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Abstract 

In this paper, we present a design method for a model reference control structure using a fuzzy neural network. We 
study a simple fuzzy-logic based neural network system. Knowledge of rules is explicitly encoded in the weights of the 
proposed network and inferences are executed efficiently at high rate. Two fuzzy neural networks are utilized in the 
control structure. One is a controller, called the fuzzy neural network controller (FNNC); the other is an identifier, called 
the fuzzy neural network identifier (FNNI). Adaptive learning rates for both the FNNC and FNNI are guaranteed to 
converge by a Lyapunov function. The on-line control ability, robustness, learning ability and interpolation ability of the 
proposed model reference control structure are confirmed by simulation results. 

Keywords: Fuzzy logic; Neural network; Fuzzy neural network; Model reference control 

1. Introduction 

Recently, fuzzy neural network control systems have been extensively studied. For  instance, Lin [12] 
proposed a general neural network model for a fuzzy logic control and decision system, which is trained to 
control an unmanned vehicle by combining unsupervised and supervised learning. Horikawa et al. [6] 
presented a fuzzy neural network that learned expert control rules, while Lee [10] combined Barto's adaptive 
neurons with a fuzzy logic controller to deal with the pole balancing problem. However, in all of these 
systems a teacher responsible for training is required. Furthermore, adaptation to changes in the environ- 
ment is not provided for. 

The structure of the fuzzy neural network presented by Lin [12] consists of five layers, which is a little 
complicated. The proposed fuzzy neural network is a slight modification of that in [12, 6]. Thus, we have 
a four-layer fuzzy neural network structure and the calculation of the proposed system is simpler than 
Horikawa's  T Y P E - I  F N N .  The main advantages of the structure we adopted are (1) the ability to learn from 
experience, (2) a high computation rate, (3) the easily understandable manner in which knowledge acquired is 
expressed and (4) a high degree of robustness and fault tolerance. 
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In the conventional adaptive control literature, there are two distinct adaptive control categories: (1) direct 
adaptive control and (2) indirect adaptive control [13]. In direct adaptive control, the parameters of the 
controller are directly adjusted to reduce some norm of the output error (between the plant and the reference 
model). On the other hand, in indirect adaptive control, the parameters of the plant are estimated and the 
controller is chosen assuming that the estimated parameters represent the true values of the plant parameters. 
In the control system, if the plant is unknown, many people simply ignore the sensitivity and use the direct 
control approach. 

In this paper, we propose a model reference control structure that uses a fuzzy neural network. The 
proposed model reference control structure belongs to indirect adaptive control, and a controlled plant is 
identified by the fuzzy neural network identifier (FNNI), which provides information about the plant to the 
fuzzy neural network controller (FNNC). This structure is a real adaptation system that can learn to control 
a complex system and adapt to a wide range of variations in plant parameters. Unlike most other adaptive 
learning neural controllers [1, 2, 5, 9, 11, 13, 14, 17], the FNNC presented in this paper is based not only on 
the theory of neural network computing but also on that of fuzzy logic I-3]. 

Though the proposed control scheme is a slight modification of those in [4, 13], we believe that our 
structure is more reasonable for a fuzzy logic control system. Since the place for the reference model (RM) in 
the proposed system is specially considered, the FNNC is designed such that the actual output of the system 
will track the desired output of the reference model. Moreover, we can simply take the error (between the 
actual output and the desired output) and the change in this error as the inputs for FNNC. 

We also apply some of the theorems in [9] to develop convergence theorems for both FNNI and FNNC. 
To guarantee convergence and for faster learning, an analytical method based on the Lyapunov function is 
proposed to find the adaptive learning rates for FNNI and FNNC. This paper is organized as follows. In 
Section 2, a simple fuzzy-logic based neural network system is studied. Section 3 presents a model reference 
adaptive control structure using a fuzzy neural network. In this structure, the control action is updated 
on-line using the information stored in a fuzzy neural network identifier (FNNI). The convergence of the 
FNN-based system is investigated in Section 4. In Section 5, examples are presented to illustrate the 
performance of the control system. Concluding remarks are given in Section 6. 

2. Fuzzy neural network 

In this section we will present a simple fuzzy logic system implemented by using a multilayer feedforward 
neural network. A schematic diagram of the proposed fuzzy neural network (FNN) structure with three input 
variables, two term nodes for each input variable, two output nodes, and eight rule nodes is shown in Fig. 1. 
The system consists of four layers. Nodes in layer one are input nodes which represent input linguistic 
variables. Nodes in layer two are membership nodes which act like membership functions. Each membership 
node is responsible for mapping an input linguistic variable into a possibility distribution for that variable. 
The rule nodes reside in layer three. Taken together, all the layer three nodes form a fuzzy rule base. Layer 
four, the last layer, contains the output variable nodes. 

The links between the membership nodes and the rule nodes are the antecedent links and those between 
the rule nodes and the output nodes are the consequence links. For each rule node, there is at most one 
antecedent link from a membership node of a linguistic variable. Hence there are I-Ii I T(x~)I rule nodes in the 
proposed FNN structure. Here [ T(x~)l denotes the number of fuzzy partitions of input linguistic variable x~. 
Moreover, all consequence links are fully connected to the output nodes and interpreted directly as the 
strength of the output action. In this way, the consequence of a rule is simply the product of the rule node 
output, which is the firing strength of the fuzzy rule and the consequence link. Thus, the overall net output is 
treated as a linear combination of the consequences of all rules instead of the complex composition, a rule of 
inference and the defuzzification process. This fuzzy neural network is a slight modification of the network 
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Fig. 1. Schematic diagram of a fuzzy neural network. 

reported by Lin [12]. The interested readers are referred to Lin [12] for a more detailed explanation of the 
network. 

2.1. Reasoning method 

For an n-input-one-output system, let xi be the ith input linguistic variable and define ~k as the firing 
strength of rule k, which is obtained from the product of the grades of the membership functions #A,,(xi) in the 
antecedent. If Wk represents the kth consequence link weight, the inferred value y* is then obtained from the 
weighted sum of its inputs, i.e.Y.k WkCtk. The proposed fuzzy neural network realizes the inference as follows 

R k: IF xl is Ak(xl),  ... ,and xn is Ak(x,), then y = Wk, k = 1,2 . . . . .  m 

y * =  ~ ~kWk, ~k = ~ #A'.(X,). 
k = l  i = 1  

The reasoning method is a variation of the reasoning method introduced by Sugeno [15], in which the 
consequence of a rule is a function of input variables. For the proposed FNN, this function is replaced by 
a constant value and a different defuzzification process is used. 

2.2. Basic nodes operation 

Next, we shall indicate the signal propagation and the basic function of every node in each layer. 

Layer 1: input layer 
For the jth node of layer 1, the net input and the net output are represented as: 

ne t ]=w~ 'x~  i = j ,  yl. =f j l (net) )=net~ 
1 where the weights wij are assumed to be unity and x] represents the ith input to the jth node of layer 1. 
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Layer 2: membership layer 
In this layer, each node performs a membership function. The Gaussian function, a particular example of 

radial basis functions, is adopted here as a membership function. Then, 

( X2 --  mi j )  2 y2 =fj2(net 2) = exp(net2), net f = l lao(mi j ,  ai j )  ~- (o./j)2 ' 

where m o and tTij are, respectively, the mean (or center) and the variance (or width) of the Gaussian function 
in the jth term of the ith input linguistic variable x 2. 

Layer 3: rule layer 
The links in this layer are used to implement the antecedent matching. The matching operation or the 

fuzzy AND aggregation operation is chosen as the simple PRODUCT operation instead of the MIN 
operation. Then, for the jth rule node 

net~ f i 3 3  = wox, ' y3 =fj3(net~)= net~, 
i 

where w~ is also assumed to be unity. 

Layer 4." output layer 
Since the overall net output is a linear combination of the consequences of all rules, the net input and 

output of the jth node in this layer are simply defined by 

n e t ; = ~ .  " " wox, , y? = f~'(net?) = net~, 
i 

where the link weight w~ is the output action strength of the jth output associated with the ith rule. 
Note that neti, J~ are the summed net input (or activation level) and activation function of node j, 

respectively, and the superscript denotes the layer number. From the above configuration, by modifying the 
centers and widths of layer 2 and the link weights of layer 4, the membership functions can be fine-tuned and 
all the consequence strengths of fuzzy rules could be identified respectively. The learning process to train the 
proposed fuzzy neural network will be discussed in the following section. 

2.3. Supervised gradient descent learning 

The adjustment of the parameters in the proposed FNN can be divided into two tasks, corresponding to 
the IF (premise) part and THEN (consequence) part of the fuzzy logical rules. In the premise part, we need to 
initialize the center and width for Gaussian functions. To determine these initial terms, a self-organization- 
map (SOM) [8] and fuzzy-c-means (FCM) [16] are commonly used. Another simple and intuitive method of 
doing this is to use normal fuzzy sets to fully cover the input space. Since the final performance will depend 
mainly on supervised learning, we choose normal fuzzy sets in this paper. In the consequence part, the 
parameters are output singletons. These singletons are initialized with small random values, as in a pure 
neural network. 

A supervised learning law is used to train the proposed model. The basis of this algorithm is simply 
gradient descent. The derivation is the same as that of the back-propagation learning law. By recursive 
applications of the chain rule, the error term for each layer is first calculated. The adaptation of weights to the 
corresponding layer is then given. Next, we will begin to derive the learning law for each layer in the 
feedbackward direction. 



Y.-C Chen, C-C Teng / Fuzzy Sets and Systems 73 (1995) 291-312 295 

Layer  4: I f  the cost function to be minimized is defined as 

= - = :~ Z (de  - f j a ( n e t ) ) ) 2 ,  
J J 

where d 4 is the desired output and Y4 is the current output of the jth output node, the error term to be 
propagated is given by 

- dE  - dE  d f j  4 4 
64 = dnet  4 - dfj 4 dnet¢ = d4 - yj 

then, the weight w 4 is updated by the amount 

dE dE dfj" dnet  4 = (d 4 _ y~) .  yi3 = j~.. y31" 
Aw - dw = d 'dnet," 

Layer  3: Since the weights in this layer are unity, none of them is to be modified. Only the error term needs 
to be calculated and propagated. 

- dE  - dE d f j  3 dE  dnet  4 4 4 
6 J 3 = ~  = ~f~ ffn-~-etj3=-- k~dnet 4 dy--?j =~k 6kWjk" 

Layer  2: The multiplication operation is done in this layer. The adaptive rule for mij and aq are as follows. 
First, the error term is computed, 

- -  d E  - d E  d ~  2 

fi} = ~ =  dffl dnet  f 

= _ ( k  ~ dE dnetak ~ .  dfj 2 - 
dnetak dy2 ] ~ - - ( ~ k  6 ~ i ~ j Y 2 )  "exp(net2)  

= 6k Yi "Yj = 6k "Yk, 
i ~ j  / k 

where the subscript k denotes the rule node in connection with the jth node in Layer 2. Then, the adaptive 
rule of m~j is 

dE _ dE dnet  2 2 2(y~ - mij) 
Amij  = dm 0 dnet]  dm 0 = 6j -tr~ 

and the adaptive rule of tr 0 is 

dE  dE cOnet 2 2(y/1 - -  mij )  2 
A a i j  = dffij = dnet  2 daij = 62 a~ 
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This completes the derivation of the supervised gradient descent learning algorithm. In the following 
section, the proposed FNN will be employed as a controller and an identifier. A controlled plant is identified 
by the FNNI, which provides information about the plant to the FNNC. 

3. Model reference control structure using FNN 

Fuzzy logic systems and neural networks can be exploited to emulate the capabilities of the human brain. 
Merging these two different disciplines makes it possible to develop a unified system that reasons and learns 
by experience and adapts to changes in plant parameters. 

Fig. 2 shows the proposed model reference control structure using a fuzzy neural network. The proposed 
control scheme must perform two major tasks: (1) system identification and (2) plant control. The former is 
achieved by using the proposed fuzzy neural network identifier (FNNI) to estimate the dynamics of the 
controlled plant. The latter is achieved by using the proposed fuzzy neural network controller (FNNC) to 
generate the control signals. 

The control action issued by the FNNC is updated by observing the controlled results through the FNNI. 
The adaptive FNNC has many useful features: (1) it can self-organize its control law during the control 
process; (2) it is able to make inferences using the control law encoded in the FNNC; (3) it is capable of 
high-speed parallel computation; and (4) it adapts automatically to changes in plant parameters. 

In this paper the control law learned by the FNNC can be expressed explicitly in linguistic cause-and-effect 
rules, while a conventional neural controller can only encode the control law implicitly in variable weights. 
The structure of Fig. 2 is a slight modification of those in I4, 13]. 

3.1. Overall structure of the system 

The fuzzy neural network identifier: FNNI 
The purpose of the FNNI is to mimic the dynamic characteristics of the controlled plant. Training of the 

FNNI is similar to plant identification except that the plant identification here is done automatically by 
a fuzzy neural network which is capable of modelling nonlinear plants [3]. The FNNI is trained by the above 
algorithm to predict the state vector of the plant y~, with the actual value of the state of the plant yp used as 
the desired response. The training process ceases when the error signal between y~ and yp becomes small 
enough. If changes in the system parameters or in the environment occur, the FNNI is triggered on again to 
begin relearning. 

R M Fnp/ c  u _1 I 

Fig. 2. Model reference control structure using fuzzy neural network. 
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The fuzzy  neural network controller: F N N C  
The fuzzy neural network here serves as a feedback controller. The F N N C  is expected to approximate an 

optimal control surface. The optimal control surface is encoded in the form of fuzzy rules, which are 
represented by the interconnection weights embedded in the FNNC. Thus the weights can be modified to 
establish different control rules. As time goes by and the system accumulates more experience, it learns to 
control the plant more effectively. A controlled plant is identified by the FNNI, which provides information 
about the plant to the FNNC. 

The reference model: R M  
The reference model specifies the desired performance of the control system. The controller is designed 

such that the actual output of the system will track the desired output of the reference model. This goal can be 
achieved by minimizing e = (y~ - yp). 

Note that our structure is different from that in [13], in which the reference model is placed on the upper 
side. We believe that our structure is more reasonable for a fuzzy system since we can simply take the error 
(between actual output and desired output) and the change in this error as the input for FNNC. 

3.2. Training the FNNI  and F N N C  

Let the cost function, El, for training pattern k be proportional to the sum of the square of the difference 
between the plant output y(k )  and the actual output yl(k)  of FNNI, and let El be defined by 

E, = ½[y(k) - yl(k)] 2. (1) 

Then the gradient of error in Eq. (1) with respect to an arbitrary weighting vector W~ e ~ "  becomes 

dE1 dei(k) , , ,  dyi(k) dOl(k) 
dW-----~ll = el(k) d W ~  - efltc~ dW~ = - el(k) 8W-----~' (2) 

where ei(k) = y(k)  - yi(k) is the error between the plant and the FNNI response. Ol(k) is the actual output of 
the identifier (FNNI). 

The weight can be adjusted using a gradient method: 

dEi ) 
W~(k + 1) = Wl(k)  + AWl(k) = Wi(k ) + r h - -  ~ , (3) 

where t/! is a learning rate. 
Let the cost function, Ec, for training pattern k be proportional to the sum of the square of the difference 

between the desired output yr(k) of the reference model and the plant output y(k),  and let Ec be defined by 

Ec = ½ [y,(k) - y(k)] 2. (4) 

Then the gradient of error in Eq. (4) with respect to an arbitrary weighting vector Wce  9~" becomes 

dEc "k' dec(k) , , ,  dy(k)  
b-ff-~ =ect  J dwc =-ectK~-b-ff-d~ 

, , ,  dy(k)  du(k) 
= -- ectK}~--U-~ d W c  - -  = - e c ( k ) y ~ ( k ) ' - -  

dOc(k) 
dwc 

(5/ 
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where ec(k) = yr(k) - y(k) is the error between the actual plant and the desired reference output, Oc(k) is the 
output of the controller (FNNC) and S = yu(k) = t3y(k)/au(k) is the plant sensitivity. 

The weight can be adjusted using a gradient method. 

( Wc(k + 1) = Wc(k) + AWc(k) = Wc(k) + qc - 0--WccJ" (6) 

where r/c is a learning rate. 
The plant sensitivity can be computed as follows: 

, ~ ( 4 )  c3yj _ ~,,,.,~j 

c~ui Oui 

- ~ ( 4 )  ( 3 )  Ri ~ (J la j  . ,~f~(3)'~ WVlka ~ ~. R, 
= Z ~ao~22 ~u, ) Z w~j. 

R~ ' dORa J~ ' ka  
= Z  w . i "  = 

a = l  k = l  C30it2k , ~Ui 3 Z Waj" 

. 0o, ,t. { 
= • • = • 0 ~ ,  "~ ( ~ i k ) 2  j '-'bL "-~-U/J Z W.~ --2) , (7) 

a = l  i a = l  

where rnik and aik are, respectively, the mean (or center) and the variance (or width) of the Gaussian function 
in the kth term of the ith input linguistic variable ui. The superscript denotes the layer number. The link 
weight Woj is the output action strength of the j th output associated with the ath rule. The output 
0 ~  ) denotes the output of the third layer of the ath node associated with the output of the second layer of the 
kth node. N,~, is the number of fuzzy sets of the ith input linguistic variable ui. R~ is the number of rules in 
FNNI.  

4. Convergence 

This section develops some convergence theorems for selecting appropriate learning rates. If a small value 
is given for the learning rate r/, convergence will be guaranteed. In this case the speed of convergence may be 
very slow, however on the other hand, if a large value is given for the learning rate q, the system may become 
unstable. Therefore, choosing an appropriate learning rate q is very important. 

A discrete-type Lyapunov function can be expressed as 

V(k) = ½e2(k), (8) 

where e(k) represents the error in the learning process. Thus, the change in the Lyapunov function is 
obtained by 

AV(k) = V(k + 1 ) -  V(k) = ½[e2(k + 1 ) -  e2(k)]. (9) 

The error difference can be represented by 

r,~e(k)l  • e(k + 1) = e(k) + Ae(k) = e(k) + L-Tff-J a w ,  (10) 

where AW represents a change in an arbitrary weighting vector in ~".  
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4.1. Convergence o f  the FNNI 

F r o m  Eqs. (2), (3) we have 

dEl(k) del(k) 
AWl = -- r/I ~3Wl(k) = - r/lel(k) OWl(k) 

c3yi(k) 80~(k) (1 1) 
= rhel(k) dWl(k-----~ = r/lel(k) c~Wl(k) ' 

where Wi and rh represent an arbi t rary  weighting and the corresponding learning rate in the F N N I  and O~(k) 
is the ou tpu t  of  the FNNI ,  Then  we have a general convergence theorem from [9]. 

T h e o r e m  4.1 (Ku and Lee [9]). Let r h be the learning rate for the weights or the parameters of the F N N I  and let 
Pl, m~ be defined as Pi.ma~ -- maxk II Pl( k ) II, where Pl( k ) = ~O~( k )/ ~ Wl and II " II is the usual Euclidean norm in 
91~. Then convergence is guaranteed if t h is chosen as follows: 0 < rh < 2/P~m~x. 

Remark4 .2  (Ku and Lee [9]). ql(2 q l ) > 0 o r r h ( 2  2 - -  - -  ql)/Pi.max > 0. This implies that  any ~ ,  0 < ql < 2, 
guarantees convergence. However ,  the max imum learning rate, which guarantees the optimal convergence, 
corresponds  to r/1 = 1, i.e. r/* = 1/P~ma~. 

The  following theorem is a slight modificat ion of [9]. 

T h e o r e m  4.3. Let rl ° be the learning rate for the F N N I  weights W ° .  Then the learning rate is chosen as follows: 
0 < rl ° < 2/Ri, where R I is the number of rules in the FNNI .  

Proof.  Let  Pl(k) = dOi(k)/dW ° = Zl(k), where Z I l i 1 = [Z1,Z2 . . . .  , Z ~ J  T, in which Z~ is the ou tpu t  value of 
the third layer of  the F N N I  and Ri is the number  of rules in the FNNI .  Then  we have ZJ ~< I for all j, 
I[ Pl(k)It ~< ~ and P~mx = maxk II P~(k)[I 2 = RI. F rom Theorem 4.1 we obtain 0 < 7 ° < 2/Rl. [] 

In order  to prove Theorems 4.6 and 4.11 we will need the following lemmas. 

L e m m a  4.4. Let g(y) = ye ¢-y~). Then Ig(Y)[ < 1, Vye91. 

Proof.  We have g ' ( y ) =  e - y ~ -  2y2e-y2 = 0, which implies that y = x/~/2  and y = -  (x /~ /2)  are two 
• t p  3 - -  y 2 . " tr terminal values. Also, we have g (y) = (4y - 6y)e , from which we obtain g (x /~ /2 )  = - 2 v / 2 e -  t/2 < 0. 

So y = x /~ /2 ,  g ( x / ~ / 2 ) i s  the max imum value. Also, g " ( -  x / ~ / 2 ) =  2x/~e-~/2 < 0, so y = -  (x /~ /2) ,  

g ( - ( x / ~ / 2 ) )  is a minimum value. Thus  we have Ig(x/~/2)l  = l x / ~ / 2 e - ~ / 2 f  < 1, I g ( - ( x / ~ / 2 ) ) l - -  

I - (x/~/2)e-X/21 < 1. Therefore  [g(Y)l < 1, Vy~91. [ ]  

Lemm a  4.5. L e t f ( y )  = y2e(-Y2~. Then I f (y)[  < 1, Vye  91. 

Proof.  We h a v e f ' ( y )  = 2ye -y~ - 2y3e -y2 = 0, which implies that  y = - 1, 0, 1 are three terminal values. 
Also, we have f " ( y )  = (2 - 10y 2 + 4y4)e -y2, from which we obtain f"(O) = 2 > 0, so y = 0, f (0)  = 0 is 
a minimum value. Also, f " ( -  1 ) = -  4 e - 1 >  0, so  y = -  1, f ( -  1 ) =  e -~  is a maximum value, and 
f " ( 1 )  = - 4e  -1  > 0, so  y = 1 , f ( 1 )  = e -1  is a m a x i m u m  value• Therefore  [ f (Y) l  < 1, V y ~  91. 
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Theorem 4.6. Let rl~' and rll ~ be the learning rates for the FNNI parameters ml and 6ix, respectively. Then the 
~" W l  .... l(2/61,mi.)] , where R I iS the number of rules learning rates are chosen as follows: 0 < ~/~' t/f < 2/Rt[I o - 2 

in the FNNI, W ° is the weight of the FNNI, and fix is the variance parameter of the membership function for the 

FNNI. 

Proof. Since 

aO~(k) 
Pz(k) = ~ml 

~I ~O| ~0/(3 ) RI ( ao(~) ~ o  (2) ~ 

~laO (3) am~ - ~-" We ) V ~ ~ 
= ' z , ~  

i =  ,, i = I  [ j aO,, Oral J 

= E W'° v , ,  am, ) < W~ max \-'~'-ml ] )  
i=1 1 i 
"' { ( (  2 "~ (Xl -- m"~ [(xl--ml'~21"~" ~ 

~---i=~1 W ~  m a x k k ~ j k , - - ~  j e x p  - \ - - - ~  ) j / j ,  

Lemma 4.4, we o b t a i n  I[(x,  - m l ) / t ~ l ] e x p [  - ((Xl - ml)/ t~l)2]l  < 1. drawing on 
Then 

., .. ( ( ± ) }  P,(k)< E Wx° max = E W'° • 
i=1 i=1 

Thus 

o(±) Wl . . . .  I 

Drawing on Theorem 4.1, we obtain 

° < " r < ~ = E  IW~m,l(2/6Lm,. )  " 

Ql(k) = 

Since 

aOi(k) 
c96~ 

= ~ a o  (3) c~61 - i =  1 Ii 

( ~(3) ~(2)-~ 
Rz i V '  t~vl t-J~ I (, 
E w ,  ° 

R, . dolj ~, 
= , ~ :  W e  0(2)  < Z We max 

11, O~ 1 J k ' - ' - ~ i  ] J • = j i=1 

= ~ ,  W, ° max ~ \ - - ~  j exp -k.--~---~ ] J,,/J 

(12) 

(13) 

(14) 

(15) 
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by Lemma 4,5, we have 

~ - - - ~ l  ] ( x t - - m I ~ 2 e x p I - - ( x l - - m l ~ 2 ]  ~ , - ~ i  .] J[ <1"  

Then 

q , ( k ) <  2 W,° max : Z W°  . 
i = 1  i = 1  

(16) 

Thus 

o 2 
IIQl(k)ll < x~lIWl,maxl ( '~--- ' - )  • (17) 

\ U l , m i n /  

, = W l  . . . .  [ (2/~l ,min)]  -2  T h i s  Therefore, from Theorem 4.1 we can find that 0 <  ti~ < 2/p2,,,,,, (2/RI)[I o 
completes the proof of the theorem. []  

O* Remark 4.7. From Remark 4.2 the optimal learning rates of the FNNI  are ti! = I/Ri 

r/r* = ti, = I W~maxl(2/~,,mi~ 

4.2. Convergence o f  the FNNC 

From Eqs. (5), (6) we have 

~Ec(k ) tgec(k ) 
AWc = - tic aWc(k) = - ticec(k) tgWc(k) 

~u(k) OOc(k) (18) 
= ticec(k)y~(k) 3Wc(k-----~) = ticec(k)y~(k) aWc(k) '  

where Wc and tic represent an arbitrary weight and the corresponding learning rate in the FNNC,  Oct/C) is 
the output of the FNNC,  and y~(k) = ~y(k)/~u(k) is the plant sensitivity• Then we have a general conver- 

gence theorem from [9]. 

Theorem 4.8. (Ku and Lee [9]). Let tlc be the learning rate for the weights or the parameters of the F N N C and 
let Pc,ma, be defined as Pc.=ax -- maxk II Pc(k)[I, where Pc(k) = 8Oc(k )/ ~Wc and I1" II is the usual Euclidean 
norm in ~ ,  and let S = yu(k ). Then convergence is guaranteed if tlc is chosen as follows: 0 < tic < 2/$2P2 . . . .  - 

Remark 4.9. (Ku and Lee [9]). t i c ( 2 -  t i2)> 0 or ~/2(2- tiz)/S2p~.max > 0. This implies that any ti2, 
0 < ti 2 < 2, guarantees convergence. However, the maximum learning rate which guarantees the optimal 
convergence corresponds to t/2 = 1 --* r/* = 1/$2pc2 m,x. 

Theorem 4.10. Let tio be the learning rate for the F N N C  weights W ° .  Then the learning rate is chosen as 
follows: 0 < tio < (2/Rc)(1/$2), where Rc is the number of  rules in the FNNI  and S = yu(k) is plant sensitivity. 
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Proof. Let Pc(k) = dOc(k) /dW ° = Z c (k), where Z c = [zC, z c . . . . .  ZCc] T, in which Z c is the output value 
of the third layer of the F N N C  and Rc is the number of rules in the FNNC.  Then we have 

Z c ~< 1 for aUj, IIPc(k)l[ ~< x ~ c  and p2 c.m~ = Rc. From Theorem 4.8 we obtain 0 < t/c ° < (2/Rc)(1/$2). 

Theorem 4.11. Let ~I~ and rl~ be the learning rates for the F N N C  parameters mc and 6c, respectively. Then the 
learning rates are chosen as 

I 12 0 < ~ = ~ c ~ < ~ c ~  i o W c  . . . .  [ (2/0Comin) 

where Rc is the number of rules in the FNNC,  W ° the weights of the FNNC,  6c the variance parameter of the 
membership function for the FNNC,  and S = yu(k) is the plant sensitivity. 

Proof. Since 

t3Oc(k) 
Pc(k) = - -  

Omc 

Rc 

-=2 
i= l  

Rc 

i=1 

aOc(k) aOtc3, ) gc r t~O(3) t30(2)~ 

oo'?, Omc : X w °, t~ X ~ ~mc ~ ~' ~ ~ , i= 1 j VUcj 

c, Omc J < Wc ° max \ -~ -~  ] j  
j i 

W c O { m a x ( ( f ~ c ) ( X c - m C ~ e x p  mc 2 

by Lemma 4.4, we have I((xc - mc)/6c)exp [ - ((Xc - mc)/6c)2][ < 1. 
Then 

(19) 

P c ( k ) <  W °, max - E W°, 2 . 
i = i=1 

Thus 

(20) 

Ilec(k)[I < ~ c l W ° . m , d  (2/~C.mi,). 

Therefore, from Theorem 4.8 we can find that 

(21) 

0 < ~ '  < - -  C 1 y e2c.~,xs2= ~ Iwg.~,l(2/,~c.=i,) " 

Moreover, since 

OOc(k) 
Qc(k) = - -  

~ c  

_ ~t  aOc(k)0n(3) ~ - - c ,  _- o I ~  aOtc 3) ~n(2)'~v'-'cj !, 
- i ~0  <3~c, 06c i= Wc, O0~c~ ) O6c ) 
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R c { ~ (2) 
o , 2 ,  o = X Wc ° c, 06c ) < E Wc, max 

, : ,  ~ ~ ,=, ( \ - ~ Y / J  

= ~ WO{max((~__~c)(Xc-mc~2 mc 2 

by Lemma 4.5 we have I((Xc - mc)/6c) 2 exp [ - ((Xc - mc)/6c)2]1 < 1. 
Then 

Qc(k)<  Wc ° max = ~, W °, . 
i =  i = 1  

Thus 

IlQc(k)]l < x/~c[ W° .... l (  2 ) 

Therefore, from Theorem 4.8 we obtain 

22[R___~c ,W ° . . . .  I(2/6C..,,n)I ]2 o < ,l~ < ~  = 

This completes the proof of the theorem. [] 

Remark 4,12, From Remark 4.9 the optimal learning rates of the FNNC are 

o* 1 1 ,~, 1 1 V 1 ]2  
.c =RcS2' , : = . c  Llwg.m,,l(2/6c.mt,)J ' 

where S = y,(k) = 8yffk)/Ou(k) is the plant sensitivity. 
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(22) 

(23) 

(24) 

5. Simulation results 

In this section we test the model reference control structure using two different examples. The number of 
inputs for the FNNC is denoted by nc and that of the FNNI by n~. Rc and R~ denote the number of rules in 
the FNNC and FNNI. Pc and Px are the inputs to the FNNC and FNNI. 

Example 1 (Interpolation ability, Ku and Lee [9]). This example demonstrates the interpolation ability of 
the FNN control system by applying it to a flight control application. During the training process, only a few 
trim points are trained. After a few training cycles, an untrained trim point is applied and tested in the FNN 
control system. 

In this case the plant can be described by the Laplace transfer function 

1.0 
P(s) s 2 + 2 . 0 s + 1 . 0 "  

The reference model is described by 

4.0 
H(s) s 2 + 2.82s + 4.0" 

Here, three sets of initial conditions for (y(0),))(0)), (0.0, 0.0), (0.1,0.3), (0.5, 0.75), are selected as training sets. 
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Assume that  for the F N N C ,  Pc = {e(t),~(t)}, each input variable has three fuzzy part i t ion sets, so 
Rc = 3 x 3 = 9 rules. Fo r  F N N I ,  Pi = {u(t),y(t),~(t)}, each input variable has three fuzzy part i t ion sets, so 
R~ = 3 x 3 × 3 = 27 rules. See Figs. 3(a) and (b), 4(a)-(c). Each cycle takes 10 s. After 18 cycles, the plant can 
be control led very effectively. A test set (0.8, 1.0) is applied to the system, with a step size of  0.02 s. 

In each cycle, if the value of  a part icular  consequence link rule is smaller than 1/Rc = ~ for the F N N C  or 
1/R~ = ~ for the FNNI,  then we eliminate that  rule. In the final simulation result, we find that  the F N N C  has 
four rules and the F N N I  has eight rules. See Figs. 3(c) and (d), 5(a)-(c), and Table 1. The final simulation 
result is shown in Fig. 6. 

The results show that  the F N N  control  system has the ability to interpolate control  response if an 
untrained set is closed to all trained sets. 

i 

Final ~ p  funtion of u 

0.5 .............. i. 

. .  ° ' °  i 

-2 0 2 4 
(a) 

F'mal memlmmhip funlion of y' 

0.5 

0 " ' ' ' "  
-2 0 2 4 

(¢) 

1 

0.5 

0 
-2 

Final membentMp funtion of y 

0 2 4 

Fig. 5. Final membership functions of identifier: (a) u, (b) y, (c) y'. 

Table 1 
Learned rule weight matrix for the FNNC 

e NM ZE PM 

NM 0.000 0.000 0.000 
ZE - 1.001 - 0.826 2.352 
PM 0.000 2.488 0.000 
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1.2 
Example 1: final response 

1 

0.8 

0.6 

0.4 

0.2 

/ l'u t o tp t: a.a d 
Refea~n~ model: solid line 

. . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . .  

i 

. . . . . .  2 . . . . . . . . . . . . . . . . . . .  i . . . . . . . . .  

i 

! 

. . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 . . . . . . . . . .  

2 

i i i i 

°o t 2 ; 5 6 i Io 

Time (see) 

Fig. 6. Final system response for Example 1. Plant  output  is indicated by the dashed line, reference model by the solid line. 

Example 2 (A BIBO nonlinear plant [13,9]). In this case the plant is described by the difference equation 

y(k) + ua(k). 
y(k + 1) = 1 + y2(k) 

The reference model is described by the difference equation 

yr(k + 1) = 0.6 yr(k) + r(k), 

where r(k) = sin(2nk/10) + sin(2rtk/25). 
Assume that for the FNNC,  Pc = {e(k),Ae(k)}, each input variable has five fuzzy partition sets, so 

Rc = 5 x 5 = 25 rules. For  FNNI,  Pi = {u(k),y(k)}, each input variable has five fuzzy partition sets, so 
R~ = 5 x 5 = 25 rules. See Figs. 7(a) and (b), 8(a) and (b). 

Each cycle takes 100 s. Adaptive learning rates are used, starting from the initial rates of r/c ° = 0.2 and 
r/° = 0.04. The learning rates adapt to reduce the tracking error. The learning rates for the FNNC and FNNI  
are r/°, r/~', r/° and r/~', which are shown in Fig. 9. After 30 cycles this problem can be controlled very 
effectively. See Figs. 10 and 11. In each cycle, if the value of a particular consequence link rule is smaller than 
1/Rc -- 1/25 for the F N N C  or 1/R~ = 1/25 for the FNNI,  then the rule is eliminated. In the final simulation 
result, we find that the FNNC has 25 rules and the FNNI  has 25 rules. See Figs. 7(c) and (d), 8(c) and (d), and 
Tables 2, 3. The final result is shown in Fig. 11. 

To examine the adaptive ability of the model reference control structure, we repeat the simulation with the 
same conditions as those shown above, except that reference r(k) is modified as follows: 
(a) After 30 cycles, the reference input is changed to r(k) = sin(2nk/25), see Fig. 12. 
(b) After 30 cycles, the reference input is changed to an impulse signal, see Fig. 13. 
(c) After 30 cycles, we add a disturbance of 2.0 to the system at 20s and another at 40s, see Fig. 14. 
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Example 2: learning rate 60 training cycles 

_ ~  R Co 

I i I 

10 20 30 40 50 60 

Cycles 

Fig. 9. Adaptive learning rates of the FNNC and FNNI during 60 training cycles. 

O 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

Example 2: average error 40 training cycles 

" Control error 

5 

Cycles 

Fig. 10. Average error of the FNNC and FNNI during 40 training cycles. 

lO 15 20 25 30 35 40 
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5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 t 

lo ~o 

Example 2: final reslmme (after 30 cycles) 

• Reference ~odel: solid line 

/ 

t 

~o 50 ~ ~o 80 

II 

I 

90 I00 

Time (~.x) 

Fig. 11. Final system response for Example 2. Plant output is indicated by the dashed line, reference model by the solid line. 

! 

5 

-il 
- 5  / J / J I 

20 4O 60 80 100 

Example 2: final r e~mse  (after 30 cycle 0 

Plant output: d ~ l ~ l  line 

Reference model: solid Line 

Time (sex) 

I I 

120 140 

t 

I 

I ~  I ~  200 

Fig. 12. Final system response for Example 2. Plant output is indicated by the dashed line, reference model by the solid line, tested 
adaptation for sinusoid signal. 
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5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

Ecxample 2: 1"real response (after 30 cycles) 

t I 

50 100 

Plant output: dashed line 

Reference model: solid line 

I 

150 200 

Time (scc) 

t 

250 300 

Fig. 13. Final system response for Example 2. Plant output is indicated by the dashed line, reference model by the solid line, tested 
adaptation for impulse signal. 
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-2 

-4 

- 6  - . . . .  [ 

-8 - -  i 
50 100 150 

Example 2: final response (after 30 eyclea) for dlstmbanc© at 20,40 se.¢ 

: Plant output: dashed line 
. . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . .  ~ f ~ ~ :  idldUne • . . . . . . . . . . . . . . . . . . . . . . .  

"i . . . . . . . . . . .  

n 
I 

i I 
2oo 2;0 £0 4oo 

Time (see) 

Fig. 14. Final system response for Example 2. Plant output is indicated by the dashed line, reference model by the solid line, tested 
system robustness for added disturbances. 
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Table 2 

Learned rule weight matrix for the F N N C  

A e ( k )  

e(k) N B  N S  Z E  P S  P B  

N B  - 3 .266 2.135 - 1.944 2 .664  1.445 

N S  0.023 - 1.625 - 1.925 - 0 .813 1.006 

Z E  - 1.398 - 0.971 0 .185 - 1.545 - 0 .092 

P S  - 0 .534  - 0.521 1.011 - 1.308 0 .395 

P B  - 1.956 - 1.845 - 1.126 - 1.184 - 1.658 

Table 3 

Learned rule weight matrix for the F N N I  

u(k) 

y(k) N B  N S  Z E  P S  P B  

N B  - 1.495 - 0 .532  - 0 .546  - 0 .166  - 0 .247 

N S  - 3 .992 - 3.188 - 2.661 - 1.731 - 1.862 

Z E  0 .479  - 1.363 - 0 .214  1.768 0 .272  

P S  2.131 1.077 2 .437 3.615 4 .080  

P B  0 .219  0.251 0 .842  0.663 0 .979  

These figures show that the control structure can track the new reference model quickly. Also, the on-line 
adaptive ability and robustness of the model reference control structure using the FNN are acceptable. 

6. Conclusion 

A model reference control structure using a fuzzy neural network has been successfully applied to some 
difficult learning control problems. The ability of the FNNC and FNNI to learn control rules from 
experience and to adapt to system changes and rule degradation have been confirmed by simulation results. 
An approach to finding the bounds on learning rates based on a Lyapunov function was developed. The use 
of adaptive learning rates guarantees convergence, and the optimal learning rates were found. The FNN- 
based control system was tested for its on-line adaptive ability, robustness, and interpolation ability. 
Combining fuzzy logic and neural network computing appears to be a feasible way of dealing with real-time 
applications. 
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