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ABSTRACT 

 Inverse lithography which generates model-based patterns theoretically has superior patterning fidelity comparing to 
conventional rule-based technique. Cost functions are the determinant of performance inverse lithography that is also an 
optimization problem. However, the design and know-how of cost functions have rarely been discussed. In this paper, 
we investigate the impacts of various cost functions and their superposition for inverse lithography patterning exploiting 
a steepest descent algorithm. We research the most generally used objective functions, which are the resist and aerial 
images, and also deliver a derivation for the aerial image contrast. We then discuss the pattern fidelity and final mask 
characteristics for simple layouts with a single isolated contact and two nested contacts. Moreover, the convergences 
which are expressed by edge-placement error (EPE) and contrast versus iteration numbers rapidly attain to steady sate in 
most hybrid cost functions. All in all, we conclude that a cost function composed of a dominant resist-image component 
and a minor aerial-image or image-contrast component can carry out a good mask correction and contour targets when 
using inverse lithography patterning. 
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1. INTRODUCTION  
 As Moore's law marches on and semiconductor manufacturers make the push towards the 22nm technology node 
and beyond, the challenges faced by microlithography are ever increasing. The need to print such small features using 
193nm illumination -- which is way beyond the Rayleigh diffraction limit -- has made resolution enhancement 
techniques (RETs) mandatory. Optical proximity correction (OPC) is one of the RETs that modify design layouts in 
order to minimize their distortion when printed on silicon. Segment-based OPC, in particular, is the most-widely-used 
RET and has been a standard industry practice since the 90nm node. Because segment-based OPC only modifies edges 
already present in the design layout, it is relatively easy to implement, particularly in iterative algorithms. However, as 
the need for stronger OPC increases, this simplified process has encountered major limitations. As the reachable solution 
space lies strictly in the vicinity of the original layout, segment-based OPC is often not expressive enough and does not 
exploit the full range of possible mask configurations to get the best possible pattern fidelity and image contrast. To 
overcome this limitation, other approaches like inverse lithography (IL) have been proposed [1, 2, 3]. Inverse lithography 
is a technique that defines the search of mask corrections as an optimization problem, where the goodness criteria are 
solely determined by one or various objective functions. Many IL methods have been introduced over the past three 
decades [1-10], including pixel flipping [4, 5, 6] and other more refined gradient descent approaches [7, 8, 9, 10]. In 
general, IL techniques can handle more relaxed constraints and are often implemented as full-mask approaches, which 
enable higher pattern fidelity even if at a higher computational cost. In addition, the clever use of IL may enable a given 
technology node with traditional mask processes, averting the need of more expensive RET alternatives, such as 
alternating phase-shift masks or double patterning. Evidently, IL-based OPC offers clear advantages in terms of 
efficiency and manufacturing cost, and hence it is currently poised as the next-generation OPC for future lithography 
nodes. 
 
 As a general rule, the success of any particular IL algorithm depends strongly on the nature and form of its cost 
function, which is often constituted by various objective functions. A properly designed cost function paired with an 
appropriate algorithm can help avoid issues such as getting trapped in local minima, slow convergence, mask 
discontinuities, etc. In the literature, the most commonly used objective functions have traditionally been the aerial and 
resist images. The former compares the optical intensity distribution on the photoresist (after exposure but before 
developing) to a desired target intensity, while the latter compares the developed photoresist profile of a given mask to 
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the desired outcome. Other cost functions, such as edge contours, aerial image contrast, and mask error enhancement 
factor (MEEF), have also been proposed and can be customized to satisfy strict technological specifications. In our 
experience, we have observed that given the same cost function and process model, two different optimization 
algorithms, like a wavefront-based pixel flipping [11], and gradient descent, tend to converge to nearly identical final 
mask patterns. This phenomenon further highlights the importance of using a favorable cost function. Curiously, even 
though cost functions play such an important role in IL patterning, their impacts and characteristics have rarely been 
reported explicitly. Therefore, it is beneficial to make a systematic analysis of their influence using a generic IL 
algorithm. In the present paper, we first employ the most commonly used objective functions, which are 1) the aerial and 
2) resist images [7,8,9], and then derive an objective function for 3) the aerial image contrast. We next perform a side-
by-side comparison of the three cost function components and examine their properties, including pattern fidelity and 
final mask characteristics using a gradient descent algorithm. It is important to note that while many IL algorithms 
presented in the past have made assumptions such as completely coherent or incoherent illumination sources in order to 
simplify the calculation, the approach presented in this work makes no such assumptions on the illumination source, and 
uses a partially coherent illumination model [12,13,14]. Therefore, the present study can draw more representative 
conclusions to contrast current industry practices than other simplified approaches.  

2. METHODOLOGY 
 In this section, we describe the formulation of the studied objective functions and the computational flow of the 
gradient descent method. Three functions are considered in this work: 1) the aerial image, 2) the resist image, and 3) the 
aerial image contrast. The aerial image represents the optical intensity distribution formed by the projection system on 
the coated wafer. The resist image corresponds to the resist profile after removing the exposed resist. Finally, the aerial 
image contrast is highly related to the depth of focus (DOF), and hence determines the process window. 
 
 Optical microlithography simulations are made possible by the Köhler’s illumination model [15, 16, 17]. Currently, 
the industry standard illumination source still employs an ArF excimer laser with a 193 nm wavelength. The quasi-
monochromatism of the ArF excimer laser results in partially coherent images on the wafer, which are also referred as 
the aerial images. The optical intensity of an aerial image can be formulated by a Sum of Coherent Systems (SOCS) 
model [17, 18, 19], where the illumination system including the source and projectors is decomposed into eight kernels 
using Singular Value Decomposition (SVD) [20, 21]. Therefore, the electric fields are constructed by a convolution of 
different coherent kernels as indicated in Eq. (1). The total intensity at a given position (x, y) on the image plane is then 
the superposition of those kernels’ intensities, which can be expressed as Eq. (2). 
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where E and I represent the electrical field and image intensity respectively. qφ is the qth optical kernel, ⊗  denotes the 
convolution calculation, and o the mask function. λq is the eigenvalue of the qth kernel with n kernels in total. 
 
 The aerial image represents the distribution of optical intensity on the wafer, which corresponds to the exposure 
condition of a photoresist. Some photoresist models employ a Constant Threshold Resist (CTR) [22], where the 
developed resist profile can then be described by a sigmoid transformation of the aerial image, [8, 9] that is, 
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In Eq. (3), the parameter a describes the sensitivity of the photoresist reacting with the light, which depicts the slope of 
sidewall profiles, and tr is the parameter of the constant threshold level. Here, the value is set and normalized to 0.5.  

 

Proc. of SPIE Vol. 7973  79731N-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/24/2014 Terms of Use: http://spiedl.org/terms



 

 

     In optical microlithography, the aerial image contrast plays an important role in the development of photoresist, 
which is directly related to the number of molecular chemical-bonds that are broken or still linked after exposing. As the 
image intensity difference between the exposed and unexposed regions is desired to be as large as possible, increasing 
the image contrast can mitigate patterning damages when removing the resist. We derive and express the image contrast 
using a linear differential operator, defined as the following: 
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where T∇  is the differential operator to evaluate the aerial image contrast. Due to the discrete nature of the mask, the 
differential operator x∂∂  and y∂∂  is approximated by numerical differences. Therefore the operators can be 
represented in a matrix form and Eq. (4) re-written into Eq. (5): 
 
  yIDxDII T

T ˆ)(ˆ)( +=∇ ,  (5) 
 
where I∈RN×N. NNRD ×∈ is explicitly shown in Eq. (6): 
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In Eq. (5), DI performs the operation that calculates the difference in the row direction, and IDT computes the column 
difference. 

 
 In order to apply these objective functions in an optimization algorithm, we also need to define the target aerial 
image based on the input patterns. The target aerial image is parameterized as 
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where It(r) is the target image as a function of the pixel index r. r is arranged in the radial direction from the geometric 
center of a drawn pattern, where r0  is the index of the boundary pixels. The generation of the pixel index is adopted from 
a wavefront expansion technique previously developed by us [11]. For any particular layout, we construct a wavefront 
from the feature’s edges both inwards and outwards. This way, we can construct a complete wavefront from a small 
region (or even a single point) inside each feature all the way to the edge of the image. Each wavefront, starting from the 
innermost, receives an index, and all the pixels on the layout are processed in order according to this index. A few 
examples of wavefront templates can be found in Ref. [11]. As a result, the indices of boundary pixels end up being the 
same for individual features. It is also worth noting that this indexing technique will clearly identify pixels that are 
equidistant from two or more features. Moreover, in Eq. (7), α, b and c are constants to adjust for the target aerial image 

profile. Here, we choose a target image that is unity within the drawn and zero outside, corresponding to α=1, b=-∞ and 
c=∞. Since the designed target is normalized to unity at the maximal, the optical model used for simulations must be 
calibrated with experimental values. Once the target aerial image is defined, the target resist image is obtained by the 
corresponding sigmoid transformation and the target image contrast is the differential operation of the target aerial 
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image. As a result, the three objective functions that evaluate the differences between the desired and the calculated 
profiles can be expressed as in Eq. (8), Eq. (9) and Eq. (10), respectively: 
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Here, FI, FR and FC represent the costs for the aerial image, resist image, and aerial image contrast, respectively. The 

norm 
2

⋅  denotes the square of Euclidean distance which denotes the inner product of the same vector. Moreover, we 

can further combine the components into a total cost function, F by assigning three weighting coefficients, Iγ , Rγ , and 

Cγ  to the aerial image, resist image, and aerial image contrast, respectively. The final expression is then as follows: 
 
  CCRII FFFF γγγ ++= R . (11) 
 
It is important to note that the numeric cost values of these three objective functions, i.e. the variations between their 
minimal and maximal values, are not always in the same range. The individual costs not only depend on the drawn 
layouts, but also the nature of different objective functions. For example, the cost of the aerial-image component is often 
larger than that of the resist-image for simple layouts, since the cost of the former is contributed by all of the pixels on 
mask, while that of the latter mainly arises from the contour pixels. The cost variation for the resist-image component is 
therefore very limited compared to that for the aerial image. The normalization approach is essential to remove such a 
dependency on different objective functions. Therefore, for each case studied, we normalize the costs of the individual 
functions to the same interval of [0,10] by performing a linear transformation for costs at the initial (maximal) and at the 
final (minimal) iterations. The normalization process is not absolutely stringent, but necessary to compare the 
characteristics of different objective functions on the same basis for different drawn layouts. Therefore FI, FR, and FC in 
Eq. (11), represent normalized objective functions. 
 
 The goal of an inverse lithography algorithm is to find the optimal mask ô that minimizes a given constraint and 
therefore can be expressed as in Eq. (12): 
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where o is a mask function. A gradient-search method used to calculate ô is explained next. Since the gradient operation 
calculates the derivatives of the mask, the discrete binary mask described by o, must be first parameterized by a 
continuous variable θ in order to obtain an analyzable form. Here, a sinusoidal transformation is employed to convert a 
binary drawn mask in to a continuous grey-level mask [8]: 
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We note that 10,0, ≤≤≤≤∈ × oθoθ, πNNR . The converted mask then allows a continuous optical transmission value 

between zero and unity with θ varying between zero and π. Moreover, Eq. (13) can also be extended to a phase-shift 
mask (PSM) intuitively by multiplying a complex phase term [9].  
 

The cost function gradient F∇ can be derived as shown in Eq. (14) 
 
  CCRII FFFF ∇+∇+∇=∇ γγγ R . (14) 
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The explicit expressions of the objective functions for the aerial image [7], resist image [8,9] and image contrast are 
listed in Eq. (15), Eq. (16) and Eq.(17), respectively: 
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where ⊙ is the element-by-element multiplication operator and ⊗  is the convolution operator. Furthermore, flip

qφ is the 

up-down and left-right flip of qφ , i.e. =),( jiflip
qφ  )1,1( +−+− jNiNqφ  where  i, j are integers and ∈[1, N]. 

 
 Finally, we employ a steepest-descent approach [8, 23] to find a solution to the inverse problem. The step length is 
chosen to be 2 for the tradeoff between speed and convergence. The diagram in Fig. 1 shows the general procedure of the 
iterative calculation. 
 

 
Fig. 1. Steepest descent algorithm. Three parameters γR, γI  and γC are used to bias the relative cost of aerial image, resist 

image and image contrast. 
 
 The iterative algorithm can be summarized by the following pseudo-code: 

 ．Initialization : 

  Assign an initial guess θ0 and calculate the
)(
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  Initialize a constant step length δ. 

 ．Iterative Step: 
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 ．Stop condition: 
  If the stop condition, F< Fσ is satisfied, the algorithm terminates. 
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3. RESULTS AND DISCUSSION 
 In this section, we employ the gradient descent algorithm described previously to analyze two examples: a 
190nm×190nm isolated contact and two horizontally-aligned contacts each with an area of 100nm×100nm and a spacing 
of 100nm. The test patterns are chosen such that the single contact is above the Rayleigh criterion: R = 0.61λ/NA ~ 
170nm, while for the pair, both the spacing and dimensions are below the limit. Both layouts are represented in 256×256 
pixel tiles with a pixel dimension of 10 nm. An annular illumination source is employed with σin = 0.4 and σout = 0.7. 
The partially coherent illumination model contains eight kernels, where λ = 193nm, NA = 0.7. Moreover, the constant 
threshold for the aerial image intensity is set and normalized to 0.5. Therefore the threshold parameter tr, required for the 
resist image transformation in Eq. (3) is set to 0.5, while a is chosen to be 90 to represent a conventional resist profile. 
We discuss the impact that the previously defined cost function components in various superposition configurations have 
on the resulting characteristics of the corrected grey-level masks, the contours and the aerial image intensities. 
 

 
Fig. 2. The inverse results of a large isolated contact evaluated by every cost function component individually where (a) 

(γI, γR, γC)=(1, 0, 0), (b) (γI, γR, γC)=(0, 1, 0) and (c) (γI, γR, γC)=(0, 0, 1). The corresponding contours and aerial 
images of (a)-(c) are shown in (d)-(f) where the cyan and green contours respectively label the drawn pattern edges 
and aerial image threshold contours. 

 
Figure 2(a)-(c) shows the generated gray-level masks using cost functions with a single component, that is, 

coefficients, (γI, γR, γC)=(1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. The corresponding aerial images and contours of 
the single large contact are shown in Fig. 2(d)-2(f). As shown in Fig. 2(a), the cost function based on only the aerial-
image component results in mask features concentrated on the drawn pattern, while in Fig. 2(b) the correction shows 
very large serifs, and in Fig. 2(c) concentric rings. The mask features very much reveal the nature of each objective 
function as discussed below.  

 
First, figure 2(a) shows that the resulting mask features only accentuate the drawn pattern with weak grey features 

around it. Such a correction is very similar to that obtained by segment-based OPC, where the edges of the drawn 
patterns are dissected and then repositioned inwards or outwards to minimize the EPEs. The similarity arises from the 
fact that the cost of the aerial-image is determined by its difference from the target aerial image in Eq. (8). Any mask 
features outside the drawn pattern increase the unwanted intensity distribution and hence the cost. Expectedly, the mask 
features are concentrated on the drawn and are very desirable for an eventual transformation to a binary mask. The 
corresponding contour shows negligible EPEs on all the edges, but with large rounded corners, as shown in Fig. 2(d). 
This behavior, with both the mask and optical intensities concentrated on the drawn has worked well for previous CMOS 

x4 x4 x4

(a) (b) (c)

(d) (e) (f)x4 x4 x4

(a) (b) (c)
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generation nodes (45nm and above), however, it may become a hindrance for small features as shown in the next 
example. 

 
Second, as shown in Fig. 2(b), the mask features show very large serifs. Since the sigmoid transformation can 

convert a number of different aerial images into resist images with sharp corners, as expressed in Eq. (3), the cost of the 
resist-image cost function mainly arises from the difference on the edges defined in Eq. (9). Therefore the nature of this 
objective function tends to drive the mask correction towards the threshold contour, in this case, a square. It is known 
that large serifs are signature structures to obtain contours with sharp corners. The aggressive corner correction is also 
confirmed by the green contour shown in Fig. 2(e). However, since there is a tradeoff between sharp corner contours and 
aerial image contrast, the overall optical intensity is weak. Moreover, because of the low intensity, this cost function may 
have limited performance for small features as well. From a mask characteristics point of view, the gray-level features 
surrounding the main pattern are not very significant, implying minimal EPEs arising from filtering out such features. 
Therefore, the mask resulting from the resist image is also adequate for manufacturing. 
 

Finally, as shown in Fig. 2(c), the mask features arising from the aerial-image-contrast cost function appear as rings 
with a high grey-level contrast, which are very similar to a Fresnel zone plate in optics. The Fresnel zone plate functions 
as a lens and is used for focusing and imaging in optical systems. In other words, in order to obtain a high aerial-image 
contrast as dictated by the cost function, the resulting mask features converge to a pattern that can focus light. Due to the 
partial coherence of the illumination source, the resulting mask pattern does not have an analytical expression as a 
Fresnel zone plate which is often designed for a coherent source with a single wavelength [21]. However, based on the 
mask shown in Fig. 2(c), the dominant kernel that represents one of the coherent sources in the illumination model 
dictates the mask characteristics, making the zone-plate type correction still evident. Moreover, due to the distributed 
mask features, the spreading of light distribution on the resist, as shown in the red color of Fig. 2(f), is also higher than 
that of the other two cost functions. However, as long as the light spreading does not trigger the exposure of photoresist, 
i.e. remains below the threshold, the features have no side effects on patterning. Still, such mask features are not 
favorable in mask manufacturing, relatively speaking. Furthermore, the contour shows relatively large EPEs, which 
means that convergence is difficult. Overall, mask making is relatively feasible for the aerial-image and the resist-image 
cost functions, but not so much for the image-contrast. Finally, it is worth noting that the aerial image intensity on wafer 
is largest with the aerial-image-contrast, then the aerial-image, and lastly, the resist-image. 
 

Fig. 3 shows the configurations of evaluation points for single contacts where the cut-line length is set to be 10 
pixels. If the EPEs are over 10 pixels or without any developed contours, the EPEs are automatically saturated to 10 
pixels. The contrasts are calculated based on the evaluation points. As shown in Fig. 4, the averaged EPE and contrast of 
cut-lines  2, 5, 8 and 11 are plotted as a function of the iteration. The curve of resist image only optimization has weak 
ripples after about 25 iterations. Such interesting phenomenon results from the sharp transform of aerial image by using 
eq 3. where the coefficient a is set to 90. To get rid of the vibration, a relatively small a can be applied. However the 
small a will deviate the simulated resist behavior. 
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Fig. 3. The evaluation point configurations of single contact with 190 nm×190 nm feature size. 
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Fig. 4. The averaged EPE (Pixel) and contrast (AU) of cut-line 2, 5, 8 and 11 are plotted as a function of the 

iteration. The green, blue and red curves show that (γI, γR, γC) is under (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. 
 

The superposition of various objective functions is described next, as shown in Fig. 5(a)-(d) for (γI, γR, γC)= (1, 1, 0), 
(1, 0, 1), (0, 1, 1), and (1, 1, 1), respectively. When dealing with combined objective functions, we find that while the 
resulting mask features have the footprint from both components, one component always appears dominant to the others. 
So, in Fig. 5(a), 5(b), and 5(d) the aerial image dominates in the cost function, while in Fig. 5(c), the aerial image 
contrast  dominates  the resist  image.  The resulting  contours  and  aerial  image intensities are thus also dictated by the  
 

 
Fig. 5. The inverse results of a large isolated contact as with different combination of cost functions components where 

(a) (γI, γR, γC)=(1, 1, 0), (b) (γI, γR, γC)=(1, 0, 1), (c) (γI, γR, γC)=(0, 1, 1) and (d) (γI, γR, γC)=(1, 1, 1). The 
corresponding contours and aerial images of (a)-(d) are shown in (e)-(h) where the cyan and green contours 
respectively label the drawn pattern edges and aerial image threshold contours. 
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dominant objective function, as shown in  Fig. 5(e)-5(h). However, since all the linear combinations of the cost function 
components can result in the exposure of photoresist for the large isolated contact, it is not conclusive as to what 
combination is best for inverse lithography patterning. In Fig. 6, the averaged EPE and contrast of cut-lines  2, 5, 8 and 11 
are plotted as a function of the iteration. No ripples occur as the resist image cost function is applied. The reasonable 
explanation is that the other two cost function will alleviate the vibrations from resist image conversion function and 
reduce the ripples. 
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Fig . 6. The averaged EPE (Pixel) and contrast (AU) of cut-line 2, 5, 8 and 11 are plotted as a function of the iteration. 

The green, cyan, blue and red curves show that (γI, γR, γC) is under (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1) 
respectively. 

 
 In followings, the same three individual cost function components are applied to the correction of two nested square 
contacts, where both the edge length and spacing are equal to 100 nm. This input pattern is challenging to the 
illumination model used in this work, and that reflects on the limitations of the different cost functions. As shown in Fig. 
7(a), the corrected mask using the aerial-image component maintains similar mask characteristics as discussed 
previously, which only corrects for the main patterns. However, the corresponding aerial image shown in Fig. 7(d) 
clearly show that the cost function has hit a limitation for small features, as the photoresist is underexposed. The 
similarity of the corrected mask to a configuration achievable by segment-based OPC further highlights that such an 
approach is no longer sufficient for critical CMOS nodes.  
 

Next, as shown in Fig. 7(b), the correction using the resist image component was trapped in a local minimum during 
optimization, and only the left contact was successfully exposed. Since the resist cost function allows a number of aerial 
images to be transformed into a similar resist image, as evidenced by Eq. (3), its solution space is the largest among these 
three cases. Therefore, the advantage of the resist image cost function is a more complete exploration of possible mask 
corrections, while the disadvantage is the higher probability of getting trapped in local minima. Still, this disadvantage 
may be mitigated with the assistance of other objective functions, as will be discussed later. Furthermore, the exposed 
contact has four large mask features at the corners, known as sub-resolution assist features (SRAFs). These features help 
the exposure of the drawn patterns by bring up the intensity level, but they themselves do not print. The corner SRAFs 
can be thought of as being evolved from the large serifs of a big contact, as previously shown in Fig. 2(b). Therefore, 
particular footprint of the resist image cost function is still present. While not complete, the contour of the exposed 
contact shown in Fig. 7(e) is also very round and symmetric in shape, distinguishing itself from those corrected by the 
aerial-image or image-contrast to be shown afterward. 
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 Expectedly, the corrected mask in Fig. 7(c) using the image contrast results in zone-plate type patterns. The optical 
intensity from the image-contrast function shown in Fig. 7(f) over exposes the photoresist, in contrast to an insufficient 
exposure shown in Fig. 7(d). We found that the convergence of small mask features can rarely be obtained by single-
component cost functions. The contours in Fig. 7 reflect the limitations of the individual objective functions. However, 
Fig. 7 also provides evidence that SRAFs are mandatory for pushing forward the resolution limit of this illumination 
model. 
 

 
 Fig. 7. The inverse results of two close contacts evaluated by every cost function component individually where (a) (γI, 

γR, γC)=(1, 0, 0), (b) (γI, γR, γC)=(0, 1, 0) and (c) (γI, γR, γC)=(0, 0, 1). The corresponding contours and aerial images 
of (a)-(c) are shown in (d)-(f) where the cyan and green contours respectively label the drawn pattern edges and 
aerial image threshold contours. 

 
Fig. 8 shows the configurations of evaluation points for two closely-placed contacts where the cut-line length is set to 

be 10 pixels. As the same settings of Fig. 3, the EPEs are automatically saturated to 10 pixels as the EPEs are over 10 
pixels or without any developed contours. Moreover the contrasts are also calculated based on the evaluation points. 
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Fig.  8. The evaluation point configurations of two contacts with 100 nm×100 nm feature sizes and a 100-nm 

separation in a 256×256 pixel template. 
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 Fig. 9. shows the convergence of EPE and contrast. Due to no developed contour in Fig. 7. (d), the green curve still 
holds in 10. The ripples also occur as only using resist image cost function. Furthermore the EPE records of (0, 1, 0) 
condition approximately stop in 5 because there is only one developed via in Fig. 7. (e). 
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Fig. 9. The averaged EPE (Pixel) and contrast (AU) of cut-line 2 and 8 are plotted as a function of the iteration. 

The green, blue and red curves show that (γI, γR, γC) is under (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. 
 
 Subsequently, we demonstrate that with a mix of cost function components, the contours can improve significantly, 
as shown in Fig. 10(a), 10(c), and 10(d). By combining different components, the solution space of good mask 
corrections is potentially increased while the risk of getting trapped in local minima is considerably alleviated. Therefore, 
it is relatively easy for the gradient descent algorithm to converge to a solution. However, we note that the contacts in 
Fig. 10(f) are still not exposed. As mentioned previously, the actual costs of three components are largest for the aerial 
image, then the aerial image contrast, and that of the resist image being the smallest. Therefore the mask features in Fig. 
10(a)-10(d) are dominated by the larger cost component, just as in the single isolated contact. For example, due to the 
aerial image cost dominanting in Fig. 10(b), the influence of the aerial image contrast is evidently not large enough for 
bringing in enough light to raise the intensity above threshold. The superposition of two components at a time is further 
studied to obtain a better exposure. We also notice that the contours of the two square contacts are relatively pointy 
towards the nested space due to low image contrast. This phenomenon may result in bridging issues in contact layers, 
which have been observed in previous technologies. This characteristic is mostly dictated by the aerial-image objective 
function, which we show can be significantly relived when using the resist-image as the dominant component. 
 
 As shown in Fig. 11(a), the weighting coefficient of the image-contrast component can be gradually increased until 
contours appears. However, as seen in Fig. 11(a), after many iterations, the contours are still slightly deformed and the 
EPEs relatively large. In general, the superposition of the aerial image and image contrast results in unstable 
convergence for small features, as both of them have the same effect of increasing the intensity on input patterns, and 
therefore, a small change in the surrounding features could result in large intensity variations. Finally, since the influence 
of the resist image is the weakest among the three, in order to achieve a solution with the pattern characteristics of the 
resist image component, the coefficients of the other two have to be reduced and adjusted to achieve optimized EPEs. 
The masks obtained with a minor addition of aerial image and image contrast components are shown in Fig. 11(b) and 
11(c), respectively. As seen in Fig. 11(b), the mask pattern contains two SRAFs near the corners of the central space, 
while in Fig. 11(c), there are six corner SRAFs. In both cases, the contours are very round in shape, unlike those obtained 
by the dominant aerial-image component by itself. The mask features are relatively adequate since the SRAFs are large 
in size, compared to those obtained by just the aerial-image component. Moreover, the mask features in Fig. 11(b) and 
11(c) also coincide with general guidelines for SRAF placement in small contacts, which are usually determined by 
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either rule-based or design of experiments (DOE) techniques. Here, we show that the best mask patterns and contours are 
obtained by using the resist image component with the assistance of either the aerial image or the aerial image contrast to 
avoid convergence issues. 
 

 
Fig. 10. The inverse results of two close contacts with different combination of cost functions components where (a) (γI, 

γR, γC)=(1, 1, 0), (b) (γI, γR, γC)=(1, 0, 1), (c) (γI, γR, γC)=(0, 1, 1) and (d) (γR, γI, γC)=(1, 1, 1). The corresponding 
contours and aerial images of (a)-(d) are shown in (e)-(h) where the cyan and green contours respectively label the 
drawn pattern edges and aerial image threshold contours. 

 
 

 
Fig. 11. The inverse results of two close contacts with different combinations of cost function components where (a) (γI, 

γR, γC)=( 1, 0, 32.8947), (b) (γI, γR, γC)=( 0.0041, 1, 0) and (c) (γI, γR, γC)=(0, 1, 0.0447). The corresponding 
contours and aerial images of (a)-(c) are shown in (d)-(f) where the cyan and green contours respectively label the 
drawn pattern edges and aerial image threshold contours. 
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 As shown in Fig. 12 and 13, the averaged EPE and contrast of cut-lines 2 and 8 are plotted as a function of the 
iteration. The hybrid IL optimizations incorporating different cost functions exhibit better performance than those with 
individual cost functions only. However the image and image contrast combination still fail to corrected the mask, so the 
cyan curve holds in 10. Moreover the ripple phenomena are not eliminated when optimizing by hybrid cost function 
combination. The reason is that the over diffraction limit images, which induces the scattering light, will make resist 
image cost dominate the overall cost. 
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Fig. 12. The averaged EPE (Pixel) and contrast (AU) of cut-line 2 and 8 are plotted as a function of the iteration. The 

green, cyan, blue and red curves show that (γI, γR, γC) is under (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1) respectively. 
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Fig. 13. The averaged EPE (Pixel) and contrast (AU) of cut-line 2 and 8 are plotted as a function of the iteration.  

The green, blue and red curves show that (γI, γR, γC) is under (1, 0, 32.8947), (0.0041, 1, 0) and (0, 1, 0.0447) 
respectively. 
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4. CONCLUSION 
 In conclusion, we developed a gradient descent approach to investigate three different objective functions and their 
combinations.  All of them show very unique characteristics in the resulting mask patterns, aerial images, and contours. 
We demonstrate that a clever mix of the objective functions can push the resolution limits while maintaining 
manufacturing-friendly masks. In this work, a cost function composed of a dominant resist-image component and a 
minor aerial-image or image-contrast component achieves a good mask correction and contours close to the target for the 
resolution-challenging twin contacts. The intermediate results also validate the necessity of using sub-resolution assist 
features in advanced CMOS nodes. Furthermore the rapidly converging EPEs and contrast show the capability to quickly 
generate the reference mask for assisting current rule-based technique. We believe that these findings can provide 
informative guidance for the optimization of inverse lithography patterning in specific cases. 
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APPENDIX 
 As we mentioned in the manuscript, some sort of normalization is essential to compare the performance of objective 
functions on the same basis. Here, we perform a linear transformation for costs at the initial iteration and at the final 
iteration, when a steady state is reached, as shown in Eq. (a1) below.  

 min.

max. min. max. min.

1010' ,xy x
x x x x

⎛ ⎞
= +⎜ ⎟− −⎝ ⎠

 (a1) 

where xmax. and xmin. denote the maximum and minimum of the original costs, which correspond to the initial and the 
final iterations, respectively. Fig. A1. shows the operation of the linear transformation on the single isolated contact used 
in Fig. 2 of section 3. As the same reason the two close contacts cases are under such operation as above description, but 
changing the mask for calculation. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. A1. The original and transformed cost curves of a large isolated contact as a function of iteration times: (a) (γI, γR, γC)=(1, 0, 0), 
(b) (γI, γR, γC)=(0, 1, 0) and (c) (γI, γR, γC)=(0, 0, 1). The cyan contour denotes the edge of the drawn features edges. 
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