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A Unified Approach to Scrambling Filter Design 
Chwan-Wen King and Ching-An Lin 

Abstract- Most speech scrambling systems are either linear 
periodic filters or can be modeled as such. It is well-known that 
from an input-output point of view, a periodic filter is equivalent 
to a multi-input multi-output linear time-invariant system and 
thus a rational transfer matrix. In this paper, we propose a 
framework, based on transfer matrices and frequency domain 
descriptions, for analysis and design of speech scrambling filters. 
We derive necessary and sufficient conditions for a scrambling 
system to be insensitive to frame synchronization error. We 
propose a procedure for the design of scrambling filters that 
are insensitive to synchronization error and have zero bandwidth 
expansion. An illustrative design example is given. 

I. INTRODUCTION 

ANY schemes [6], [ l  11, [17] have been proposed for M analog scrambling of speech. Most existing analog 
speech scrambling filters [l], [4], [6], [lo], even the so-called 
2-D scrambler [13], are either linear periodic filters or can 
be modeled as such. From an input-output point of view, 
a linear periodic filter is equivalent to a multi-input multi- 
output linear time-invariant system and thus a rational transfer 
matrix [12]. It is shown in this paper that by modeling periodic 
filters as transfer matrices and using their frequency domain 
characteristics [ 121, many design requirements of scrambling 
and descrambling filters become transparent and thus design 
procedures become easy to develop. 

The need for frame synchronization in scrambling systems 
complicates the implementation and makes the recovered 
speech sensitive to channel conditions. Lee [6], [7] and Del 
Re [13] proposed scrambling schemes in which the frequency 
bands of input speech are interchanged and the original speech 
is correctly recovered in spite of the existence of frame 
synchronization error. This capability improves reliability and 
feasibility of scrambling systems and reduces implementa- 
tion complexity. However, general conditions under which a 
scrambling system is insensitive to synchronization error have 
not been investigated. 

In this paper, we develop necessary and sufficient con- 
ditions for a scrambling system to be insensitive to frame 
synchronization error. Based on these conditions, we propose 
an algorithm for designing scrambling systems that do not 
require frame synchronization. The implementation of such 
scrambling systems is also simplified since it only requires 
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realization of periodic filters. The realization of periodic filters 
represented as transfer matrices can be found in [8]. 

The contributions of this paper are as follows. We propose a 
framework, based on transfer matrices and frequency domain 
descriptions, for analysis and design of speech scrambling 
filters. We derive necessary and sufficient conditions for a 
scrambling system to be insensitive to frame synchronization 
error. We propose a procedure for the design of scrambling 
filters that are insensitive to synchronization error and have 
zero bandwidth expansion. 

In Section 11, we review the properties of the periodic system 
in both time and frequency domains. In Section III, we intro- 
duce a generic model for scrambling systems. Performance 
analysis is studied under this model and the performance of 
an FFT algorithm-based scrambler is qualitatively analyzed. In 
Section IV, we derive necessary and sufficient conditions for 
scrambling systems to be insensitive to frame synchronization 
error. A design algorithm is given in Section V. An illustrative 
design example with simulation and experimental results is 
then given in Section VI. A brief conclusion is given in the 
last section. 

11. PROPERTIES OF PERIODIC FILTER 

In this section, we review descriptions of periodic filters in 
time-domain and frequency-domain and discuss briefly their 
properties. 

A. Time Domain Description 

filter, described by 
Consider a linear finite dimensional SISO causal N-periodic 

(1) 

where A ( k )  E Etnxn, b ( k )  E RnX1, c ( k )  E and 
d ( k )  E IR are N-periodic, i.e., A( lc+N)  = A ( k ) ,  b ( k + N )  = 
b(lc), c(k + N) = c (k ) ,  and d(k + N) = d(lc) for all k .  

z ( k  + 1) = A ( k ) z ( k )  + b(L)u(k) ,  

?Ak) = c ( k ) z ( k )  + d ( k ) u ( k )  

Let 

%(k) = z ( k N ) ,  
u ( k )  = [u(kN)  u(kN + 1) . . .  u(kN + N - 1)IT 

Q(k)  = [ y ( k N )  y ( k N  + 1) . . .  y ( k N  + N - l)]' 
and 

then [12] 

%(IC + 1) = A%@) + Bu(lc), 
g( lc)  = C%(k) + Du(k) 
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where 

A = A(N - 1)A(N - 2)**-A(l)A(O),  
- _ _ _  - ._ 

. . 
Periodic Periodic 

U(.) Scrambling d.) Channel, U(.) c(.) Transmission hcrambling 
Filter, 

input 
speech speech - 6-h 

Filter, 
qz) scrambled s(z )  

recc;: 
recovered* 

D = [ d , , j ]  

i < j  
with d i , j  = d ( i ) ,  2 = j . (3) (" c(i)A(i - 1) - * .  A ( j  + l ) b ( j ) ,  i > j 

With zero initial conditions, the systems (1) and (2) describe 
the same input-output relation, except that in (2), the input 
and output are in blocks of size N. Since (2) is linear time- 
invariant, the transfer function G ( z )  = C ( z 1 -  A)-lB + D 
is defined. We call G(z )  the block transfer matrix of the N- 
periodic filter (1). We note that linear periodic filters described 
in other forms, e.g., polyphase model [2], [16], coefficient 
varying model [2], and difference equation [12], all can be 
converted into the corresponding MIMO linear time-invariant 
system of the form (2). Clearly the periodic system (1) is stable 
if and only if the block system (2) is stable. Also, since (2) is 
linear time-invariant, it allows a frequency domain description 
of the periodic filter. 

B. Frequency Domain Description 

Let 
00 00 

Y ( z )  = y(k)z-& and U ( Z )  = u ( ~ ) z - &  (4) 
k=O k=O 

be the ;-transform of y(k) and ~ ( k ) ,  respectively. And let 

CO 

Y ( 2 )  = s (k ) z -k  =: 

Y N - 1  ( z )  k=O 

and 

- N-1 

(9) 

where H k ( z )  = C ~ ~ ' W ~ C ~ ~ ' Z ~ - ' G ~ , ~ ( Z ~ ) ,  k = 
0, a a , N - 1, is called the transfer function of the kth shifted 
band, or simply called the kth transferfunction of the periodic 
system (1). The relation (9) shows that the output spectrum is 
a sum of shifted and shaped versions of the input spectrum. 
We note that the relation (9) can also be obtained through 
filter bank representation of periodic filters [16, ch. 101. 

m. MODEL AND ANALYSIS OF SPEECH SCRAMBLING SYSTEMS 

Qpically, most scrambling filters can be regarded as a 
periodic filters. Based on this fact, we develop the following 
generic model for a scrambling system. 

A. Model Setup 

The functional block diagram of a typical speech scrambling 
system, shown in Fig. 1, consists of a periodic scrambling 
filter, transmission channel, and a periodic descrambling filter. 
In our analysis, the peeodic scrambling filter is an N-periodic 
filter whose block transfer matrix is G(z) ;  the transmission 
channel is characterized by a transfer function S(z); and the 
periodic descrambling filter is an N-periodic filter whose block 
transfer matrix is G(z).  

Referring to Fig. 1, we have the following relations in 
frequency domain: 

a) The scrambled signal Y (2) is obtained by 

1 N-l  
Y(2)  = - Hk(z)U(zW;)  

k=O 
.[ -O0:) ] ( 5 )  N 

00 

D ( z )  = 2l(k)z-k =' 
k=O UN-l(z) 

where U ( z )  is the input signal 
be the z-transform of g(k) and a(k), respectively. The z- 
transforms are related by [12] N-1 

H&(Z) = WkFi(2) (1  1) 
i = O  

N-1 

and 
Y(2) = z - l%(zN)  (6) 

l=O 
N-1 and 

F;(z) = zi-'Gi,i(zN). (12) 
(7) 1=0 

Remarks: i) Obviously, Fi(z) E & ( z )  and H k ( z )  
E Cp(z) ,  where q ( z )  and C,(z) denote the set of 
proper rational functions in z with real and complex 

% ( z )  Gl,i(z)Ui(z)- (8) ii) In the polyphase model, the N-periodical filter 
is implemented by connecting N time-invariant filters 

zi N - l  
U & N )  = w:U(zWk) 

k=O 

where WN = e- j%.  Let G(z )  = [ G l , k ( ~ ) ] z i , & ~ .  Since 
Y ( z )  = G(z)O(z) ,  thus 

N - 1  coefficients respectively. 

i = O  
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Pl(z), 1 = O,- . . ,N  - 1 in parallel and the output 
signal is obtained by selecting the output signals from 
these filters periodically. It can be shown that the re- 
lation between Pl(z) and G ( z )  is given by Pl(z) = 

zi- 'G~,i(zN).  Note that Gl,i(z) for 0 5 I 5 
N - 1 is the polyphase component of the N-component 
polyphase representation of z-ZFi ( z ) ,  while Gl,i ( z )  for 
0 5 6 5 N - 1 is just the polyphase component of the 
second type polyphase decomposition of ~ ~ - - ( ~ - l ) P l ( z ) .  
The signal V ( z )  received at the input of the descrambing 
filter is given by 

N - 1  

V ( z )  = S ( z ) Y ( z ) .  (13) 

The recovered signal o ( z )  is obtained by 

where 
N-I 

i=O 
N - 1  

1=0 

and 

By (lo), (13), and (14), the relation between the input signal 
and the recovered output signal in frequency domain is given 
by 

. N - 1  N-1  
1 

U ( z )  = p &(z)S ( zWL)  Hk(zW;)u(zWf+". 
1=0 k=O 

(18) 
For simplicity, rewrite (18) as 

N - 1  

U ( z )  = Mk(Z)U(ZWk)  
k=O 

where 
N-1 

and [ I C  - I] := (IC - I )  modulo N, 0 5 [IC - 11 5 N - 1. We 
call Mk(z )  the krh recovered gain of the scrambling system 
shown in Fig. 1. We note that for perfect speech recovery we 
should have 

Mo(z)  = 1 and Mk (2) = 0 for k = 1, . . , N - 1. 
(21) 

From a design po_int of view, the goal is to find transfer 
matrices G ( z )  and G ( z )  so that the transfer functions Mk(z)  
in (19) are as desired. Clearly G and G must be real rational 
to be realizable in the form (2). The rational functions Gl,i(z) 
for 0 5 1 5 N - 1 can be uniquely obtained from Fi(z)  since 
they are simply the polyphase component of the N-component 
polyphase representation of ~ - ~ F i ( z )  [ 5 ] ,  [ 161. In particular, 
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G is real rational iff Fi, i = 0, . . . , N - 1, is real rational. The 
following result shows that G is real rational iff H k ( z )  have a 
certain symmetric property. The proof is straightforward and 
hence omitted. 

Proposition 3. I :  Suppose that Fi (2) and Hk (2) are related 
by (I 1). Then, the following holds: 

i) For i = 0, , N - 1, Pi(.) is uniquely determined by 

. N - 1  
1 

Fi(Z) = - W,-%&). 
k=O 

N 

ii) F;(z )  E RP(z) for each i if and only if 

holds for IC = 0, . . e , N - 1, where H;(z)  is obtained from 
Hk (2) by conjugating the coefficients. - 

Similar results hold for Fi(z )  and H k ( z ) .  With the con- 
straint (23) on HI,  and H k ,  the design of scrambling system 
is equivalent to choosing the transfer functions H k ( z )  and 
Hk(z). 

B. Pelfonnance Analysis 

Commonly used criteria for evaluating the performance of 
a scrambling system are stability, descrambling capability, 
security level (residual intelligibility and key space), distor- 
tion caused by channel characteristics, distortion caused by 
synchronization error, expansion of bandwidth, amplification 
of noise, operation delay, etc. The generic model proposed 
here is useful for evaluating the performance of scrambling 
systems based on the stated criteria. 

To quantitatively evaluate performance we use a perfor- 
mance index called the deformation factor (DF) of the scram- 
bling system, defined as 

k=l " ' J U  \ 

We note that for perfect recovery (21), DF is zero. Roughly, 
we expect that two scrambling systems with the same DF have 
similar quality of speech recovery. 

With the generic model and DF, the performance of a 
scrambling system can be evaluated as follows: 

1) Stability: The scrambling and descrambling filters are 
BIB0 stable iff G(z )  and G ( z )  have all their poles inside 
the unit disk. 

2) Descrambling capability: The descrambling capability 
is a basic requirement for a scrambling system. It can 
be evaluated by choosing S ( z )  = 1 and calculating 
the associated DF. Small DF indicates good recovery 
quality. 

An 
m-sample synchronization error in the descrambling 
process can be characterized by S ( z )  = z - ~ .  With this 
specific form of S ( z ) ,  we obtain the recovered gains 
by (20) and evaluate the distortion due to the frame 
synchronization error through the index DF. In order 
to estimate the net effect of the frame synchronization 

3) Distortion caused by frame synchronization error: 
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Fig. 2. First four recovered gains as synchronization error = 3 samples. 

error, the difference between the resultant DF and the DF 
without synchronization error can be used as a new per- 
formance index. More precisely, the new performance 
index ADF = DF (calculated with S ( z )  = z-") - 
DF (calculated with S ( z )  = 1). For properly designed 
systems, ADF 2 0 in general. Large ADF indicates 
sensitivity to synchronization error. 
Distortion caused by bandwidth expansion: Distortion 
caused by the bandwidth expansion can be evaluated as 
follows. Let S(z)  be the lowpass filter with bandwidth 
equal to the channel bandwidth. Calculate DF corre- 
sponding to this S ( z )  but with a little modification so 
that the integral average is taken over the bandwidth of 
the input speech under consideration. We also can use 
ADF instead of DF to indicate the net distortion caused 
by the bandwidth expansion. Large ADF indicates se- 
vere $stortion caused by expansion of bandwidth. 
Noise amplification: Noises introduced during gans- 
mission are amplified by the descrambling matrix G(z). 
If noise power distribution is known, the amplified noise 
power can be calculated. Qpically, if the descram- 
bling matrix G ( z )  is designed to be orthogonal, i.e., 
lGk,t(z)G:,l(z)l = ~ 5 k ~  for all z ,  then it will not enhance 
noise [17]. 
Operation delay: In traditional scrambler design, the 
operation delay usually equals the dimension of the 
blocked input vector, i.e., the period of the scrambler 
N .  However, if the scrambler is represented by the block 
transfer matrix G(z ) ,  then the minimal delay is proved 
to be the upper bandwidth of G(m) [9], which is never 
greater than N .  

C. Analyze an FFT Scrambler by Using the Generic Model 
As an example, we analyze an FFT scrambler [15] with 

frame length of 32 samples at sampling frequency of 8 Wz. 
The frequency resolution is 250 Hz. Assume that the channel 

bandwidth is 3 kHz and the speech bandwidth is below 2500 
Hz. Only 11 FFT coefficients corresponding to frequencies 
from 250 to 2750 Hz are rearranged according to a scrambling 
key; thus, the bandwidth does not expand. In the descrambling 
process, the 11 FFT coefficients are permuted in the reverse 
order. The scrambling matrix G( z )  and descrambling matrix 
G ( z )  are simply given by G(z )  = z-lQ-lPQ and G(z )  = 
z-lQ-lP-lQ, respectively, where Q is the 32 x 32 DIT 
matrix and P is the permutation matrix. Thus we have 
perfect recovery and DF equals zero. To observe the .effect 
of synchronization error, let S ( z )  = z - ~  and calculate the 
recovered gains, Fig. 2 shows the spectrum of the first four 
recovered. gains with m = 3. The calculated DF is 0.38. 
For m = 16, DF increases to 0.58. To observe the effect 
of band limitation in the transmission channel, we calculate 
the recovered gains with S(z)  equals a lowpass filter whose 
bandwidth is 0 .75~ .  Fig. 3 shows the first four recovered gains 
in this case. The corresponding DF is 0.49. In other words, the 
bandwidth of the scrambled signal does expand. The first four 
transfer functions Ho(z )  N H ~ ( z )  are shown in Fig. 4. From 
Fig. 4, we can see how the input spectrum is shaped and split. 

IV. NECESSARY AND SUFFICIENT CONDITIONS 
FOR A SCRAMBLING SYSTEM To BE 

INSENSITIVE TO SYNCHRONIZATION ERROR 

With the generic model, it is simple to design a scrambling 
system that is insensitive to synchronization error. 

A. Problem Formulation 

of a speech signal. A scrambling system satisfying 
It is argued in [6] that human ear is insensitive to the phase 

(Sl) 
(S2) IMi(e je ) l=Ofor i= l , . . . ,N- l ,veE [0,2a) 

can be regarded as perfect so far as human listeners are 
concerned. Note that (51) and (S2) imply that DF = 0. 

IMo(eje)l = 1 V6 E [0,27r), 
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Fig. 4. Frequency response of the first four shifted transfer functions. 

Since an m-sample synchronization error is modeled as 
S(z)  = z - ~ ,  a speech scrambling system that is insensitive to 
frame synchronization error should have the recovered gains 
obtained by (20) satisfying (Sl) and (S2) for S(z)  = z - ~ ,  
m = 0,1, .... N - 1. More precisely, let 

To find a solution {Hz(ej')}E;' and {fi l(eje)}E;'  that 
satisfies (Ml) and (M2), we formulate the problem as follows. 
Rewrite (25) as shown in (26) at the bottom of the next page, 
where 

is the kth recovered computed at m-sample syn- 
chronization error, then a necessary and sufficient condition 
for the scrambling system to be insensitive to synchronization 

w e  note that the last matrix on the right-hand side of (26) iS 
the N-point Dm matrix- By (26) we have 

error can be, stated as N - 1  

(Ml) IA$,m(eje)l = 1 and fik,l(eje) = N C ejme(W~)"i%,,(eje), 
(M2) IMk,m(eje)l = 0 for k = l , . . . , N  - 1, m=O 

for 0 E [0,27r) and m = 0,1, .  ... N - 1. 0 5 k,Z 5 N - 1. (28) 
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N - 1  

~ k ~ f i ~ , ~ ( e 3 ~ )  = N ~ ,  v o 5 m 5 N - I , O  5 e < 2T. 

N - 1  

ii) (33) 

iii) Jl,o = I [ N - l ] , i  for 1 = 0,. . . , N - 1 ,  (34) 

U ~ l , o  = 0, J ~ , O  n J ~ , O  = 0 for I # k, 
l=O 

iv) For E = O , . . . ,  N - 1, I ~ i ( e j e ) H r N - I 1 ( e j e W ~ ) J  

(35) 
N 2 ,  for e E Jl,o, 

for e E 0, e Ji,o 

where Ii,j and Ji,j are defined in (30). 
Hence, a scrambling system that is insensitive to frame 

synchronization error has the property that the passbands of 
Hi(eje)  for I = 0, . . . , N - 1 fill up [0 ,2n)  while none of the 
passbands intersect. Note that the passbands of the descram- 
bling filter are uniquely determined from the passbands of the 
scrambling filter by (34). The following two lemmas, whose 
proofs are given in the Appendix, are used in the proof of 
Theorem 4.1. 

Lemma4.2: Let A , B , C , D i  and Ei,i = 1 , 2 , . . . , N ,  be 
subsets of R. The following holds: 

a) If A n B  = 0 ,  then ( C n A )  C ( C - B ) ;  
b) (A - B U C ) )  n ( B  - ( A  U C)) = 0; 
c) If u ~ = ~ ( D ~  - I J ~ N , ~ , ~ + , D ~ )  = R,  then D~ n D~ = 0 

d) If U,=,(Ei n Di) = R and Di n Dj = 0 for i # j, then 

Lemmu 4.3: Let 8 = [ O ,  2n). Let S be the family of all 
subsets of 0 that are finite unions of disjoint intervals. For 
i = l , . . . , N ,  let Bi E O and let f i : S  3 8 be the circular 
shift function defined by 

= { 0, 

4 
for i # j; 

Di Ei, Vi.  

N 

Under these canditions, if 

for i # j, 1 5 i,j 5 N, then U L 1 f i ( A i )  = 8 and 
Ai n Aj = 0,>for i # j .  

(L1) Ai E S and UEl Ai = 0; and (La) f i (A i )n f j (A j )  = 0, 

B. Necessary and Sumient Conditions 

ditions on Hi and Hi so that (M1) and (M2) are satisfied. 

a solution of (Ml) and (M2) if and only if 

We note that Ii,m = fm(Ii,o), where fm is as defined 
in (36) with 8,  = -3-m. Also, Ii,m o 1 1 , ~  = fm(Ii ,0!  o 
fm(Iz,o) = fm(Ii ,o0Iz,o),  where o is either union, intersechon 
or difierence operation of 
Proof of Theorem 4.1: 
(Suflciency): By (32), we have 

The follbwing thFrem gives necessary and sufficient con- 

Theorem 4.1: The set {Hl (e j e ) } c ; '  and {f i i (e je))&l is 

N - 1  

i) U I ~ , o  = Q, Ii,o n I ~ , o  = 0 for I # k, (32) I [ ~ - l ] , l n I [ k - l ] , ~ = 0 ,  f o r k # N a n d I = O , - . . , N - l .  
I=O (37) 



KING AND LIN: A UNlFIED APPROACH TO SCRAMBLING FILTER DESIGN 

It then follows from (34) that Jl,OnI[k-l],l = 0, or equivalently 
@ k , z ( e j e )  = l?z(eje)H[k-~l(ejeWh) = 0 for k # N and 
E = 0, .  , N - 1, and hence, by (251, (M2) is satisfied. By 
(34): it follows that the passbands of HO,J equal the passbands 
of Hl. Since i) by (33) the intersection of passbands of @o,k 

and @o,l for k # I is empty; ii) the union of passbands of each 
k 0 , l  is 0; and iii) by (35) I@0,l(eje)l = N 2  for 0 belongs 
to the passbands of ko,~, for each 0 E 0, we have that the 
summation in (25) reduces to only one term and thus (Ml) 
is satisfied. 

(Necessity): Assume that {Hi(eje)}&l and {l?i(eje)}E;' 
is a solution of (Ml) and (M2), then (Pl) and (P2) are satisfied. 
It follows from (P2) and Lemma 4.2(a) that 

for E = 0 , .  . . , N - 1. (38) 

It then follows from (Pl) and (38) that 
N - 1  / N - 1  \ 

By Lemma 4.2(b) we know that for p # 4 ,  (Ip,o - 

p = [ N  - E ]  and q = [N - m ] ,  we have 
Ufzlk#p I k , O )  n ( Ip ,O - Ufz)lk#q I k , O )  = 0 9  hence with 

By (39) and (40), it then follows from Lemma 4.3 that 
N - 1  N - 1  

U k [ N - Z ] , O  - U I [k -Z] ,O)  = 0 (41) 
z=o k = l  

Rewrite (41) as 

which implies that 
N - 1  

U IQ = 0 
i = O  

and by Lemma 4.2(c), that 

Ii,o n IZ,o = 0, for i # 1. (45) 

Thus (32) holds. We now show that (34) holds. With (45), 
(42) reduces to 
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J 
T I  

I 

Fig. 5. Graphic representation of correspondence relation. 

From (46), (Pl) and Lemma 4.2(d), it follows that 

However, by (P2) we have that JZ,O n (ufz: I[k-Z],Z) = 0 
and hence 

N - 1  

J l , O  c 0 - U I[k-Z],Z = I[N-Z],l  (48) ( k=l ) 
where the last equality follows from (44) and (45). Thus (34) 
holds. And from (Pl), (46), and (34), (33) follows. 

It remains to show (35). From (32x34)  it follows that for 
any 0 E 0, the summation in (25) reduces to only one term, i.e. 

,-jme 
ii?o,m(eje) = N2 Wfm&l(eje) H [ N - z ]  (ej' Wh) ,  

for some 0 5 1 < N - 1. (49) 

Thus (35) follows from (Ml). U 

V. A NEW DESIGN ALGORITHM 
Theorem 4.1 gives precise constraints on the passbands of 

a set of analysis filters Hi and synthesis filters Hi so that the 
scrambling system is insensitive to synchronization error. The 
conditions (32)-(35), although not very easy to use directly 
as a design tool, can be easily represented graphically. In the 
following, we introduce a graphical representation of (32x34)  
and the condition (23) called correspondence map and the 
associated operations that are useful for design purpose. Then, 
we propose a design algorithm. 

A. Correspondence Map 
To discuss the graphical representation of (32)-(34), we 

assume that the passbands of Hi and H j  are all finite union 
of closed intervals in [-T, T ) .  We will call the axis for the 
passbands of Hi's the I-axis and draw it as a horizontal line 
segment. Similarly, we use J-axis for the passbands of Hi's 

and draw it vertically. This is shown in Fig. 5. The condition 
(32) simply says that each point on I-axis should belong to 
one and only one passband of Hi and the passbands of Hi's 
can otherwise be arbitrarily assigned. Similar conditions for 
J-axis follow from (33). 
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J 

" I 
Fig. 6. Correspondence map for N = 3. 

The divisions and assignments of passbands are constrained, 
however, since the passbands of H[,-,](z) and & ( I )  are 
related by (34). For example, if N = 3 and [&a, &a] is an 
interval in I-axis corresponding to H2 ( z )  , then there musf exist 
an interval [-&a, - 61 in  axis corresponding to H~(Z). 
Therefore, (34) defines the relation between the passbands of 
H [ ~ - % l ( z )  and fi*(z), the quantized shift relation between the 
passbands of the correlated pair {H[N-,I, &(z ) } ,  or equiv- 
alently, { H , ( z ) ,  ( z ) } .  Such a relation is represented 
graphically as a shaded square in the I-J plane as shown 
in Fig. 5 .  Such a square is called a cell. The I-axis and J-axis 
frequency regions, i.e., the projections in I-axis and J-axis, of 
the cell stand for the passbands of the correlated pair. Note that 
these cells are not allowed to be located arbitrarily since the 
quantized shift relation should hold. To see the shift relation, 
we draw N slant lines called the mapping lines in the I-J 
plane, as shown in Fig. 6. The mapping lines define the shift 
relation! between I-axis and J-axis. If a cell lies on a mapping 
line, i.e., the diagonal of the cell is on a mapping line, then the 
quantized shift relation is satisfied. The cells lying in the ith 
mapping line represent the passbands of H ,  ( 2 )  and f i[~-*] (2 ) .  

Thus, cell 1 in Fig. 6 shows that [-a, is a passband of 
H~(z) and [AT, &a] is a passband of H l ( z ) .  

So far we have introduced the basic construction of the 
graphical representation. To locate these cells, both axes are 
divided into N regions, where N is the period. Thus there 
are totally N 2  square regions in the I-J plane. These square 
regions are called blocks. Fig. 6 shows a possible breakup of 
passbands of H, and I?, that satisfies (32x34) .  We call such 
a graphical representation a correspondence map. 

In addition, we need to consider the condition (23). Accord- 
ing to Proposition 3.1, we have that HIN-k](z) = H,*(z). In 
other words, the I-axis frequency regions (i.e. the passbands) 
corresponding to H [ N - ~ ] ( Z )  and H k ( z )  should be symmetric 
about the origin. Similarly, we also have f i [ N - k ] ( z )  = &(z )  
or equivalently & k ( z )  = fib-kl(z), and hence the J-axis 
frequency regions corresponding to I?k ( z )  and f i [ N - k ~  ( z )  are 
also symmetric about the origin. In the graphic representation, 
this means that the cells corresponding to the correlated pair 
{ H[,-k] ( z ) ,  Hk ( z ) }  and the cells corresponding to the cor- 
related pair { H k ( z ) ,  f i p - k ] ( z ) }  should be symmetric about 
both I -  and J-axes. 

(a) 0) (C) 

Fig. 7. Decompositions of cells. (a) Original cell; (b) and (c), decomposed 
cells. 

Based on the discussions above, a correspondence map 
represents a realizable' scrambling system that is insensitive 
to frame synchronization error if and only if 

(Cl) all cells lie on the mapping lines; 
(C2) the union of the I-axis (J-axis) frequency regions of 

these cells fills up [-a, a); 
(C3) the cells are pairwise disjoint; 
(C4) all cells are symmetric about both I- and J-axes. 
To make the graphical representation useful for design 

purpose, we introduce a set of graphic operations under which 
the constraints (ClHC4) are preserved. We begin with a 
few definitions. Two cells of the same size locate at the 
same relative position within their corresponding blocks are 
called correlated cells. Two cells symmetric with respect to 
the origin are called symmetric cells. Note that symmetric 
cells are of the same size. Any two correlated cells can 
be interchanged in horizontal (or vertical) position without 
violating the constraints (ClHC3). In Fig. 6, cells one and 
seven are correlated cells, so are cells one and four. Cell one 
and cell nine are symmetric cells. We can move cells one and 
seven into cell 1' and 7', respectively, while (ClHC3) still 
hold. A cell located at the center of a block is called a center 
cell. A cell that is not a center cell is called a side cell. In 
Fig..6, cells two, five, and eight are center cells, the rest are 
side cells. . 

Let us introduce the graphic operations that preserve 
(ClHC3). The first operation is called decomposition. Every 
cell can be decbmposed into smaller cells as shown in Fig. 7. 
The purpose of' decomposition is for interchange. Any two 
symmetric center cells can be interchanged in horizontal (or 
vertical) position without violating the constraints (ClHC4), 
since they are correlated and symmetric. This type of 
interchange is called symmetric change and is illustrated 
in Fig. 8 for N = 2. Any two correlated side cells can 
be interchanged in horizontal (or vertical) position without 
violating (Cl)-(C3), and to preserve (C4) their corresponding 
symmetric cells should also be interchanged accordingly. 
This type of interchange is called asymmetric change and is 
illustrated in Fig. 9. 

B. Design Procedure 
With the graphical representation and operations discussed, 

we are ready to propose a design procedure. The basic idea is 
very simple: to start with a simple correspondence map that 
satisfies (ClHC4) and use the three operations just defined 
to obtain a suitable correspondence map that would define the 
filters Hi and H j .  The simplest correspondence map is the 
identity map with all cells lying on the diagonal, as shown 

'Here realizable means the existence of ideal bandpass filters. 
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J 

I 

(C) 

Fig. 8. 
change. 

Symmetric change. (a) Original cells; (b) decomposition; (c) inter- 

(c) 
Fig. 9. Asymmetric change. (a) Original cells; (b) decomposition; (c) inter- 
change. 

in Fig. 10 for N = 3. Hence, the identity map corresponds 
to a system whose scrambled speech is just the input speech. 
Once the correspondence map satisfying (Cl)-(C4), then the 
scrambling system is insensitive to synchronization error and 
realizable. 

In addition to the conditions (Cl)-(C4) on the correspon- 
dence map, the design still has to satisfy the magnitude 
constraint (35). A simple way to satisfy (35) is to have the 
ideal bandpass filters H i ( z )  and fii(z) to have magnitude N 
in the passbands. However, (35) will still be satisfied if the 
filters Hi(.) and fii(z) are modified by any rational stable 
and minimum phase filter Ai(z )  to become A ; ( z ) H i ( z )  and 
A ; ' ( ~ ) f i p - ~ ~ ( z ) ,  respectively. Note that the condition (23) 
requires that A ~ ~ - i l ( z )  = Af (z). The modification increases 
the flexibility in the design of scrambling systems. 

To discuss the bandwidth expansion problem, let us consider 
(10) again. From (lo), to keep the spectrum of the scrambled 
speech within the bandwidth of the original speech, say OB, 

OB 

Fig. 10. Identity correspondence map for N = 3 and the masked region. 

the aliasing terms HI,(eJe)U(eJeWh),  k # 0 must vanish 
for 101 > OB. A sufficient condition for avoiding bandwidth 
expansion is that the passbands of HI, ( z ) ,  k # 0 are all subsets 
of [OB, OB]; in other words, the cells corresponding to each 
H k ( z ) ,  k # 0 should all lie inside the square centered at (0,O) 
with side length 2 0 ~  as shown in Fig. 10, where OB = $T. 

Note that Ho(z)  does not expand the output bandwidth, thus 
the cells outside the masked region correspond to Ho ( z )  and 
remain in the diagonal. 

We now summarize the discussions so far into an algorithm 
for designing scrambling systems that are insensitive to frame 
synchronization error and free from bandwidth expansion. 

N ,  the period of the periodic filters 
and OB, the bandwidth of the scrambling system. 

Draw an identity correspondence map and make 
a square centered at (0,O) with side length 20g and call it the 
changeable region. 

Perform decompositions and symmetric and asym- 
metric changes within the changeable region to obtain the final 
correspondence map. 

Step 3: With the passbands determined from the cprre- 
spondence map, design the bandpass filters H,(z )  and H,(z)  
with magnitude N in the passbands; modify the filters with 
stable minimum phase transfer functions A,(z )  and AL1(z) 
if desired. 

Step 4: Compute F,(z) and Fi(z )  by (22). 
Step 5: By using the po!yphase representation of F,(z) 

and F,(z), obtain G(z )  and G(z ) ,  respectively. 
Step 6: Realize G ( z )  and G ( z )  as periodic filters [ 8 ] ;  these 

are, respectively, the scrambling and descrambling filters. 
Note that conditions (32x35)  call for ideal bandpass filters, 

however, only their approximations can be implemented in 
practice. The quality of approximation directly relates to the 
DF of the scrambling system. 

It is easy to see that the scrambling system proposed by Ishii 
[l] can be designed by using Algorithm 5.1. The cells have a 
fixed size of and the filters are all ideal bandpass filters with 
a single passband. Algorithm 5.1 allows more general designs 
in that different cell sizes are allowed, that the bandpass filters 
may have multiple passbands, and that the filter characteristics 
could be modified by stable minimum phase transfer functions. 
It turns out that the schemes proposed by Lee et al. 161, 171 

Algorithm 5.1: Data: 

Step 1: 

Step 2: 
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Fig. 11. Scrambling filter designed by Algorithm 5.1 with period =8. 

,.5 80th order linear phase filter 

7 

0 0.5 1 

frequency (normalized) 

Frequency response of the 80th order lowpass prototype filter. Fig. 12. 

and by Del Re [ 131 can also be designed by using Algorithm 
5.1, in which the cell size is also fixed at $. 

High security level scrambling systems usually require small 
cell size. For example, in 8 kHz sampling of typical speech 
signal a frequency resolution of 50 Hz is required. This would 
require the period N to be at least 160 if the cell size were 
fixed at 9. In implementation, the period N is directly related 
to complexity and operation delay. We believe that with the 
flexibility provided by the proposed approach, larger key space 
is obtained and it is hence possible to achieve high level of 
security in scrambling systems with lower complexity. 

VI. DESIGN EXAMPLE 
In this section, we demonstrate the proposed algorithm with 

a design example and compare the design results with designs 
proposed in 131, [41, and 161. 

TABLE I 
THE ASSOCIATED ADF FOR DIFFERENT SYNCHRONIZATION ERRORS 

In the design we decide to set N = 8, and for simplicity, 
Bg = T .  The design starts with the identity map in Fig. 1 l(a). 
By decomposition and interchanges we have Fig. 1 l(b), which 
is in fact the correspondence map of the frequency inversion 
scheme [4]. To keep the frequency inversion relation for low 
residual intelligibility [ 131, we perform interchanges within the 
second and fourth quadrants only. Since by (C4) the patterns 
in these two quadrants must be identical, we only have to 
perform interchanges for one quadrant and the other quadrant 
can be assigned accordingly. The fourth quadrant is selected 
for interchange, the process is shown in Fig. ll(c)-ll(g). 
Fig. ll(h) shows the final correspondence map. We note 
that each block (of size $ = 2) is divided into three 
cells with sizes g, g ,  and respectively. The ideal 
generalized bandpass filters are approximated by 80th order 
linear phase FIR filters. The filters are all obtained from a 
lowpass prototype with appropriate frequency transformations. 
The bandpass filters are not modified, i.e., Ai(z )  = 1. The 
frequency response of the lowpass linear phase filter prototype 
is shown in Fig. 12, where the passband is 0.3 and the dash 
curve is the ideal response. The maximum ripple in the 
passband is 0.00 29 and the transition band ranges from 0.2734 
(-0.5 dB) to 0.332 (-26 dB). We note that DF is zero if these 
filters are ideal. Such approximation with the nonideal filters 
used in our design increases DF from 0 to 0.12. For different 
frame synchronization error, the associated ADF is listed in 
Table I. The maximum ADF is 0.051 as synchronization T o r  
is half the period. The block transfer matrices G(z) and G(z) 
are computed. Since G ( w )  and G(o0) are lower triangular 
and nonsingular, there is no operation delay. 

To evaluate the design, an experiment is done as follows. 
A record of speech is sampled at 8 kHz, the sampled se- 
quence is processed to yield the scrambled sequence, frame 
synchronization error is introduced, and the resulting signal 
is processed to give the recovered speech sequence. Digital- 
to-analog conversion is performed on both the scrambled 
sequence and the recovered sequence. All the signal processing 
and filter design are done with MATLAB under PC MS-DOS. 
The time and frequency domain waveforms of the original 
speech, the scrambled speech, and the recovered speech with 
three-sample synchronization error are shown in Figs. 13-15. 
Experimental results show that the quality of recovered speech 
is acceptable at this level of DF. 

To evaluate the level of security, we also perform a residual 
intelligibility test. The procedure basically follows that of 
Jayant [3] and Lee [6]. The speech samples are four-digit 
numbers and there are 20 four-digit numbers in the test. 
Forty inexperienced listeners are divicied into two groups to 
listen to the records and write down their best guess. Five 
scrambling designs are selected for the test. Scrambler 1 and 
2 are designed by Algorithm 5.1 with correspondence maps 
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Fig. 13. Waveforms of original speech time and frequency domain. 
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Fig. 14. Waveforms of scrambled speech: time and frequency domain. 

shown in Figs. ll(h) and 16(a), respectively. Follow Lee's 
algorithm proposed in [6], we obtain scrambler 3. The period 
is eight and its equivalent correspondence map is given in 
Fig. 16(b). Scrambler 4 is obtained by frequency inversion. 
Scrambler 5 is obtained by block permutation combined with 
frequency inversion [4], in which the block length is two and 
the block number is four. The test result is shown in Table II. 
The results seem to indicate that acceptable level of security 
can be achieved by the proposed design algorithm with lower- 
than-usual period N .  We hasten to add that the level of security 
(based on the RI test) depends heavily on the selection of key 
and that we do not claim the designs using Algorithm 5.1 are 
always better. 

TABLE II 
RESIDUAL I N T E L L m m m  TEST RESULTS 

R. I. 13.01 12.00 15.63 22.38 21.71 

VII. CONCLUSION 

The contributions of the paper are as follows. We propose a 
framework, based on transfer matrices and frequency domain 
descriptions, for analysis and design of speech scrambling 
filters. We derive necessary and sufficient conditions for a 
scrambling system to be insensitive to frame synchronization 
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Fig. 15. Waveforms of recovered speech time and frequency domain. 
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Fig. 16. Correspondence maps of scrambler 2 and 3. 

error. We propose a procedure for the design of scrambling 
filter that is insensitive to synchronization error. The scram- 
bling system also results in zero bandwidth expansion, low 
residual intelligibility, minimal operation delay, and simple 
hardware and software. An example is given to illustrate the 
design based on the proposed framework and algorithm. 

APPENDIX 

Proof of Lemma 4.2: 
Suppose x E (C n A) ,  then x E C and x E A. Since 
A n B = 0, x # B and hence x E (C - B). 
Suppose x E (A - (B U C)), then x # B.  Thus, 
x 4 (B - (A U C)). 
Suppose that x E Dk for some k .  Then x # (Dz - Dk) 
for 1 # k.  since (Dl - u,+l Dm) (01 - Dk) for 
k # E, thus x # (01 - U m Z z D m )  for 1 # k. Now 
u L l ( D i - u . # i  D j )  = n, hence X E (Dk-U,+k Dm) 
and thus x g! D ,  for m # k. 
Assume that x E Dk. Since Dk n Dj = 0 for j # k, 
then x # Dj for j # k. It implies that x # (Ej n Dj) 
for j # k. Since u:,(E~ n = R, x E (Ek n Dk) 
and hence x E Ek. 0 

Proof of Lemma 4.3: Let n(A) be the Lebesgue measure 
[14, p. 3201 of A, where A is a subset of 0. Condition (Ll) 
implies that n(UL, Ai) = 27r, and hence ELl n(Ai) 2 27r. 
Since n(f i (Ai ) )  = n(Ai), thus we also have 

N 

Cn(fi(Ai1) 2 2 r .  (A.1) 
i=l 

However, by (L2) we know that n ( U E 1 f i ( A i ) )  = ELl 
T J ( ~ ~ ( A ~ ) ) ,  thus (AA) implies that n(u:, f i ( ~ i ) >  2 27r. Since 
the measure of any set is bounded by 27r, it follows that 

(A.2) ' n (6 &(Ai) )  = 27r 
i=l . 

i.e., the equality condition holds. Hence, we should have that 

(A.3) 

Since Ai E S and hence f i (A i )  E S, thus Ai and f i ( A ; )  
only consist of finite number of disjoint intervals. These 
intervals, which may be open, closed, or half-open, have two 
boundary points. These boundary points can be partitioned 
into two categories: closed boundary point or open boundary 
point, according to whether they belong to the interval or not. 
Let ni be the total number of open boundary points and mi 
be the total number of closed boundary points of intervals 
of Ai. Define No = '&ni and Nc = cE,mi .  Since 
n(Ai n Aj)  = 0 for i # j, thus the intersection of Ai and 
Aj only can be empty set or isolated points. By (Ll), then 
we should have 

No L Nc. (A.4) 

E:, n ( ~ ~ )  = 2?r = n(uL1 A ~ ) ,  or equivalently 

n(Ai n Aj) = 0 for i # j. 

Let Ai be the total number of open boundary points and fii 
be the total number of closed boundary points of intervals 
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of f i (Ai ) .  Similarly, No = Czlfii and Nc = CL1r5L;. 
By the fact that n(UEl f;(Ai)) = 2n, we know that there 
is no nonzero length interval excluded from UEl f , ( A i ) .  By 
(L2), then we should have N, I No. However, the circular 
shift operation keeps the number of closed and open boundary 
points, or enhances both by one as the interval is just shifted 
across 2 ~ .  n u s ,  Nc 5 No is equivalent to 

Nc F No. 

By (A.4) and (AS), we conclude that No = N,, which implies 
0 that Ai n Aj  = 0 for i # j and f i ( A i )  = 0. 
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