— oo. We prove that after a
suitable rotation and translation the energy of the #}’s will concentrate on
one infinite strip and their translations will converge to the positive, least-
energy solution on that infinite strip. In Section 6, we study the
asymptotic behavior of least-energy solutions with a particular partial
symmetry. The limiting solutions are least-energy solutions on infinite
strips of lower dimensions. Finally, in the Appendix, we review some
results concerning the Bessel functions and Green’s functions of —4 on
Q, as a— oo.

2. SYMMETRY-BREAKINGS

In this section we shall briefly discuss the existence of positive non-radial
solutions of (1.1) and (1.2) on expanding annuli. These problems are
parallel to the problems on shrinking annuli 4, which have been studied
in {19, 20].

We first introduce a Nehari-type {22] variational method and then use
spectral analysis to study (1.1) and (1.2) at positive radial solutions. We
consider the functionals

Ew)=[ {3 1Vul’ — R,
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and

Jay=[ {1Vl —u flu*))

2
on Hy(£2,), where F(u)=[g f(1)dr and u* =max{u, 0}, and manifold
M=M,={ue H{(RQ,): J(u)=0 and u #0}.
For N2=2, let u, be a positive radial solution of (1.1) and (1.2) on Q.
The linearized eigenvalue problem of (1.1) and (1.2) at u, is
Aw+ f(u,) w= —puw in 2,, (2.1)
w=0 on 6%2,. (2.2)

In spherical coordinates, (2.1) and (2.2) are equivalent to

N-1 .
9"+ —— /(1) + {f’(ua(r)) - ‘:—} o(r)

= —p, (u,) @(r), a<r<a+l1, (2.3)
pla)=0=¢pla+1) (24)

where o, =k(k+N—-2), k=0,1,2,.., and I=1,2, ... Note that «, are
eigenvalues of Laplacian —4 on S~ the unit sphere. For k> 1, the
space Sy , of associated eigenfunctions of —4 on S¥~! is given by
Swi={Yi:S" "> R' Y, (x)=Pu(x) for |x| =1, where P,(x) is a har-
monic homogeneous polynomial of degree k on R™}. The associated
eigenfunctions w, , of (2.1) and (2.2) are given by w, ,= ¢, ,¥,. ForI=1,
we shall denote ¢, , by ¢,.

We now have the following result concerning the non-radial instability
of positive radial solutions.

Lemva 2.1, Assume conditions (H-0)~ (H-2) are satisfied. Then, for
each k=1, there exists an a,=a,(N,a)e(0, ) such that for any
ac€(ay, oo} and any positive radial solution u,, we have u, (u,) <O0.

Proof. p, | =p (u,) can be characterized as

Mt =inf{Qk(u)/J”+l rVYldrive H)((a,a+1))and v;éO}, (2.5)

a

where
a+1
Q,‘.(v)=f PN {u’z—f’(u”) v2+%vz} dr.

From (2.5), it is clear that g, | is strictly increasing in k.
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Since u, i1s a solution of (1.1) and (1.2), we have

jgg IVuu|2=[Q u, flu,).

a

By (H-2) and (2.6), we have

on Qi) = | {uafu) =)l 4oy | ude?

a

< —of |Vua|2+aka‘2j uz,

2, 24

<(—ail(a)+aka*2)'|- uZ, (2.7)
2,

where wy is the area of S~ ! and A,(a) is the least eigenvalue of —4 on
0, with the Dirichlet boundary condition. Note that in deriving (2.7), the
Poincaré inequality

W@ | <]

2, 9]

|Vo|? (2.8)

for all ve H(£2,) has been used. Now

lim A,(a)=n> (2.9)

a — o

(For details see Lemma A.1 in the Appendix.) Hence, there is an increas-
ing sequence a, | oc such that

Maya*zuo, /o (2.10)

for all ae(a,, o). The lemma follows immediately. The proof is complete.

Next, we recall our earlier results in [19] concerning the change of
E(u) along the direction of non-radial mode w, at positive radial solution
u,.

Lemma 2.2, Assume conditions (H-0) ~ (H-2) are satisfied. Let u, be a
positive radial solution of (1.1) and (1.2), w, and w, be associated eigen-
functions with respect to po , and p, ,, k> 1, respectively, and {5 w=
(o, wi=1. Then there exist ¢>0 and a smooth function &:(—¢, ) — R
with 6(0) =6'(0) =0 such that for any te(—¢, &), we have

Ju,+6(t) wo+1tw,)=0. (2.11)
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Moreover, we have
E(u, +8(t) wo + twi) = E(u,) + Sug | 82(0) + Sup 1 2+ O(rY),  (2.12)

Jor t~0.

For the proofs of (2.11) and {2.12), see Lemmas 6.1 and 6.2 in [19].

The subgroups of O(N) that will be used to specify the partial sym-
metries later are G, x (N —2) and O(/)x O(N — 1), which are defined as
follows:

For k =2, the rotational subgroup G, is defined by

2nl 2nl

sz{ge O(2):g(x1,x2)=<x1cos—Z«+xzsin7n,
* X, sin 2nl+x cos 2711)
1 k 2 k ’

(x,,x,)€ R? and [ is an integer}.

Furthermore, the following submanifolds of M with certain symmetry
will be useful later.

Vi={ueM: ueG,x O(N-2)}, (2.13)
and

Z={ueM: ueO(l)x O(N—1)}. (2.14)
for 2<I<N—1I

The following lemma shows that S, , can provide eigenfunctions of
G, x O(N —2) symmetry for all k> 1, and more symmetric eigenfunctions
when the dimension N 2 4. For details see [20].

LemMma 23. Let (p,0) be the polar coordinates in R>. Then for
N=2 and for each k=1, choosing Y, =p*coskl, we have w, =
@V € G x O(N —2). Furthermore, for N>4, k is even and 2<I<N -1
Then there exist ., such that w, =@, ,€0()xO(N—I).
Moreover, for any decomposition L=(I,,..,1)) of N, j=2, ie, [, satisfies
(i) 4,22 for each i and (ii) 3i_,1;=N, there exist Wi ;=@ Y, L=
QY L€ OU ) x - x O

On the basis of Lemmas 2.1-2.3, it is easy to obtain the following
theorem; for details see [20].



ASYMPTOTIC BEHAVIOR AND EXPANDING ANNULI 261

THEOREM 2.4. Assume conditions (H-0) ~ (H-3) are satisfied. Then there
exists an increasing sequence a,— oo as k- oo, such that for any
ae(ay, o), (1.1) and (1.2) have a positive non-radial solution u;eV,, and
the u;’s are non-equivalent for j=1, 2, .., k. Furthermore, if N> 6, k is even,
3<IKN-I and ae(ay, o), then there exist non-equivalent positive non-
radial solutions u, ;e X,

3. A Priori Bounbps

In this section, we shall show that there are a priori bounds for some
positive solutions of (1.1) and (1.2) when a is large. These results are
essential in studying the asymptotic behavior of positive solutions as
a— .

We first prove the following result for positive radial solutions of (1.1)
and (1.2) under a very weak set of assumptions.

THEOREM 3.1.  For any aye(0, ov), let

A =sup A(a) (3.1)

ap<d

If f satisfies (H-0) and
(H-2) there are ¢ >0 and U >0 such that for any u>= U,
Ja) = (A +é)u, (3.2)

then there is a positive constant C=C( A, ¢, U, a,) such that for any
ae{aqy, o) and any positive radial solution u, of (1.1) and (1.2), we have

lugll ooy 0l e and  Jugl . <C. (3.3)

Proof. In the following, we shall use C as a generic constant that
depends only on A,¢ U and a,. Since u, is a radial solution on £, u,
satisfies

u”+ﬁ:_lu’+f(u(r))=0 in (a,a+1), (34)

u(a)=0=u(a+1). (3.5)

Let 4,=4,(a) and let w,(r})>0 be the associated eigenfunction of —4 on
Q, with ||w,|| . =1. Thus w, satisfies

w’ + w+i,w=0 in{a,a+1), (3.6)

w(a)=0=w(a+1). (3.7)
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Therefore, by (3.4) ~(3.7), we have

a+1

a+ 1
j rN"f(uu)W'aziaJ M uw,.

a a

On the other hand, by (3.2), we have

rH N (u ) w, = (A -+-e)j

¥
a S,

where

SH={re(a,a+1):u,r)=U},
and

S, ={re(a,a+1):u,(r)< U}.
Hence,

a+1 a+1
J N ) w, = (A +£)f N lu,w,
[}

a

N, wa+J o u )y w,,
S

(3.8)

a+1
—(A +s)UJ rN"wa+f YU uyw,.
q S

a

If we combine the last inequality with (3.8), we have shown that there is

a positive constant C such that

a

a+1 a+1
j u,w,<C  and f fuyw,<C.
a

(3.9)

Now, it is known that u, has a unique maximum in (@, a+ 1), which is
denoted by #, (see [9]). Furthermore, by the symmetry results of Gidas

etal [10], we have

=

N.sa+

and

u,(ry<o in(n,,a+1)

(3.10)

(3.11)

Let 6 € (0, 3). Then by Lemma A.1 there is an m = m(J, a,) >0 such that

wia+1—-38)=m,

(3.12)
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and
wi(r)<0 in(a+ia+1) (3.13)

for all ae(aq, ).
By (3.9), (3.10) and (3.11), we have

a+1-—-46
j ugw,> (=8 ua+1—08)wa+1-05),

a+ 1/2

which entails that
ua(a+1—5)<(%—5)*‘m*‘C. (3.14)

Therefore, by (3.9), (3.10), (3.11), and (3.14), there is a positive con-
stant C such that

a+1
{ Slu,)<C (3.15)
Na
Now, for any re(n,,a+ 1), (3.4) entails

— Nl (ry = fr sV U (u,(s)) db.
Na
Hence, (3.15) implies
—u(r)sC (3.16)

for re(n,,a+ 1) and some positive constant C. Therefore, there is a
positive constant C such that

)l <C. (3.17)

Furthermore,

[ fun<c (3.18)

a

for some positive constant C.

Next, we want to prove the u,’s are uniformly bounded for ae [a,, ).
By (3.16), it suffices to show u/(r)< C also holds for re (a, n,). To do so,
let a<b<n,<b,<a+1 such that

ua(b)=ua(b1)' (319)
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Integrating (3.4) from b to b,, we have

b b
HL(b)—u;(b,)+(N_1)%_(1\/_1)"01() 1)
1

—fh‘ ~ u +J Sflu,).

By (3.16) ~(3.19) and the last equality, we have
ol <C (3.20)

for some positive constant C.
Finally, the uniform bound of «! follows by (3.4), (3.17) and (3.20).
The proof is complete.

Next, we shall show that the L*-norm of positive solutions can be
bounded by their H'-norm when (H-3) is satisfied. We begin by proving
the following lemma:

LemMma 3.2, Assume condition (H-3) is satisfied. Then there exist
positive constants C and t such that for any positive solution u, of (1.1} and
(12Y on 2,, ae[0, o), we have

Nutall o < CCL+ (Vi |l5). (3.21)

Proof. The proof of this lemma is similar to that of Lemma 2.3 of
[17], in which jju]| . is bounded by [|Vu|, and the volume of the domains.
Since the volume |Q,] of Q, tends to oc as ¢ — oo, to prove (3.21) we
need to modify of the argument in [17] slightly.

Thus instead of bounding { u* by

f W QI ), (322)
(]
as in line 5 of p. 622 in [17], we shall bound it by

Hu”,(\ Hu|‘2p/(a+1) 2) Hu”;iz (3'23)

Here it is assumed that ||lu||,, ,> 1. The rest of the argument is the same
as in [17]. We therefore know that there exist constants C,>0 and
a, fe(l, o) such that

el o < CLLH 2l 5L+ Vel 5), (3.24)
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Since there is a positive constant 4 such that
Aa)=7 (3.25)

for all ae [0, ov), where £, i1s the unit ball, therefore, by (3.24), (3.25) and
the Poincaré inequality, (3.21) follows. The proof is complete.

An immediate consequence of Lemma 3.2 is the existence of a priori
bounds for least-energy solutions u* of (1.1) and (1.2) on Q,; here u}
satisfies

E(u})=inf{E(u): ueM,}. (3.26)

THEOREM 3.3. Assume (H-0)~ (H-3) are satisfied. Then there is a
positive constant C such that for any least-energy solution u} of (1.1) and
(1.2) on 2., ae [0, ov), we have

fuXl..<C. (3.27)

Proof. Let R,=(a+3},0,..,0) and B,,(R,) be the ball of radius }
centered at R,. Let & be a positive radial solution of (1.1) and (1.2) on
B, ,(0), where O is the origin. Then #,(x)=1d(x— R,) solves (1.1) and
(1.2) on B,,(R,). Since B,,(R,)c£,, we may extend #, by 0 in
Q,—B,(R,) and still denote it by &, Therefore ii,eM, and
E(a,)= E(i), which implies

E(u}) < E(a), (3.28)
a constant independent of ae [0, o).

To show (3.27), it suffices to prove there is a positive constant C; such
that

Va3 < Cy E(u) (3.29)
for all ue M, and a€ [0, o). Indeed, it is easy to verify (H-2) entails
(H-2)* wf(u)2(2+0) Flu) for all u=0.
Therefore, for any ue M,

E(u)=f {éuf(u)—F(u)}%’f

2, Q

uf (u) =}'J Va2, (3.30)
a gtl
where y=1/2 —1/(2 + o) > 0. Hence, (3.29) follows. Now (3.27) follows by
(3.28), (3.29) and Lemma 3.2. The proof is complete.

It is not clear whether all positive solutions can be uniformly bounded
by some positive constant as a — o¢ under the assumptions (H-0) ~ (H-3).
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However, we can obtain an a priori bound for positive solutions of (1.1)
and (1.2) on Q,, a€[0, ov), by assuming f behaves like #” as u— oo, as
Gidas and Spruck [11] did for a fixed domain.

THEOREM 3.4. Assume [ satisfies (H-0) and
(H-4) there exists pe (1, (N +2)/(N—2)) such that

lim f(u)/u”=1>0. (3.31)

u— o

Then there exists a positive constant C such that for any positive solution
u, of (1.1y and (1.2) on Q,, ae[0, x), we have

luyll < C.

Proof. The proof of this theorem is similar to a proof used by Gidas
and Spruck [11]. In their proof, they used a blow-up technique and the
following uniqueness result:

If V' is a non-negative solution of

AV+ V=0 in RY,
where pe (1, (N +2)/(N~-2)), then
V=0. (3.32)

Suppose the theorem is false. Then there exist a sequence
{a,} =[0, o), a sequence of points P,eQ,=0,, and functions u,=u,_
such that

L,=max u,(x)=u,(P,) > (3.33)

x € $2,

as n—oo. If P,— Pe R, then {a,} is bounded. Therefore, by an argu-
ment like that in [11], we obtain a contradiction to (3.32). Therefore,
(3.33) is impossible.

On the other hand, if {P,} is unbounded, then we may assume that
P,=(5,,0.,0) and b, — oc. Now, let

y=(x——Pn)d';la
and

Vy)=a""Du,(x),
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where «, is chosen such that
a,z,/“’“”L,,=l.
The remaining argument is similar to that in [11] and implies a

contradiction to (3.32). Hence, (3.33) is again impossible. The proof is
complete.

4. LiMiTING BEHAVIOUR: RADIAL CASE

In this section we shall briefly discuss the asymptotic behavior of
positive radial solutions of (1.1) and (1.2) on , as a— oo. It is natural
to study the equations

v"(s)+ flu(s)) =0 in (0, 1), (4.1)
v(0)=0=1v(1), (4.2)

which are the limiting equations of (3.4) and (3.5) as a — oo. Indeed, for
any radial solution u, of (3.4) and (3.5), let

v,(s)=u,la+s) (4.3)
Then v, satisfies
N -1 .
v+ ——0v + f(v)=0 in (0, 1), (4.4)
a+s
v(0)=0=0o(1). (4.5)

The following theorem is an easy consequence of the uniqueness result of
Ni and Nussbaum [23] and Theorem 3.2.

THEOREM 4.1. Assume f satisfies (H-0) and

(H-2)"  uf'(u) > flu)>0 for all u>90.
Let

LN =2) —1 :
Oz{“N 1) 1} if N3 46)

{1—e-1}-! if N=2.

Then, for any ae€(ay, oc), there is a unique positive radial solution u, of
(1.1) and (1.2) on Q, and the associated solutions v, of (4.4) and (4.5) tend
to V uniformly as a — o, where V is the unique positive solution of (4.1)
and (4.2).
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Proof. The uniqueness of the positive radial solution of (1.1) and (1.2)
on Q,, ae{a,, ), follows by [23]. The uniqueness of the positive solu-
tion of (4.1) and (4.2) can be proved either by computing the associated
time map or by studying the linearized eigenvalue problem with the help
of the Sturm Comparison Theorem. The details of the proof are omitted.

Since v, satisfies (4.4) and (4.5), by Theorem 3.1, it is easy to verify that
v, tends to V' uniformly on [0,1] as ¢ — cc.

The proof is complete.

We shall need the following notion in order to state more general
results later.

DerINITION 4.2. Let ¥ be a solution of (4.1) and (4.2); then V is called
non-degenerate if 0 is not an eigenvalue of the linearized eigenvalue
problem

"+ /' (V)o=—pp  in(0,1), (4.7)
@(0)=0=¢(1). (48)

THEOREM 4.3. Assume f satisfies (H-0), (H-1) and (H-2)". If a,,— o as
n— o and v,=v, Is a solution of (44) and (4.5), then there is a sub-
sequence T, of v, such that ©, converges to a positive solution V of (4.1) and
(4.2) in C3[0,1]) as n— .

Conversely, if V is a positive non-degenerate solution of (4.1) and (4.2)
then there is a* >0 such that for any ae(a*, ), (4.4) and (4.5) have a
positive solution v, and v, converges uniformly to V as a — oo.

Proof. The first part of the theorem follows easily by Theorem 3.1 and
by applying the Arzela-Ascoli theorem. We need only to verify that the
limiting function V' is positive in (0, 1). However, for any positive solution
u, of (1.1) and (1.2), we have

f (flu,)— i@y u,)w,=0, (4.9)
@,

which implies
sup f(u,(x))/ux)= i (a). (4.10)
xe,

Therefore, there is a positive constant m such that
luyll o =m. (4.11)
Now, by (3.3) and (4.11), we have

IViezm.



ASYMPTOTIC BEHAVIOR AND EXPANDING ANNULI 269

To prove the second part of the theorem, we rewrite Eq.(4.4) as

v"(s) +¢ lsu'(s)+f(u(s))=0 in (0, 1), (4.12)

l1+e

where ¢ =1/a. Therefore, (4.12) and (4.5) are equivalent to the integral
equation

o s) =f1 G.(s, 1) flu(2)) dt (4.13)
o
where G, is the Green’s function of —(d?/ds®+¢&-(N —1)/(1 +es)(d/ds))

with Dirichlet boundary condition (G, is given explicitly in Lemma A2 in
the Appendix). Now consider the nonlinear operator

He o =v- [ G0 Sl dr

which is defined on (—gg, &) x Co([0, 1]), where £,>0 and small. Then
His C'. If V is a positive solution of (4.1) and (4.2), then

H(0, V)=0.

Furthermore, if V is non-degenerate, then (8H/dv)(0, V') is invertible on
Co([0, 1]). Therefore, by the Implicit Function Theorem, there is an
£,€(0,&,) and a continuous function w(-):(—¢g,,&,)— Cy([0,1]) such
that H(e, w(¢))=0 for all ee(—¢,,¢;) and w(0)= V. Hence, the theorem
holds.

The proof is complete.

Remark 44. 1f v, converges to V in C*([0,1]) as a— cc, then
E(v,)={CE(V)+o0(1)} a"’ (4.14)

as a — oo, where C is a positive constant and
Ev)=[ (32 -Fp)).

Note that E(V)>0 if (H-2)" is satisfied. From (3.28), (4.14) and some
energy estimates in Section 6, it can be shown that the greater the
symmetry of solutions the larger their energies.

505:120/2-2
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5. LIMITING BEHAVIOUR OF LEAST-ENERGY SOLUTIONS

In this section we shall study the asymptotic behavior of least-energy
solutions of (1.1) and (1.2) as a — .
We shall need the following notations.

DerFINITION 5.1. For any £eS” !, the unit sphere, the infinite strip

with unit width that is perpendicular to £ is denoted by
S:={t&+n:1€(0,1),ne R and &y =0}. (5.1)
The two parallel planes Pg and Pi, that cover S; are given by

Po={neRY: & n=0) (5.2)
and
Pl={l+n:nePl}. (5.3)

The translation of €, along the &-direction to the origin is denoted by
Q& ={x—al:xeQ,}. (54)
The domain with a cap shape is defined by
K,.=K/(6)=8.n8, .. (5.5)
For any function u, defined on £2,, its translation along the &-direction,
v, {x)=u,x—al), (5.6)

is defined on @,(¢) and in particular it is well-defined on K, .. For these
v, :» we may extend them to

K, .=S\K, . (5.7)

by 0, and still denote these extensions by v, .. In particular, if
£=¢&,=(1,0,..,0), then the above notations are simplified as follows:

S=8,=(0,1)x RN, (5.8)
Q,=0,&), (5.9)
K,=K, ., (5.10)

and

v,=U, .. (5.11)

a a,$|
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After this preparation, we can prove a simple generalization of
Theorem 4.3 on each direction £eSV¥— 1,

THEOREM 5.2.  Assume conditions (H-0) ~ (H-3) are satisfied. If a,, — o
and {u,} is a sequence of positive solutions of (1.1} and (1.2) on Q,,, with

luall o <€ (3.12)

Jor some positive constant C, then for each ¢ € S¥ ™', there is a subsequence
la,} of {a,} such that the translated solutions v, :=v, . satisfy

v, s V: pointwise in S, (5.13)

g <

and the convergence is in C*(K) for any compact subset K of S:, where
V.20 is a solution of (1.1) on S and

V.=0 on PIUP;. (5.14)
Furthermore, if
max v, (t&)2m>0 (5.15)
re[0.1]
for all v', then
V:>0 in S;. (5.16)
Proof. 1t is clear that
K, :<K, : (5.17)
if a, <a, and
U K..=S: (5.18)

for any a,>0. Therefore, for any compact subset K of S, there is an n,
such that

K, 2K (5.19)

for all n=n,. Then, using (5.19) and L’-estimates, Schauder estimates,
and the Arzela-Ascoli Theorem, there is a subsequence {v,. .} of {v, .}
such that v, . converges pointwise to V. in S; and uniformly in C*(K) for
any compact subset K of S, where V.>0 is a solution of (1.1) on S,.
Finally, by an argument similar to that used in proving Theorem 4.3, it is
easy to see that (5.16) holds when (5.15) is satisfied.

The proof is complete.
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Remark 5.3. Let
Ca‘f:a§+Ku.s‘

={al+n:nek, }. (5.20)

Then, for any ¢ # ¢ we have

Co:enCoo=¢ (5.21)

I3
+ 6

if a is large enough, although their translations X, . and K, . may have
non-empty intersections.

Since the limiting behavior of positive solutions can be characterized by
solutions on an infinite strip, it is necessary to review some of that results
concerning (1.1) and (1.2) on infinite strips which have been studied by
several previous authors [8§, 217.

PrROPOSITION 5.4. Assume f satisfies (H-0) ~ (H-3).

(i) For any ueH(‘)(S), we have
72l W< Vu|% (5.22
L _[S V] )

(ii) Let Q be a domain in R". Then for any ue H)(R2), u>0, there
is a unique te (0, oo) such that

J(tu) =0, (5.23)

and
J(',u)y>0 if te(0,1), (5.24)
J" u)y<0  if et o). (5.25)

(ii1) For each a >0, let

I =inf{E(u):uec H)S),u#0 and J(u)= —o} (5.26)

and
I=KS)=inf{ E(u): ue H(S), u#0 and J(u) =0} (5.27)

Then

0O<i<I_,. (5.28)
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(iv) 1 is achieved by some V* e H(S), which is a positive solution of
(1.1) and (1.2) on S.
(v) Let

Hy (S)={ue HyS): u(x,,y)=u(x,,|y]), where ye R¥"'}.
When N =2, we also assume u(x,, |y|) is non-increasing along |y|. Let

I,=inf{E(u):ue H, (S), u#0 and J(u)=0}. (5.29)
Then
I =1 (5.30)

5

and is achieved by some V. e H, (S), which is also a positive solution of

(1.1Y and (1.2) on S.

Proof. (i) (5.22) was proved by Esteban [8]. Note that n? is the first
eigenvalue of —4 on (0, 1) with the Dirichlet boundary condition. In [8],
it was shown that a similar result holds for a general strip-like domain
wx R', where w is a bounded smooth domain in R™.

(11) This result was proved by Ding and Ni [7]. Indeed, for
se(0, o)

gsmu):j {5 1Vul? = uf (su))

=1J(su) (5.31)
s

and
2

g? E(su) =j {|Vu|? = u?f"(su)}
=s~2J {1V (s)|2 = (su)? f"(su)}. (5.32)
Therefore, (d/ds) E(su)|,_,=0 if and only if J(tu) =0, ad in this case,

dzE — 2 2 0
T Elsu)l, o, =t f{zuf(zu)—(zu) f'(tu)} <0.

Therefore, there is a unique global maximum of E(su) in (0, c0) at the
zero of J(su).
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(1) This was proved by P. Lions in Theorem III.1 (p. 269) of [21],
and the dichotomy case in applying the concentration compactness
principle is ruled out.

(iv) By our assumptions on f, Lemma L1 (p.231) in [21] is
applicable and the vanishing case is ruled out. When we combine (iv) with
(i), I is achieved by some V*e H (S).

(v) That result that /, is achieved was proven by Esteban in [8].
To show (5.30), let ¥ be the Steiner-symmetrization of V'* with respect to
x, =0, Le,

Vix,, yy=Pix,, Iy (5.33)

for all ye RY ' and x,€(0, 1). Then, it is known that

[ onoy=[ oo, (5.34)
jF(U):jF(U*), (5.35)
and
jlvmzs[ IVU*)2. (5.36)
See the reference in [8].
We claim that
[ivapr=] o (5.37)

Otherwise, (5.34) ~ (5.36) imply

JOY<J(U*)Y=0
and
E D)< EU* =1,

which also imply 7 ,<I, where a= —J(U), a contradiction to (5.27).
Since 1</, and (5.34) ~ (5.37) imply I,<1, {5.30) follows. The proof is
complete.

Before giving a detailed description of the limiting behavior of
least-energy solutions, we need the following lemma, which states that a
least-energy solution on S can be approximated by one on K, as a — oo.
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LEMMA 5.5. Assume conditions (H-0) ~ (H-3) are satisfied. Let w, be a
least-energy solution of (1.1) and (1.2) on K,. Then

w,— V. pointwise in S

and the convergence is in C*K) for any compact subset K of S, where
V.>0 is a minimizer of I,. Furthermore,

lim E(w,)=1,. (5.38)

Proof. It is clear that the minimization problem
inf{ E(u): ue HyK,), u#0 and J(u) =0}, (5.39)

can be solved by some w, e H/(K,) that is also a positive solution of (1.1}
and (1.2) on K,. Furthermore, by the symmetry principle of Gidas et al.
[10], wulx,, y)=w,(x,|y|) Since K,#K, if a<a', we have E(w,)>
E(w,) if a<a'. By the result of Esteban [8], there is a We H(‘,, {S) such
that

w,— W>0 in S
and

lim E(w,)=E(W)>1,. (5.40)

Next, we claim that
1> E(W). (5.41)

Let V, be a minimizer of /, and ¢, H, (K,) such that 0< ¢, <1 and
@, 1 inSas a— o (5.42)

and the convergence is uniform on any compact set in S. Then, by
Proposition 5.4(11) there is a t,e(0, co) such that

J(t, o, V)=0. (5.43)

Then we have
E(w, )< E(t,0, V) (5.44)

We claim that
im E(1,9,V,)=E(V,). (5.45)

a— x
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To prove (5.45), it suffices to show that

lim ¢,=1. (5.46)

a— o

Since f is superlinear as u— oo, it is easy to verify ¢, is bounded above.
On the other hand, I,>0 implies 7,>m> 0 for large a. Finally, if 1, -7
as a,— o, then (5.43) implies J(7V,)=0. Hence 7=1 by Proposition
5.3(i1). Therefore, (5.46) follows, and (5.41) does as well. The proof is
complete.

THEOREM 5.6. Assume [ satisfies (H-0)~(H-3). Let u* be a least-
energy solution of (1.1) and (1.2) on Q,, and

max ]”:(’€1)= e - (5.47)

te[a,a+}
Let v, be the translation of u} according to (5.6). Then

v,— V* in S (5.48)
and
u¥—0 uniformly in Q,—C,. (5.49)

Proof. Since K, ,, we have
E(uy) = E(v,) <E(w,), (5.50)

where w, is a minimizer of £ on K, obtained in Lemma 5.5. Hence by
(5.50) and (5.38) we have

hm E(v,)=1 (5.51)
and then
v,— V* in S,

where E(V*) =1
Next, we claim that

uX—-0 uniformly on £2,—-C,,.

Otherwise, there exists 6 >0 and a sequence @, oc and x,e,— C,
such that

u(x,)>6. (5.52)
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Since x,/|x,]e SV ™!, we may assume that x,/|x,|—>¢ceSY ! as n— 0.
If £#¢&,, then C,n C,(&)=¢ for large a, and by Theorem 5.2, we have

E(u}) > E(u} | C,)+ E(u} | C,(E))
>3 (5.53)

for large n, where

E(ul4)= [ {§Vul~ Flw),

for any subset 4 of RY. However, (5.53) contradicts (5.51), hence & =¢,.
Now, if x,/|x,| = &,, then x,e Q,— C, implies

X, —a,&;—>0=(0, .., 0)
as n— oo. Therefore,

Ua,,(xn_anél)'—’ V*(O)zo as n— oo,

a contradiction to (5.52). Hence u¥ — 0 uniformly on 2,— C, as a — oc.
The proof is complete.

A similar result holds for any sequence of positive solutions with
bounded energy; the details of this proof are omitted.

THEOREM 5.7. Assume f satisfies (H-0) ~ (H-3). If {u,} is a sequence of
positive solutions of (1.1), (1.2) on Q, such that

E(u,)<C (5.54)

for a,— oo and some positive constant C, then there are finite many
directions n, n,, .., n, such that

y
u, >0 uniformly on 2, — ) C.(n)), (5.55)

j=1

and the translated solutions v, ;=v,, , converge to V, which is a non-

negative solution of (1.1), (12) on S, , j=1, .., 1

In particular, we have the following result.

COROLLARY 5.8. Assume conditions (H-0)~(H-3) are satisfied. If
N=2and k=2, ae(ay, ©) and u, ; are least-energy solutions with G-
symmetry, j=1, .., k. Then, for each j, there are 5., n,=n,+2xfj, .. n,=
n, +(j— 1) 2=/j, directions such that their translated solutions v, ; converge
toV,as a— o, for i=1, .., j and u, ;— 0 uniformly on Q,—)1_, C,(n,).
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6. LEAST-ENERGY SOLUTIONS WITH PARTIAL SYMMETRY

In this section, we shall study the asymptotic behavior of some least-
energy solutions with partial symmetry. We shall concentrate on positive
solutions with O(2)-symmetry when N=3 and with O{(/)x O(N—1)-
symmetry when N>4 and 2</< N -1

We begin with the case where N=3. Suppose ue H}(Q,) is O(2)-sym-
metric. We may assume, without loss of generality, that «, is rotationally
symmetric with respect to the z-axis. Hence, in spherical coordinates
x=rsinfcosg, y=rsinBcosqp, z=rcosB, Be[0,n) and @e[0,2n).
Then

u=u(r, ), (6.1)

or equivalently, in cylindrical coordinates x=pcos¢, y=psine,
s, ¢el0,2n],

u=u(p, z). (62)
Let
D,={(x,z)eR*: a*<x*+z<(a+1)?}.

Then, with each ue H)(2,) with O(2)-symmetry, we can associate a
unique we H{(D,) such that

w(x, z) =u(x, z) (6.3)
and
w(—x, zy=u(x, z) (6.4)

for all (x,z)e D,, and vice versa. From (6.4), it is clear that
—(0,z)=0 6.5
ax( ) (6.5)

for all ze(a,a+1). Now the energy of u can be expressed in terms of w
by

E(u) =E“'(W)Enf Ix] {3 1Vw|® = F(w)}, (6.6)

Dy

and

Jay=Jwy=m [ 1x] (19w = wf(w)}, (6.7)

Dy
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Define
I’ =inf{ E(u): ue M, and u is O(2) — symmetric}; (6.8)

then we have
I} =inf{ ES(w): we Hy(D,), w#0, J*(w)=0 and w satisfies (6.4)}.  (6.9)

Furthermore, if u is a solution of (1.1) and (1.2) on 2, with O(2)-sym-
metry, then w satisfies

[ ow
Aw+;5;+f(w)

i

0 inD, (6.10)

w=0 on 0D,. (6.11)

Now, for each ae (0, oc), let u? be a positive least-energy solution of (1.1)
and (1.2) on Q, with O(2)-symmetry, e,

Eu)=1I". (6.12)

Then, we have the following a priori estimates for /¢ and u?.

LeEMMA 6.1. Assume conditions (H-0) ~ (H-3) are satisfied and N=3.
Then there exists a positive constant C such that
lugll . <C (6.13)

and
Eu)<C (6.14)

Proof. For a>0, let P,=(0,0,a+3}) and B,=B,,(P,), that is, the

ball with center at 2, and radius . Let U, be a positive least-energy solu-

tion of (1.1) and (1.2) on B,. By the symmetry result of Gidas et al. [10],

U,=U,1) (6.15)
where
t=|(x,y,z)—P,|={x*+y*+(z—a—3)*}'"~ (6.16)

Hence, U,= U(p, z) is O(2)-symmetric. Furthermore, B, < 2, implies

E(u)<E(U,)=C,. (6.17)
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Hence C, is a positive constant that is independent of a, since U, can be
chosen such that

U ()=U,(-+P,—P,).

This proves (6.14). Therefore, (6.13) follows by (6.14) and Lemma 3.2.
The proof is complete.

On the other hand, if w, does not concentrate its energy on the
+(0, 0, 1) directions, then we shall prove that the energy E(u,) will go to
o0 as @ — oo,

LeMMA 6.2, Assume conditions (H-0)~ (H-3) are satisfied and N =3.
For ae(0, ), let u, be a positive solution of (1.1) and (1.2) on Q, with
O(2)-symmetry. If

flua..<C (6.18)
for some positive constant C, and

max u (a+tE)=zm>0 (6.19)
1€[0,1]

for some positive constant m and &€ S* with

E#1(0,0,1), (6.20)
then

E(u,)— o as a-—» oo. (6.21)

Proof. Let v, be the translation of u, along the ¢-direction, as in
Section 5. Then (6.18) and (6.19) imply

v,— V>0 inS, (6.22)

as a — oo, and the convergence is uniform in every compact subset of S,.
(Here we may choose a subsequence from {u,} if necessary.)
Now, by (3.30), we have

E(u,)=Ew,) >

N[~

J |x] |Vw|?
D,

a

%LM x| [Vwl2, (6.23)
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where 7 is rotated from ¢ to the x — z plane by keeping the #-angle fixed.
Then

n# (0, 1). (6.24)
Therefore, from (6.24), there is a constant m, > 0 such that
|x| =>m,a (6.25)

for all (x,z)e C, , and large a. Hence, by (6.23) and (6.25) we have

E(ua)zéym,aj [Vw|2.
Can

Now (6.22) implies

(Vw|22m,>0 (6.26)

Cq,

for some positive constant m, when a is large. Hence, (6.21) follows by
the last two inequalities. The proof is complete.

From the last two lemmas, we can obtain the following theorem.

THEOREM 6.3. Assume conditions (H-0) ~ (H-3) are satisfied and N =3.
Then

r-r as a-— o . (6.27)
and the associated translated solutions v’ satisfy
vl V>0 in S,, (6.28)

where £=1(0,0,1) or (0,0, —1) and V is a positive least-energy solution of
(6.10) and (6.11) on R'x (0, 1) with

[ o PRy =1

Proof. By Lemmas 6.1 and 6.2, we may assume the energy of E(u’)
concentrates in the £,=(0, 0, 1) direction. Let

C,=C

a, §30
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and «‘ be a positive least-energy solution of (1.1) and (1.2) on C,. Then,
the symmetry result of Gidas et al. [ 10] implies u, is O(2)-symmetric, and
we have

E(u') < E(uf).

By an argument like that used in Lemma 5.5, we can prove

lim E(u)=1"
Hence
limsup I, <1 (6.29)

On the other hand,
max ulla+t&;)=zm>0
1€[0,1]

for some positive constant m, which implies (6.28) holds and

lim inf 7% > I°. (6.30)

a — ¢

Hence (6.27) follows by (6.29) and (6.30). The proof is complete.

COROLLARY 64. Assume conditions (H-0)~ (H-3) are satisfied and
N=3. For any k 22, let u, , be a positive least-energy solution of (1.1) and
(1.2) on Q, with G -symmetry, ie.,

E(uu.k)zla,ks (631)
where
L, =inf{ E(u): ueV,}.

V. is given in (2.13).
Then

I,.—1 as a— oo (6.32)
for any k=2.

Proof. For k=2, it is clear that

E(u})< E(u, ) < E(u;) (6.33)
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for all a. Then (6.32) follows by Theorem 6.3 and (6.33). The proof is
complete.

Remark 6.5. The asymptotic results of G,-symmetric least-energy
solutions are very different for the cases N=2 and N =3, According to
Corollary 6.4, in the case N =3 all energy of u, , concentrates on the z-
axis eventually as a — oc. However, in the case where N=2, there is no
room for u,, to move all its energy into a single direction. Thus (6.32)
indicates the arguments in [5, 15] work only for N=2 or G, x O(N —2)-
symmetry for N >4 but not for N=3.

Finally, we shall discuss the asymptotic behavior of least-energy
solutions with O(/) x O(N —[)-symmetry, 2</< N-—-/and N>4

FOr X =1(X{, 0, X;, X; 4 15 s Xy) ERY, let y=(X,, 0, X)), 2= (X4 4 s X ),
s=|y|, and t=|z|, and let

Dr={(s,1)eR*5>0,1>0and a®><s’+ 1> <(a+1)*}.

Then, if ueH(')(.Qa) with O(/) x O(N — I)-symmetry, there is a we H‘(D:)
such that

uly, z)=wllyl, 1z1) (6.34)
and
ow ow
hid =0 =— 6.
PR (0,)=0 Y (s, 0), (6.35)
w=0 on s*+t*=a’ and S+ =(a+1)>2  (6.36)

By (6.35) and (6.36), w can be extended to D,, and denoted by w again,
so that we H}(D,) with

w(—s, t)=w(s, —t)y=w(—s, —t)=w(s, 1) (6.37)

for all (s, t)e D} . Then converse is also ture. The energy of u can now be
expressed in terms of w by

E(u)=E(w)= C‘f SN L2 —f(w)), (6.38)
and

Ju)=J(w)= C‘JD SN V]2 — ()], (6.39)

a

where C = C(N, ) is a positive constant.
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Furthermore, if u, is a solution of (1.1) and (1.2) on £, with
O(l) x O(N — I)-symmetry, then the associated solution w, according to
(6.34) will satisfy the equation

Pw [—10w *°w N—I—10w
gw Iz low dw Nof—low 0 inD, (640
s n Tt wm ™ in D, (640)

w=0 on dD,,. (6.41)

As before, for any 7€ S', we can translate w, to v, on K, , and study its
limit ¥, on an infinite strip as a — 0.
For a>0 and 2<I/<N—1/ let

I, ,=inf{E(u):ue X} (6.42)
and let #, ;€ X, be a minimizer of I, ,, ie.,

E(au‘l)=7a.1a (643)

where X, is given in (2.14).
We can now obtain a lower bound of E(u,) if we know the direction
in which w, concentrates its energy.

LEMMA 6.6. Assume conditions (H-0) ~ (H-3) are satisfied and N >4,
2<IKSN—I Let u, be a positive solution of (1.1) and (1.2) on Q, with
O(l) x O(N — [ )-symmetry. Let neS', if the translated solutions v, tend to
a positive limit V,_ in the n-direction as a — oc. Then

ca' ! if n=+(1,0),
Eu)y=<{ca¥ ! if n=4+(0,1), (6.44)
ca¥~? otherwise,

where ¢ is a positive number dependent on V.

Proof. The proof is similar to that empolyed in proving Lemma 6.2 by
using (6.38) and (6.39). The details are omitted.

From (6.44), we expect that the least-energy solutions will occur when
they concentrate in the +(1, 0)-direction.

THEOREM 6.7. Assume conditions (H-0) ~ (H-4) are satisfied, N =4 and
2<I<N—I Then

a~T,,-1, as a-w (6.45)
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and the translated solutions ©, ,, satisfy
b,,—»V in (0,)xR¥"'=§,

where V' is a positive least-energy solution satisfying

AV+ V=0 in8§, (6.46)
V=0  ondS, (6.47)
with
[ v =Ry =1, (6.48)
]

Proof. We first claim that there is a positive constant C such that
I,,<Cd™" (6.49)
For large a, consider the rectangles
R,={(s,1)eD,a<s<a+}and —1<1<l1}.

Let w, be a positive (least-energy) solution of (6.40) and (6.41) on R,,.
Since R, < C,, where C,=C, , and »,=(1,0), we have

iR

I, <Ew,)<Cla+1)! f {11V, |2 — F(w,)}. (6.50)

a

By an argument similar to the one used in the proof of Theorem 34,
there is a positive constant C, such that

Wl <Ci- (6.51)

If we combine (6.50) with (6.51), (6.49) follows.

An immediate consequence of (6.49) and Lemma 6.6 1s that the trans-
lated solutions 7, , can only concentrate their energies on the s-axis.
Finally, by an argument like that empolyed in proving Lemma 5.5 and
Theorem 6.3, (6.45) ~ (6.48) follow. The details of the proofs are omitted
here.

The proof is complete.

APPENDIX

We first recall some results for Bessel and modified Bessel functions that
were used in this paper.
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LeMMA Al Let A, [(a) be the jth eigenvalue of

N-—1 o .
@" +—r—(p' —;%(p= A @) in{a,a+1l), (A.1)

pla)y=0=¢p(a+1), (A.2)

where o, =k(k + N —2), and let },= j’n* be the jth eigenvalue of

p'=—Le in (0, 1), (A.3)
(0)=0=¢(1), (A4)

where k=0,1,2, ... and j=1,2, ... Then
Im 4, (a)=4,. (A.5)

Furthermore, let @, ; (r) and @;(r)=sinjnr be the associated eigenfunc-
tions with |- .. =1. Then

Pr.ja> P

uniformly on [0,1] as a— oo, for each k=0,1,2, .. and j=1,2, ...
Proof. See pp. 364-365 of [27].

LemMma A2, For any ce(—1,1), the Green's function G/s,t) of

operator
_{v,,“zlv;lt v’} (A.6)
with
v(0)=0=1uv(1) (A7)
is given by
G5, Y=G (s, 1) +eL(s, 1)+ £°0(s, 1) + o(&?) (A.8)

as ¢ — 0, where

_ (]*S)t lf O<S<t<l,
G,,(s,t)—{(l_,)s if 0<r<s<l,

N—-1

—— (I —s)(t—s '
L (1—s)t—s5) if O<s<t<l,

Lz, s) if O<r<s<l,
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and

PRSI PRCEI

Ols, 1) = N-1

+—~—2—[—4N+(3—N)s+2Ns2]}, if O<s<r<l,
0(s, 1) if 0<t<s<l.

Note that G (s,t) is the Green's function of —v" with the Dirichlet

boundary conditions (A.7).
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