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Summary & Conclusions - This paper investigates the 
(m, n) information dispersal scheme (IDS) used to support 
fault-tolerant distributed servers in a distributed system. In 
an (m, n)-IDS, a file M is broken into n pieces such that any m 
pieces collected suffice for reconstructing M .  The reliability of 
an (m, n)-IDS is primarily determined by 3 important factors: 

. n = information dispersal degree (IDD), 

. n/m = information expansion ratio (IER), 

. P, = success-probability of acquiring a correct piece. 

It is difficult to determine the optimal IDS with the highest 
reliability from very many choices. Our analysis shows: 

. several novel features of (m, n)-IDS which can help reduce 
the complexity of finding the optimal IDS with the highest 
reliability; 

. that an IDS with a higher IER might not have a higher 
reliability, even when P, -+ 1. 
Based on the theorems given herein, we have developed a 
method that reduces the complexity for computing the highest 
reliability from, 

. O(v) [v = number of servers] to O(1) when the ‘upper 
bound of the IER = 1, or 

. O(v2)  to 0(1) when the ‘upper bound of the IER’ > 1. 

1. 1NTR.ODUCTION 

Acronyms‘ 
ID information dispersal 

IDD ID degree 
IDS ID scheme 
IER information expansion ratio 

Notation 
n the IDD 
m [see (m,n)-IDS] 

n/m 
(m, n)-IDS 

the IER.; n/m 2 1 
an IDS which breaks a file into n pieces 
such that any m pieces collected suffice 
for reconstructing the file; 1 5 m 5 n 

lThe singular & plural of an acronym are always spelled the same. 

‘U number of available servers 
U upper bound of IER 

P, 

Pd(m, n)  

Pr{a server can provide the correct 
information piece}; 0 < P, < 1 
binfc(m; P,, n): Pr{the file can be 
correctly constructed using 
the (m, n)-IDS} 
critical probability: 
the P, such that Pd(i, 3 )  = Pd(k,  1 )  

piece #i of (m,n)-IDS, 1 5 i 5 n 
{ (m, n)-IDS; for all m, n, u E N ,  
1 5 (n/m) 5 U,  n 5 U}: 
feasible IDS set. 

P,* ((2, j), (k, 1 ) )  

p,* p,* ((2, ( k ,  1 ) )  
S, 

Fu,v 

Other, standard notation is given in “Information for 
Readers & Authors” at the rear of each issue. 

Many desirable services ( eg, file service, authentication 
service) in a distributed system should be both highly 
fault-tolerant and secure [13, 161. Therefore, it is desirable 
to increase the reliability & security of a service by dis- 
tributing the responsibility of providing the service among 
many servers. There are many ways to increase the fault 
tolerance of a service in a distributed system. A com- 
mon approach is to replicate the service so that any one 
of them can perform the service. However, this approach 
considerably increases the storage cost for maintaining the 
replication of files, as well as reduces the level of security 
(if one server is compromised, security is compromised). 
Another approach is to use (m,n)-IDS [l, 161 wherein a 
file M is broken into n pieces, S,, 1 5 2 5 n, such that any 
m pieces collected do suffice for reconstructing M .  These 
n pieces can be stored on n different servers (or systems) to 
improve total reliability. The (m, n)-IDS is able to tolerate 
up to n - m server failures. With the (m, n)-IDS, not only 
the reliability & security can be increased, but also the 
work load can be shared & balanced among servers. Many 
applications using the (m, n)-ID algorithm were proposed 
[3,  5 - 7, 12 - 151. With a limited number of servers and 
storage resources, it is important to determine the m,n 
that give the optimal fault-tolerant capability. 

This paper: 
. analyzes the influence of IDD, IER., and P,, 
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. proposes a method to determine the optimal (m,n)- 
IDS with the highest reliability, when given the number of 
servers and an upper bound on IER. 
The method reduces the complexity of determining the 
highest reliability from 

O(v)  to O(1): if the 'upper bound of IER' = 1; 
O(w2) to 0(1), otherwise. 

Assumptions 
1. The (m,n)-IDS is used to tolerate the server failures 

in a distributed system. These n pieces of information are 
stored on n different servers to improve total reliability. 

4 2. All servers have r,he same success probability. 

2. INFORMATION DISPERSAL SCHEME 
The concept of an (m,  n)-IDS is similar to the concept 

of an (m,n) threshold scheme [a, 4, 171 in cryptography, 
in which a master key K is transformed into n shares, 
such that unless m shares are collected, the K cannot be 
reclaimed. The main difference between an IDS and a 
threshold scheme is that the latter provides security while 
the former provides reliability. 

An example i s  an (m, n)-IDS based on Shamir's thresh- 
old scheme [17], as fcdlows. A file is regarded as a bi- 
nary string which can be divided into m blocks of equal 
size, where each block is represented as a number: M = 
(ao, . . . , ~ ~ - 1 ) .  Select a prime p such that, 
O < a , I p - l , f o r i = O  , . . .  , m - 1 .  Let, 

be a polynomial of degree m - 1 over the finite field GF(p). 
The n pieces are computed from f(x) by: 

[Sa = f ( i ) ]  mod p ,  i = 1,. . . ,n. 

Given any m pieces Si,, for j = 1,. . . , m, and 

then f(x) can be reconstructed from the Lagrange inter- 
polating polynomial [9] : 

{il, . . . , im} c { 1,. . . , n}, 

Thus, the file M can be obtained. 4 

3. FUNDAMENTAL THEOREMS 
This section discusses the influence of n, m, P, on the 

total reliability. Section 3.1 studies the reliability of two 
classes of IDS to demonstrate the difficulty of selecting an 
optimal (m,n)-IDS. Each class consists of IDS with the 
same IER but different IDD. For example, the (1,2)-IDS 
and the (2,4)-IDS are in  the same class with the IER.=2. 
Section 3.2 discusses the reliability of IDS with various 
IER. 

3.1 IDS Reliability 
Conventional network services use a (1,l)-IDS: 

Pd(1,l) = P,. 
Similarly, the reliabilities of the class (m, m)-IDS which 

have the same IER.=l can be obtained as follows: 

Pd(i, i) = P,", i = 2,. . . ,m. Thus: 

Pd(m, m) - Pd(n, n)  = P," - P," 
= P,". (1 - P,"-") > O if m < n. 

The reliability of an (m, m)-IDS for a fixed P, decreases 
as m increases. Figure 1 has reliability curves for a (1,l)- 
IDS, (2,2)-IDS, and (3,3)-IDS, and shows that the total 
reliability cannot be improved as the degree of ID increases 
under 'IER.=l'. 

Figure 1. Reliability Curves for (1,l)-IDS, (2,2)-IDS, 

(3,3)-IDS 

Figure 2. Reliability Curves for (1,2)-IDS, (2,4)-IDS 

The class of (m, 2m)-IDS has IER.=2. The reliabilities 
of a (l,2)-IDS and (2,4)-IDS can be formulated as follows; 
figure 2 shows their relationship: 
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Pd(l,2) = binfc(1; Ps,2); Pd(2,4) = binfc(2; Ps,4). 0 Theorem 3.3 

Pd(l,2) < Pd(2,4), if P, > 2/3 
Pd(1,2) = Pd(2,4), if P, = 2/3 
P d ( l , 2 )  > Pd(2,4), if P, < 2/3 

That is, a (2,4)-IDS is more reliable than a (1,2)-IDS if 
P, > 2/3, and a (1,2)-IDS is more reliable than a (2,4)-IDS 
if P, < 2/3. Thus in different P, ranges, the IDS that gives 
the optimal reliability can be different. Corollary 1 proves 
that for any two reliability curves of (IC1 'm ,  k1 .n)-IDS and 
(ka . m, kz n)-IDS, there exists exactly one intersection; 
and, at  the intersection, 0 < P, < 1. These intersections 
can partition probabilities into ranges in which the optimal 
IDS can be determined. 

3.2 Important Properties of IDS 
Theorems 3.1 - 3.9 can help find the optimal IDS. 

0 Theorem 3.1 
Pd(m, n)  < Pd(m, n + k ) ,  for k 2 1. 

Proof; [Omitted]. 

Theorem 3.1 suggests that a designer use as many 
servers as possible to distribute the data-pieces of a file, 
where each server keeps a data-piece. The data-pieces 
of (m,n + k)-IDS class are all of the same size, and a 
collection of m pieces suffices for reconstructing the file. 
The (m,n + k)-IDS class can tolerate n + k - m server 
failures. Since the members of (m,n + k)-IDS class all 
need the same number of data-pieces to recover the file, 
an (m, n + k)-IDS with larger k can tolerate more server 
failures and give better total reliability of the file service. 
For the (m, n + k)-IDS class, the data-piece stored in each 
server need not be changed when new servers join the dis- 
tributed service - simply distribute a data-piece to each 
new server. However, the advantage of using larger k is ac- 
quired at the expense of higher IER which increases from 
n/m to (n+k)/m. A higher IER also indicates an increase 
of storage cost. 

0 Theorem 3.2 

Pd(m,n) > Pd(m + k , n ) ,  for k 2 1. 

Proof. See appendix A.]. 

Theorem 3.2 does not imply that any IDS with a higher 
IER always has higher reliability than an IDS with a lower 
TER. It does suggest that a designer store a larger data- 
piece on each server if the total number of participated 
servers is fixed. In the (m + k,n)-IDS class, an IDS with 
smaller k can give better total reliability at  the expense 
of higher IER. That is, a larger data-piece must be stored 
on each one of the n servers. Hence, the IER (which is 
a measure of storage cost) increases. In the (m + k , n ) -  
IDS class, the data-piece stored on each server must be 
updated when the system configuration (the IDS being 
used) is changed. 

Pd(m,n) > Pd(m + k , n  + k )  for k 2 1. 

Proof: See appendix A.2. 

Theorem 3.3 suggests that a designer use fewer servers 
in the (m + k ,  n + k)-IDS class of which each IDS member 
can tolerate the same number of server failures. Although, 
in the class, each (m + k , n  + k)-IDS has the same fault- 
tolerance capability, the one with smaller k gives better 
reliability, but needs larger IER; ie, the IER decreases as 
the number of participating servers increases. Among all 
(m+k, n+k)-IDS, the (m, n)-IDS gives the best reliability, 
but needs the highest IER. 

0 Theorem 3.4 

Pd(i, j )  5 P d ( k ,  1 )  if 1 2 j and k 5 a ,  
with equality only when I = j and IC = i. 
Proof: See appendix A.3. 

Theorem 3.4 suggests giving larger data-pieces to as 
many servers as possible, where each server holds a single 
data-piece. In this way, fewer data-pieces need be collected 
to recover the file, and at  the same time the total reliabil- 
ity increases. The advantage is achieved at the expense of 
higher IER. 

0 Theorem 3.5 

Pd(i,j) > Pd(k ,  I )  if 1 2 j ,  k > i, and I - k 5 j - z. 

Proof: See appendix A.4. 

Theorem 3.5 shows that the total reliability increases if 
. fewer servers participate (1 2 j ) ;  
. each server keeps a larger data-piece ( k  > 2); 

. more server failures can be tolerated (1 - k 5 j - i). 
In the IDS class, the advantage is acquired at the ex- 

pense of higher IER, where fewer servers are involved but 
each server keeps a larger data-piece. 

0 Theorem 3.6 

Given two different IDS, (i,j)-IDS and (k,l)-IDS for 
1 2 j ,  k > a ,  and 1 - k > j - z, there exists exactly one 
P,* ( ( i , j ) ,  ( k , l ) )  such that: 

Pd(i,.7) 
Pd(Z, 2) 
Pd(i,j) 

> Pd(k, I) if 0 < ps < P,* ((4.71, ( k ,  0) 7 

Pd(k, I )  if ps = p,* ((2, j ) ,  (k, 1 ) )  1 

Pd(k,L) if P," ((i,j), ( k , 1 ) )  < ps < 1, 
= 

< 
for Zrj, k > i ,  l - k > j - z .  

Proof: See appendix A.5. 

Theorem 3.6 indicates that for any two IDS in the IDS 
class, an IDS can have better reliability in a range of P,, 
but worse reliability in the other range. Thus, a particular 
IDS does not always give better reliability than another. 
This suggests that a designer must determine the range of 
P, first, and then choose the right IDS in the class. 
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0 Discussion 0 Lemma 4 

Theorems 3.4 - 3.6 show that for any two different IDS,  
(i, j)-IDs and ( k ,  I)-IDS (let 1 2 j ,  without loss of gener- 

I f  infinite subsequence Of < xn > has an infi- 
nite subsequence that ‘Onverges to x, then the sequence 
< x, > converges to x. ality): 

if k 5 i then Pd(i,j) 5 Pd(k,I) for all P,, 
if k > i and 1 - k  5 j - i then Pd(i,j) > Pd(k,I) for all P, 
if k > i and I-k > j -  i then there exists a p i  ((i, j ) ,  (k, I ) ) ,  
where: 

Proof: Omitted. 

Theorem 3.8 

ity of (m, n)-IDS and ( k  e m, k - n)-IDS. 
Let Ak = p,* [(m, n) ,  (k m, k . n)], the critical probabil- 

Then the sequence < Ak > converges to m/n. 
Proof: See appendix A.9. 
Theorem 3.8 shows that the critical probability of 

(m, n)-IDS and ( k  m, k n)-IDS, P,* [(m, n),  ( k  . m, k . n)] ,  
converges to m/n as k increases. Because the reliabil- 
ity curves of (k . m, k n)-IDS vary consistently, the criti- 
cal probability of (m,  n)-IDS and ( k  . m, k . n)-IDS, either 
strictly decreases to m/n or strictly increases to m/n as k 

Discussion 

Pd(i,j) > Pd(k,l) if Ps < p,* ((Z,j), ( k ,  I ) ) ,  
Pd(i,j) = Pd(k,I) if Ps = P,*((i ,d,  ( k , q ) ,  
Pd(i,j) < Pd(k,I) if  P, > P,* ( ( i , j ) ,  ( k , O ) .  
Theorem 3.6 implies corollary 1. 

0 Corollary 1 

(k2  m, kz n)-IDS, for m < n and kl < k2. increases. 
There exists exactly one P,* for (ki . m, ki . n)-IDS and 

Proof: See appendix A.6. 

0 Lemma 1 

then: Pd(k - m, k .  n )  M gaufc(-0.5(), for P, = m/n; 

Use a Gaussian approximation of Pd(k. m, k . n),  evalu- 
ated at P, = m/n [ l l]:  

Let p ,  q be real non-negative numbers such that p f q  = 1, 

exp (nl - ml) . log (;a) + m’. log (+)I I 
{ binfc(m’; n’, p ) ,  for m’ L p . n’ 

for m’ 5 p . n’. binf(m’; n’, p ) ,  

Proof: See [8] or [lo]. 

0 Lemma 2 
Pd(k . m, k + n)  -+ 0 as k -+ m, for P, < m/n and k 2 1 

Proof: See appendix A.”. 

0 Lemma 3 

Pd(k. m, k. n) t 1 as k --f CO, for m/n < P,. 
Proof: See appendix A.8. 

Because gauf(-0.5<) strictly increases to 0.5 as k in- 
creases, the value of Pd(k.m, k en) evaluated at P, = m/n 
strictly decreases to 0.5 as k increases. From theorem 3.6, 
the critical probability of (m, n)-IDS and ( k  . m, k .  n)-IDS 
(for all k > 1 )  is larger than m/n. Therefore, the critical 
probability of (m, n)-IDS and ( k  . m, k n)-IDS strictly de- 
creases to m/n as k increases. That is, the sequence: 
< Ak > = P,* [(m, n) ,  ( k  . m, k . n)] 
strictly decreases to mln. The result has been confirmed 
by examining the sequence for n 5 100. As an example, 
figure 3 shows the reliabilities of ( k ,  2k)-IDS (1 5 k 5 4). 
Figure 4 augments a subregion in figure 3. 

0 Theorem 3.7 

As k + 00: 

Pd(k.m,k.n) + 0 ,  for P, < m/n; P d ( k . m , k . n )  -+ I ,  for 
P, > m/n. 

Proof: This follows from lemmas 2 & 3. 

Theorem 3.7 demonstrates a principle to determine the 
lower bound of IER such that the IDS with the lower 
bound of IER has better reliability. Given the success 
probability of each P,, we should select those IDS whose 
IER > l /Ps; ie, for the class of ( k  . m, k . n)-IDS, the 
reliability -+ 1 if IER (= n/m) > l/P,. From a design 
perspective, theorem 3.7 indicates that if more servers are 
provided, but the same IER (> l /Ps)  is provided, then 
the total reliability of the distributed servers increases. 

n.2 

Figure 3. Reliability Curves for (1,2)-IDS, (2,4)-IDS, (3,6)- 
IDS, (4,8)-IDS 
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The critical probability P,*[(l, a ) ,  ( k ,  2 k ) ]  for 2 5 k 5 4 
is computed as: 

P,*[(1,2), (2,4)] x 0.6667, 
P,* [(1, a ) ,  (3 ,6)]  M 0.6377, 
P,*[(l,2), (4, S)] M 0.6198. 

This shows that P,*[(l, a ) ,  ( k ,  2k)] is strictly decreasing, 
for 2 5 k 5 4. 

Figure 4. Augmentation of the Subregion in Figure 3 

0 Theorem 3.9 

The following conditions hold for any 
P d ( t . m , t . n ) , I  < t < k :  
Pd(t.m,t.n) < Pd(m,n), if P, I: P,*[(m,n),(k.m,k.n)],  
Pd(t.m, t.n) < P d ( k m ,  bn), if P;[(m,n), ( k m ,  bn)]  5 P, 

Proof: See appendix A.10. 

From a design perspective, theorem 3.9 shows that we 
can choose the most reliable IDS from the class of (t ' m, t . 
n)-IDS for 1 5 t 5 k .  The best choice is: 

(m, n)-IDS iff P, E (0, P:[(m, n), ( k  . m, k * n)]) ,  
(k .m,k.n)-IDS iff P, E (P;[(m,n),(Ic.m,k.n)],l). 

Notation (for an (m, n)-IDS) 
n 
m 

total number of participating servers 
number of servers involved to recover a file 

n - m fault-tolerant capability 
n/m IER 

These factors (in the Notation) determine the cost & per- 
formance of a distributed service. For example: 
. a larger n implies that the service needs more partici- 
pating servers, 
. a larger m implies that the time to recover a file is longer, 
. a larger n - m implies that the service can tolerate more 

According to the resource & performance constraints, 
the designer has many possible choices for (m,n)-IDS. 
Given these IDS, then determine the optimal IDS with 
the highest reliability. From theorem 3.6, every pair of 
IDS has at most one critical probability. The optimal IDS 
for the two ranges (P, > P,*, and P, < P,*) are usually 
different. Given a set of IDS, one of them might be not 
optimal in all ranges of P,. Therefore, finding optimal IDS 
is quite complicated. Based on the theorems 3-1 - 3-9, we 
give a pseudo-algorithm for finding the possible optimal 
systems. The input of the algorithm is a set of IDS which 
the designer can choose according to the resource & per- 
formance constraints. The output is the reduced IDS set 
indicating a possible optimal IDS. 

0 Algorithm: Search-t he-Possi ble-0 pti m a [Systems 
Input: S [set of IDS with different parameters] 

Output: S' [reduced set of IDS indicating possible 
optimal IDS] 

1. Let S ' =  S .  

2a. Search S' to find the IDS which belong to the same 
class of (m,n + k)-IDS. Let this IDS be 
{ (m, n + k,)-IDS}i=l, where k, < k,+l. 

2b. Reduce S' by deleting { (m,  n + k,)-IDS}i;;. 

2c. Repeat this step 2 until no IDS belongs to the same 

' 

(by theorem 3.1) 

class of (m, n + k)-IDS. 

3a. Search S' to find the IDS which belong to the same 
class of (m + k,n)-IDS. Let this IDS be 
{ (m + k,, n)-IDS}L=l, where kg < k ,+ l .  

3b. Reduce S' by deleting { ( m  + k,,n)-IDS}i=2. 
(by theorem 3.2) 

3c. Repeat this step 3 until no IDS belongs to the same 
class of (m + k ,  n)-IDS. 

4a. Search S' to find the IDS which belong to the same 
class of (m + k , n  + k)-IDS. Let this IDS be 
{ (m + kg, n + k,)-IDS}&l, where ks  < k,+l.  

4b. Reduce S' by deleting { (m + k,, n + k,)-IDS}&,. 

4c. Repeat this step 4 until no IDS belongs to the same 

(by theorem 3.3) 

class of (m + k ,  n + k)-IDS. 

5a. Search S' to find the IDS which belong to the same 
class of (m . k ,  n . k)-IDS. Let this IDS be 
{ (m  . k g , n .  k,)-IDS}i=I, where k, < k,+l .  

5b. Reduce S' by deleting { (m  . k,, n . k , ) - I D S } ~ ~ ~ .  
(by theorem 3.9) 

5c. Repeat this step 5 until no IDS belongs to the same server €ailures, 
. a larger n/m implies that storage cost of the service is 
higher. 

class of (m . k ,  n . ,+)-IDS. 
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For every pair of IDS in SI, say (i, j)-IDS & ( k ,  Z)-IDS, 
execute the process: 

a. if 1 > j ,  and k < i, then delete (i,j)-IDS from S’; 
(by theorem 3.4) 

b. if 1 > j ,  k > i, and 1 - k < j - i, then delete 
( k ,  Z)-IDS from 5’’; (by theorem 3.5) 

c. if 1 < j ,  and IC > i, then delete (k,l)-IDS from SI; 
(by theorem 3.4) 

d. if 1 < j ,  k 4: i, and 1 - k > j - i, then delete 
(i, j)-IDS from SI; (by theorem 3.5) 

output S’. 

EndAlgorithm 
Once the reduced IDS set S’ is determined and the suc- 

cess probability of each P, is known, the designer can com- 
pute & compare the reliabilities of these possible optimal 
IDS to find the optimal IDS. 

Section 4 considers a special case when an upper-bound 
of the IER and the number of available servers are given. 
The method uses the properties in theorems 3.1 - 3.9 to 
reduce the complexity of finding the optimal IDS. 

4. OPTIMAL INFOR.MATION DISPERSAL 
Theorem 3.2 shows that an (ml, n)-IDS has higher relia- 

bility than an (m2, n)-[DS if ml < m2. So, it is reasonable 
to store higher priority files in the distributed servers at  a 
higher IER. and lower level files at  a lower IER.; this does 
not imply that any 11)s with a higher IER always has a 
higher reliability than an IDS with a lower IER. On the 
other hand, the number of available servers in a distributed 
system can change. Based on the analysis in section 3, we 
propose a method for determining the optimal IDS when 
an upper-bound of the IER. (depending on the priority of 
the file) and the number of available servers are given. 

Notation 
U upper bound 01. the IER 
v number of available servers 
k lv/ul 

Given U & v, the feasible IDS set is the set of all possible 
IDS that satisfy these conditions. The optimal IDS in each 
range of P, are elements of the feasible IDS set. Theorems 
3.4 & 3.5 show that many IDS of a feasible IDS set are not 
optimal in any range of P,. Theorem 3.6 shows that an 
IDS can be optimal in some range, but not in all ranges. 
Therefore, a feasible IDS set can be reduced so that all 
optimal IDS are still included in the reduced feasible IDS 
set. The reduced feasible IDS set is a subset of the feasible 
IDS set. For any P,, the optimal IDS of Fu,v is an element 
of the reduced Fu,v. 

The feasible IDS set is the union of several partitions. 
Each partition consists of all (m,n)-IDS for which m is a 
constant: 

467 

By theorem 3.1, in each partition: 

the (i, i . U)-IDS has the highest reliability. Similarly, in 
each partition: 

the (k + j,v)-IDS has the highest reliability. Thus, (1) 
reduces to: 

[(i, t)-IDS; i 5 t 5 i * U], 

[(k+j, t)-IDS; k + j  i t < V I ,  

FU,v = [(i, i . u)-IDS; 1 5 i 5 k] U [ (k  + j, v)-IDS; 
l < j < v - k ] .  (2) 

By theorem 3.9, the IDS set: 

can be reduced to: 
[(i,i. u)-IDS; 1 5 i 5 k]  

[(l, u)-IDS, ( k , ~  * k)-IDS]. 
By theorem 3.2, in the IDS set: 
[(k + j ,  v)-IDS; 1 5 j 5 ZJ - k], 

the (k + I, v)-IDS has the highest reliability. Therefore, 
(2) can be reduced to: 

[(l, u)-IDS, ( k ,  U .  k)-IDS, ( k  + 1, v)-IDS]. (3) 

If k = v/u, then (3) reduces to: [(l,u)-IDS, (k,v)-IDS, 
(k + 1, w)-IDS]. 

By theorem 3.2, Pd(k,v) > Pd(k + 1,v).  Thus, (3) re- 
duces to: 

[ ( l , ~ )  - I D S ,  (~,v)-IDS].  (4) 

Compare the number of feasible IDS sets with the number 
of reduced feasible IDS set as follows. The reduced feasible 
IDS set contains 3 elements (2 elements if k = v/u), ze, 
the number of elements in the reduced feasible IDS set is 

Without much loss of generality, let k = v/u. Then, the 
OU). 

number of the feasible IDS sets is: 

[ i J g . u - g + l )  g=l I + [g=k+l 2 ( v - g + l )  1 
Thus, the number of elements in the feasible IDS set is: 
O(v2),  if U > 1, O(v), if U = 1. 

highest reliability: 
Hence, we can reduce the complexity for computing the 
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from O(w) to 0(1) when the upper bound of the IER is 1 
from O(v2) to O(1) when the upper bound of the IER. is 
larger than 1. 

Examp le 
Let U = 3, z1 = 11. 

The feasible IDS set: 
11 

F3,11 = [U [(g,t)-lDS; 
g=1 I g 5 t 5 min(3g, 1 I)] 

Thus, F3,11 reduces to: 

and the number of feasible IDS sets is reduced from 51 to 
3. Figure 5 shows the reliability curves of these 3 IDS; 
figure 6 shows the subregion in figure 5. 

[(1,3)-IDS, (3,9)-IDS, (4,l l)-IDS], 

8.  

8 .  

%. 

8.  

i3'9r 
0.2 8.4 8.6 8.8 

Figure 5. Reliability Curves of (1,3)-IDS, (3,9)-IDS, 
(4,ll)-IDS 

Figure 6. Augmentation of the Subregion in Figure 5 

* (4,11)-1W ps E [P,*[(3,9), (4,11>1,11; 
where: 
* P,*[(1,3), (3,9)] M 0.42138, 
. P,*[(3,9), (4,11)] = 0.7; 
. IER of (1,3)-IDS is 3, 
. IER of (3,9)-IDS is 3, 
. IER of (4,ll)-IDS is 2.75. 

Thus an IDS with a higher IER need not have a higher 
reliability, even though the probability -+ 1. 
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APPENDIX 
Notation 

Q s  I - P s  

A.1 Proof of Theorem 3.2 
binm(g; n, Ps). m+k-l  

Pd(m, n) = pd(m + k ,  n)  + CgEm 
So, Pd(m, n) > Pd(m + k, n). Q.E.D. 

A.2 Proof of Theorem 3.3 

A.2.1 For k = 1 
Use mathematical induction. 

The total reliability of (m + 1, n + 1)-IDS is: 

Pd(m + 1 , n  + 1) = binfc(m + 1 ; n  + l,Ps) 

The total reliability of (m, n)-IDS is: 
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Thus, Pd(m, n) > Pd(m + 1, n + 1), and the theorem holds 
for k = 1. 

= (!) > o ,  A.2.2 For k > 1 

Pd(m, n)  > Pd(m + t ,  n + t). 
Let m’ = m + t and n’ = n + t ;  then from A.2.1, 
Pd(m,n) > Pd(m + t ,  n + t )  
= Pd(m‘, n’) > Pd(m’ + 1, n’ + 1). 

Pd(m, n)  > Pd(m + t -t. 1, n + t + I), 
and the theorem holds also when k = t -t 1. 

Assume the theorem holds when k = t: 

Qs:l = [$ (i) P,”-i. Qj-g 

Q,:z = [ $ (3 - Pi!-z ’ 

, I  
1 Therefore, 

Q.E.D. thus Pd(2,j) > P ~ ( ~ c , I )  when P, -+ o+. 

A.3 Proof of Theorem 3.4 
By theorem 3.1, 

Pd(k,j) 5 Pd(k, 1 )  for 1 2 j ,  

j 

pd(i,j) = 1 - (3 . P,j-”. Q:, 
g=j-i+l 

with equality when 1 == j. By theorem 3.2, 

with equality when k := i. 

Pd(i,j) 5 Pd(k,j) 5 Pd(k,l) for 1 2 3 and k L i, 
with equality when 1 == j and k = i. 

A.4. Proof of Theorem 3.5 

Pd(k,l) = 1 - ‘ (i) . Pi-” . Q:. 
Pd(i,j) 5 Pd(k,j) for k 5 i, g=l-k+l 

Therefore, 
lim [3!2] - - lim [@,:I - @,:2] 

P,--r1- Q;-’+’ Pa-+l- 

j Q.E.D. 
=-(j- i+l)  < O ,  

1 
1 

Let t = 1 - j. By theorem 3.3, [ 2 (i) . p , “ - g .  QZ-J+2-1 

(d) . p , ” - g .  Q:-J+2-1 

P d ( 2 , j )  2 Pd(i + t , j  + t )  = Pd(i + 1 - j ,  l ) ,  g=l-k+l 
with equality when 1 = j. Because 1 - k 5 j - i, then 
k 2 i + 1 - j. By theorem 3.2, @s:2 3 [ 
Pd(i + 1 - j ,  1) 2 Pd(k, I ) ,  g=J--z+l 
with 

pd(i, 
with 
l = j  
Pd(i, 

equality when i + 1 - j = k. So, 

equality when 1 = j and i + 1 - j = k, or equivalently 
and i = k.  However, IC > i. Thus, 
j )  > Pd(k,l) if 1 2 :  j, k > i, and 1 - k 5 j - i. 

j )  2 Pd(k,l), 
thus Pd(i, j )  < Pd(k, 1)  when P, - 

These equations show: 
b(P,) > 0 when P, -+ O+, 
b(P,) < 0 when P, 4 1-. 

A.5 Proof of Theorem i3.6 

A.5.1 Prove: 
6(P,) > 0, when P, ---t (I+, 
b(P,) < 0, when P, +. I - .  

Q. E. D. 
A.5.2 Prove (Based on A.5.1.) 

+1- 

There exists exactly 1 critical P,* such that: 

P d ( 4  j )  = Pd(k I ) ,  
Pd(i,j) > Pd(k,Z) if P, < P,*, 
Pd(i,j) < Pd(k,l) if P,* < P,. 

Because: 

then the first derivative of Pd(m,n) is: 

PA(m, n)  = me (:) . ~ 7 - 1 .  Q T - ~ .  
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Therefore, 

Similarly, 
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A.7 Proof of Lemma 2 
Let P, < m/n. 

Lemma 1 shows that: 

= k . m . log (kin:). ___ 

Hence, 

Pd(k.  m, k . n)  5 exp [@,:I + @,:2] 

Let: 

fJ'(P,) > 0 when P, --+ I-. 

Let #(P,) = 0. Then, P, = 0, or P, = 1, or 

Let a = k - i, b = ( I  - k )  - ( j  - 2) .  
The graph of P," Q: is: 

n 1 
So, there are at most two solutions in (0,1) for (6). If 

there is no solution or one solution in (0,1) for (6) then 
6'(P,) >_ 0 for all P,. [There is at  most one P, such that 
S'(P,) = 0.1 This implies that 6(P,) is a monotonic in- 
creasing function. 
6(P,) > 0 as P, --f 1-, because 6(P,) > 0 when P, -+ O+. 
This contradicts the claim that 6(P,) < 0 when P, --+ 1- 
in A.5.1. Therefore, there are exactly 2 solutions in (0,1) 
for (6); and there are 3 stationary points for 6(P,) when 
P, E (0 , l ) .  However, 
S(P,) is a polynomial of P,, and 
Pd(i, j )  > Pd(k, I )  when P, 3 Of, 

Pd(i,j) < Pd(k,I) when P, --+ 1-. 
So, there exists exactly 1 P,* such that: 

Pd(i,j) > Pd(k,I) if P, < P,*, 
Pd(i, j )  < Pd(k, I )  if P,* < P,. 

A.6 Proof of Corollary 1 
Because: 

k2 . n > kl . n, 
. m  > k l  .m,  

/ ~ . n - k a . m = k z . ( n - m ) >  k l . (n -m)=k l .n -k i .m  
then theorem 3.6 shows that there exists exactly 1 critical 
probability in (0,l) for (kl  * m, ki 9 n)-IDS and 
(k2 . m, kz . n)-IDS.  

Pd(4 j) = Pd(k 0, 

Q.E.D. 

Q.E.D. 

Calculate where the maximum of g(P,) is. 

- (n-m) .P ,+m.Q,=O;  

P, = m/n; and the maximum value of g(Ps) is g(m/n) = 
1. Since P, < m/n, then, 
0 < g(P,) < 1 when 0 < P, < m/n. 
Because 0 < g(P,) < 1, then f (P,)  < 0. 

exp [k . f (P , ) ]  -+ 0 as k -7' 00. 
Because, 

Therefore, 

then, 
Pd(k . m, k . n)  0 as k --+ 00, for 0 < P, < m/n. 

Q. E. D. 

A.8 Proof of Lemma 3 

Lemma 1 shows that: 
Let < P,. 
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Let: 

f(E) = log(g(Ps)). 
Because 0 < P, < 1 and n 2 m, then g(P,) > 0. 

Calculate where the maximum of g(P,) is. 

-(n - m)  . P, + 7 7 1 .  Q, = 0; 
P, = m/n;  

the maximum value of g(P,) is g(m/n) = 1. 
Hence, 
o < g(P,) < 1 when mln < P,. 
Because 0 < g(P,) < 1 , then f(P,,) < 0. 
Therefore, exp [k . f ( f \ ) ]  -+ 0 as k -+ 00. 

Because, 

then, 

Hence, Pd(k .  m, k . n )  3 1 as k -+ 03. Q. E. D. 

A.9 Proof of Theorem 3.8 
Let < A,, > be any subsequence of < Ak >. If we can 

construct a subsequence < At, > of < A,, > such that 
< At, >+ mln, then, by lemma 4, the theorem is proved. 

Corollary 1 asserts the existence & uniqueness of Ak, ie, 
Ak is unique in (0,l) such that Pd(m, n)  and Pd(k.m, k.n) 
are equal at Ak. By assumption, < A,, > is a subsequence 
of < Ak >, so it corresponds to the subsequence, 

< Pd(Sk m, s k  . ?I) > O f  Pd(k . m, k . n). 
Construct < At, > such that, 

for all k.  Consequently, 
< At, >-+ mln as k --+ 00. 

To begin with, choose tl = 2; then A2 E [0,1]. Define tk 
inductively. Let tk be defined for k = 1 , 2 , .  . . , z - 1. The 
following discussion is needed before t, is defined. Let, 

L = Pd(m, n)  and L,, = Pd(sk m, S k  n) ,  

R = Pd(m, n )  and R,, = Pd(sk . m, Sk + n),  
at P, = - z. 
limkdW (L,, ) = 0 by theorem 3.7. 

Therefore we can choose a subsequence < Uk > of < S k  > 
such that: 
L,, < L,  for all k ,  
< L,, > is strictly decreasing to 0. 

limk+w (R,, ) = 1, by theorem 3.7. 

Therefore we can choose a subsequence < Vk > of < uk > 
such that R,, > R for all k ,  and < R,, > is strictly 
increasing to 1. 

L,, < L,  and R,, > R, for all k.  
Therefore, 

at  p - E l  - E .  
- n n . 2 ’  

On the other hand, 

Now consider Uk: 

A,, E - - -, - + - , for all k .  [: :2 : n?3 
Geometrically, this can be understood easily; the Inter- 

mediate Value Theorem in calculus applies here. Let, 
t; s mink {Vk; uk > &-I}. 
By induction, construct a subsequence < At, > of < Ak > 
such that, 
< A t ,  >+m/n. 
Hence, by lemma 4, 
< Ak >-+ mln. Q.E.D. 

A.10 Proof of Theorem 3.9 
As explained in section 3, just before theorem 3.9, 

P,” [(m, n) ,  ( k .  m, k . n)] < P,* [(m, n),  ( t .  m, t .  n)l, 
if k > t. 
The Cdf, Pd(m’,n’) of an (m’,n’)-IDS, is strictly mono- 
tonic increasing for P, E ( 0 , l ) ;  therefore, 
P,* [(t . m, t . n) ,  ( k  . m, k . n)] < P,* [ (m, n) ,  ( k  . m, k . n)] 

< P,* [(m, n), (t . m, t . n)] .  
Let, 
p,  = P,*[(t. m, t . n) ,  ( k  . m, k . n)] ,  
Pb = Ps*[(m,n), (k . m, k * n>l, 
p,  e Pz[(m,n), (t . m, t . n)] .  

Pd(t. m, t . n )  < Pd(m, n)  if P, < p,, 
Pd(t. m, t . n)  < Pd(k . m, k . n) ,  if pa < P,. 

According to the definition of the critical probability: 
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Because p ,  < p c ,  

Because pa < pb, 

[16] M.O. Rabin, “Efficient dispersal of information for secu- 
rity, load balancing, and fault tolerance”, J .  ACM,  vol 36, 
1989 Apr, pp 335-348. 

[17] A. Shamir, “HOW to share a secret”, Comm. ACM,  vol22, 
1979 Nov, pp 612-613. 

Pd(t.  m, t . n) < Pd(m, n) ,  if P, I pb. 

Pd(t .  m, t .  n)  < Pd(k . m, k . n) ,  if p b  5 P,. Q.E.D. 
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