
A Generic Publish/Subscribe Framework for Peer-to-Peer Environment

Shih-Chiang Chien, Yung-Wei Kao, Shyan-Ming Yuan
Department of Computer Science and Engineering

National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
polo.hellfire@gmail.com, ywkao@cs.nctu.edu.tw, smyuan@cis.nctu.edu.tw

Abstract — At present, the structured P2P algorithms have
been proposed frequently. Consequently, the P2P application
developers need to learn different API semantics. It causes
additional efforts of switching to different P2P topologies for
P2P applications. Moreover, it is difficult for the developers to
evaluate the performance of an application based on a
particular underneath P2P APIs. In this research, a novel P2P
framework is proposed to assist in developing P2P applications
by using various structured P2P protocols and P2P pub/sub
algorithms. We construct the structured P2P functional blocks,
including network communication components, P2P topology
maintenance and routing, network bootstrapping, as well as
pluggable pub/sub services in our system. By Comparing to
other P2P libraries and platforms, our framework achieves a
great success on providing a flexible and extensible
development platform.

Keywords-component: P2P;Pub/Sub;

I. INTRODUCTION

Nowadays, with the computing power of PC and network
bandwidth increasing, people are willing to dispense their
computing power and share information with each others. In
pure P2P network, each participant shares their resources in
order to gain benefits from other peers. By the natural of
sharing in P2P networks, the more users joining the network,
the more capacity this P2P network obtained. The scalability
is based on the performance of P2P protocols, not
determined by the server capacity in traditional centralized
architecture. The P2P networks are proved to be an
alternative technique in distributed information processing
[8]. In addition, the ownership of shared resources and the
right of distribution are possessed by the user in the P2P
network. On the other hand, the user grants the service
provider the rights of using and distributing resources in the
typical central server system.

In order to construct an efficient and scalable P2P
network, many structured P2P networks have been proposed
in recent years and have been verified as efficient and fault-
tolerated in large distributed environment. Most of them, e.g.
Chord [19], Pastry [17], Viceroy [9], etc., are able to route
message between two peers in O(log N) hops where there are
N peers within the network. With the feature of self-organize
and failover, structured P2P networks have been widely used
in file sharing [7,16], network data storage [4], and
distributed indexing [18]. There are several researches work

on deploying distributed personal information portal [12] and
online auction systems [6] onto the P2P networks.

Publish/Subscribe paradigm is effective in disseminating
information to peers who are interested in such information.
In order to apply this mechanism on the P2P network, P2P
pub/sub algorithms are designed with the consideration of
both time efficiency and transmission overhead. Efficient
pub/sub algorithms are able to alleviate the communication
burden when dealing with the burst of information on a large
scale P2P network.

However, each P2P network was implemented under
different approaches, providing various application
interfaces. A standardized development and deployment
framework is needed to reduce the overheads of
implementing P2P protocols and applications. By this
framework, developers can focus on the applications’ unique
functionalities, not the basic network communications.

In the following sections, the issues in P2P pub/sub
application development are listed in section two. Section
three shows the previous researches of defining common
API for P2P programming and pub/sub application. In
section four, a layered architecture and primary interfaces are
described briefly. Section five shows the pros and cons by
comparing with existing solutions. Finally, the conclusion
and future work are given in section six and seven.

II. MOTIVATIONS

In the application domain of content management
system, e.g., personal blog system, large amount of
information is created and requested over the entire user
community. With the search capability, users can retrieve
information which has particular contents according to the
given query. As the P2P community keeps advancing, the
number of updating events will soon surpass the size of
events that human can handle. By introducing pub/sub
mechanism, applications can automatically disseminate
information to the interested peers in P2P network. Similar to
the RSS supported on many website, the pub/sub paradigm
provides the functionality for users to focus on only the
interested events. Therefore, pub/sub mechanism is a
necessary feature while designing a platform for developing
P2P applications.

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.211

1257

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.211

1257

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.211

1257

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.211

1257

There are three roles of developing a P2P Pub/Sub-
related program: application developers, P2P protocol
developers, and P2P pub/sub protocol developers. From the
aspect of developing pub/sub applications, programmers
usually need to learn new APIs when changing the
underlying overlay network. The difference between
different P2P networks will reside in peer initialization,
network construction, and even communication mechanism.
In other words, it is likely to cause code rewriting by
implementing the same functionality on different P2P APIs.
The same problem exists in changing pub/sub APIs.
Traditionally, the applications are strongly coupled with P2P
and pub/sub implementations. Application developers have
no chance to compare the performance of their systems on
different overlays.

 Issue 1a: Application developer need to learn

different semantics from numerous P2P APIs.

 Issue 1b: The cost of rewriting code is huge for
testing performance of particular application on
different P2P network.

While developing a P2P algorithm, developers have to

write programs to communicate with other peer. Each P2P
API introduces redundant coding style for network
programming. Developers have to take additional time on
debugging network-related codes. Without network-related
code reusing, the effort for adapting to different deployment
environment is huge.

 Issue 2a: P2P network developers have to write
redundant codes for network communication to
accommodate different P2P networks.

 Issue 2b: A common process is needed for overlay
network initialization.

Our goal is to solve these issues mentioned above. Thus,

a standardized API and communication mechanism for P2P
application development needs to be defined.

III. RELATED WORKS

A. P2P Common API

To facilitate independent innovations in P2P protocols,
services, and applications, Debak et al. [5] propose a
common API for structured overlay networks. There is also
related research revises this API with the request-response
communication pattern [3]. Moreover, a conceptual model
for structured P2P network is proposed by Aberer et al. [1] to
provide interoperability between decentralized overlay
networks. These researches focus on providing a
standardizing P2P network API to application developers.

JXTA [20] is a platform for peer-to-peer computing,
proposed by open source community. The JXTA protocols
include six protocols which standardize the behaviors
between peers. In order to provide interoperability in
different language and network environment, JXTA protocol
uses XML messages and the super-peer architecture. The
index information is also stored within the super-peers,
providing reliability and supporting heterogeneous nodes
with different set of services installed. JXTA achieves a great
success as a P2P application platform, but offers no high
level support for structured P2P topology.

B. Pub/Sub Common API

Java Message Service (JMS) [21] is a part of standard
service which is included in Java EE platform. JMS defines
the common set of interfaces and associated semantics. With
the standard API implemented by JMS provider, developers
can easily deploy programs with different messaging server.
JMS provides two messaging domain:

 Point-to-Point Domain: This messaging domain is
built on the concept of message queue. Each
message has only one consumer. The point-to-point
messaging is used when each message will be
processed successfully by one consumer.

 Publish/Subscribe Domain: This domain is defined
with topic-based model. In addition, JMS API
defines an SQL-like selection language and
provides a built-in facility for supporting
application-defined property values.

However, the JMS API is a proprietary specification for

Java to intercommunication with messaging server. In order
to provide a lightweight API, Pietzuch et al. [15] defined a
simplified abstraction for pub/sub system. This common API
uses XML-RPC to describe the interaction, and preserve the
interoperability with other languages and platforms. With
little efforts, this API shows that many pub/sub systems can
be brought to compliance. These pub/sub APIs assumed that
both publisher and subscriber are clients to a messaging
service. Therefore, an auxiliary server is required for
delivering messages.

C. P2P Pub/Sub Library

Developing the P2P routing protocols and pub/sub
systems is a cumbersome task requiring sophisticated
experiments for scalability and reliability. P2P application
developers tend to implement their system using a P2P
library. FreePastry [14] is an open source P2P library which
provides pub/sub functionality. The FreePastry implements
the Pastry network routing protocol intended for the
deployment on Internet. Based on the Pastry network,
additional functionalities are built, such as pub/sub system

1258125812581258

and distributed storage. The topic-based pub/sub system
supported in FreePastry is Scribe system [2]. Moreover, with
the design of peer factory, application can be
simulated/tested on local peer without modifying program
(other than the initiation codes).

IV. FRAMEWORK DESIGN

Previous researches of common P2P API show the
common functionality of structured P2P networks. Inspired
by FreePastry and PeerSim [11], we further extend the P2P
API by abstracting the network communication from P2P
protocols and introduce additional bootstrapping facility. A
standard pub/sub API is designed to provide the
functionalities of heterogeneous pub/sub model in pure P2P
networks.

P2P Applications retrieve a live peer in the P2P network
through Bootstrap Service. This live peer is used to initiate
the join operation. Application can directly access the P2P
Protocol Layer for message routing and performing lookup
operation. By registering Pub/Sub Service to local peer,
applications use Pub/Sub API to do event publication and
subscription. P2P Protocol Layer delegates the physical
network transmission to Transport Layer. Environment
module loads external parameters from configuration file,
and provides global variables to other modules.

Figure 1. Framework Architecture Overview

A. P2P Protocol Layer

This is the core layer of performing structured P2P
functionalities. In P2P Protocol Layer, we propose an object
model to describe the relationships within structured P2P
network components. This object model consists of the
interfaces of common P2P functionalities, peer initialization,
and constraints of generating topology. By implementing
these interfaces, P2P network library developers are able to
create a particular routing protocol.

Peer utilizes the common API for general purpose P2P
network accessing. Each Peer associates with a PeerId
mapping to identifier space and a CommunicationManager

for network accessing. The identifier space contains Id for
the general key to any Resource and subclass for identifying
peers. NodeHandle is a peer reference to be used for remote
peer communication and topology maintenance.

We use Abstract Factory pattern to standardize the
process of id creation and peer initialization. PeerFactory and
PeerIdFactory define the interface for creating peer instance
and assigning a unique peer identifier. IdFactory consists of
the methods generating the key for resources.

The Service interface is defined for creating user-defined
application which can monitor the activities of P2P network.
In order to achieve the goal of defining pluggable pub/sub
service, we introduce the Service interface which can receive
several events while a message arrives and topology
changes. With the service registration mechanism,
developers are free to implement additional functionalities
without polluting the code of P2P protocol.

B. Pub/Sub Service and API

This module provides a light-weight API for executing
pub/sub related tasks. Publisher and Subscriber define the
common pub/sub API which can connect with arbitrary
pub/sub service. Each Publisher and Subscriber is associated
with one topic.

The PubSubService is a subclass of Service which
defines the SPI (Service Provider Interface) needed for
implementing P2P pub/sub algorithms. PubSubService
handles the actions of pub/sub applications via Publisher and
Subscriber. In order to accommodate to both topic-based
model and content-based mode, the pub/sub API is designed
with topic-based model and additional selector language
similar to the one used in JMS for attribute filtering. The
content-based model is also supported by introducing a
wildcard topic. Pub/sub client program receives interested
events by registering EventHandler.

C. Transport Layer

The transport layer encapsulates the detail of resolving
physical address and establishing connections. The
CommunicationManager is the representative of physical
network infrastructure. Through the abstraction of network
communication, P2P protocol can easily be deployed on
different network environments. In our design, peers can
register to one instance of CommunicationManager, so that
the overhead of activating multiple P2P networks can be
reduced. CommunicationManager uses Address to establish
network connections in order to perform message
transmissions. Peers communicate with each other by
sending messages. Message interface defines the essential
attributes for indicating the source peer and the message
handler.

P2P Protocol

Pub/Sub API

Transport Layer

Applications

E
nv

iro
nm

en
t

 Pluggable
Service

Pub/Sub Service

publish subscribe

trigger actions

send/retrieve messages

route messages/monitor topology

access
user-defined
services

get boot peer

ex
te

rn
al

iz
e

pa
ra

m
et

er
s Bootstrap

Service

1259125912591259

D. Bootstrap Service

In order to join an existing overlay network, peers have
to aware of at least one live peer which belongs to this
network. The bootstrap service provides a general interface
which can be adapted to different service implementations.

V. EVALUATIONS & COMPARISONS

The framework we proposed is based upon object-
oriented architecture and event-driven methodology.
According to the structured P2P specification defined in [3]
and [5], we enhance the functionalities into object models.
These models fully describe the relationships between the
identifier space and the routing protocol. Moreover, based on
the framework proposed by Aberer et al. [1], the additional
service modules, e.g., P2P Storage Interface, and the P2P
Basic Interface, i.e., P2P protocol, are objects directly
inherited from the same parent class. However, in our
architecture, we introduce pluggable modules, e.g., the
Pub/Sub Service, which is independent to the P2P protocol
implementation. The features are achieved by invoking
services as events arrived. The events include
communication messages as well as topology modifications.
The event of state transition of handling peers (e.g., peer
joins to a network and peer is ready to receive message) is
not propagated to the services. Developers can only perform
stabilization and replication in proactive style while
generating persistence services. Moreover, this pluggable
approach makes a lightweight peer implementation.
Therefore, the P2P Protocol Layer only needs to handle
routing protocols. The additional pluggable services are
independent modules not included in the P2P Protocol Layer.

Our design has been focused on pure P2P networks. In
other words, each peer in the architecture shares information
and collaborates with other peers without a centralized
server. In previous researches [15][21], publishers and
subscribers are both clients of a message server. In our
platform, each peer involves message dispersion and
propagation via the pub/sub mechanism without an
additional message server. Instead, each peer is involved in
the information dispersal of the pub/sub mechanism in our
framework, without establishing additional message server.
The benefit of pure P2P is that applications do not depend on
a pre-constructed server infrastructure. The index
information is connoted in the P2P network topology and
routing protocol, compared to the super-peer indexing
mechanism used in JXTA. However, this statement assumes
the computation power of each peer is about equal.
According to the assumption, this framework does not grant
developer the advantage of deploying P2P applications on
the environment of heterogeneous devices. Moreover, this
framework does not accommodate to an overlay network
containing more than one role of peers, e.g., the super-peers
architecture used in JXTA.

In previous researches of P2P protocol, network
bootstrapping is usually omitted. By considering the
practicality of creating P2P applications, we define the
bootstrap service interface and provide two boot server
implementations. By externalizing the network
communication, the framework allows different protocols
transmitting messages through one single network port.

The FreePastry library is an open source implementation
of Pastry. With the Scribe system implemented as an
additional service, developers can create group
communication system with efficient pub/sub capability. In
the design of FreePastry, the factory methods are used for
testing/simulating applications without modification to the
source code. However, the FreePastry library is only can be
used for Pastry network and Scribe system. It is functionally
limited to develop applications by using FreePastry. Our
framework provides a flexible architecture. In this
architecture, applications can easily be deployed to any P2P
network and any underlying network environment. With the
lightweight pub/sub APIs, application developers can adopt
any P2P pub/sub service to meet their system requirements.

JXTA is a general P2P platform which allows
heterogeneous applications to be deployed on the top of a
virtual JXTA network. JXTA can provide additional
structured P2P network functionalities based on Peer
Resolver Protocol. An open source project named Meteor
[10] implements Chord and CAN on the top of the JXTA
platform. This approach deploys the DHT overlays upon the
virtual JXTA network, which causes the performance
downgrades because of the communication overheads among
peers introduced by JXTA. The JXTA platform provides a
propagating pipe which can simulate pub/sub mechanism via
the one-to-many message transmission. The message might
be lost during the process of propagation. The performance
degrading and reliability issues make this propagation
mechanism not scalable to a large group communication
system. In our framework, the message transmission among
peers is directly delegated to underlying network
transportation, which does not incur the overheads of
additional node discovery. Without message propagating,
our pub/sub service can maintain a distributed multicast
structure and support many-to-many message transmission.
Therefore, disseminating information among peers will not
cause unnecessary bandwidth dissipation.

VI. CONCLUSION

In this paper, we identify several major issues of
developing P2P pub/sub applications. These issues result
from the lack of standardize P2P API, common P2P pub/sub
API, and network abstraction. Therefore, we synthesize
standardized P2P API and common pub/sub API into a
generic P2P pub/sub framework. Our framework provides a
standard P2P API for application developers to interact with
various structured P2P networks. Furthermore, a P2P
pub/sub API and SPI are introduced for using/creating P2P

1260126012601260

pub/sub algorithms in pure P2P networks. In our design, a
layered architecture is created with common P2P API,
common pub/sub API/SPI, network transportation, and
bootstrapping service. This framework allows P2P
application developers to switch the underlying overlay with
a little bit code to modify. We standardize the control flow
between each module. The following benefits are brought
out by this framework:

 Easy to develop/deploy applications on different
P2P networks and different pub/sub systems.

 Supporting both topic-based and content-based
pub/sub models.

 Deploying the P2P applications on various network
environments.

This framework is designed for developing P2P pub/sub

applications in pure P2P network. It provides an adaptive
architecture for developing applications on any overlays
without incurring performance degradation. By comparing to
other P2P pub/sub library and P2P platform, this framework
provides generality of adapting to most P2P routing
protocols and P2P pub/sub algorithms and preserves the
performance and reliability of P2P networks.

In conclusion, with the common API we proposed, this
framework not only standardizes the semantic of using
structured P2P network, but also creates a general control
flow of develop a P2P pub/sub application. By adopting our
framework, developers can generate multiple types of
pub/sub applications on the top of every kind of structured
P2P networks.

VII. FUTURE WORK

For further extension, we can provide additional common
utilities which can help developing applications and P2P
protocols. The transport layer can provide predefined
retransmission policy for P2P network developer to
implement routing protocol in a robust way. These
retransmission policies are used to handle low-level
transmission exceptions. In addition, providing response-
waiting utilities helps P2P protocol developers implementing
request-response operations, e.g. lookup operation, without
establishing their own lock-notify mechanism. Moreover,
this framework can provide connection security and data
encryption for developing secured P2P applications. For
instance, implementing a TLPCommunicationManager
offers a secure connection or constructing a
MessageEncryptor to provide data integrity.

Although this framework is designed in the way of
adapting P2P application to different structured P2P
network, to implementing these P2P network components
completely requires excessive works. A protocol adaptor can

be introduced to reduce the overhead of implementing P2P
components using legacy libraries.

This framework can be further extended into a P2P
service middleware, integrated with OSGi platform [13]. Our
framework can be employed as the communication
infrastructure for other OSGi services. With runtime
deployment and activation, applications can easily be
deployed on an existing P2P topology. Under this service-
oriented architecture, P2P components are not only reused in
development process, but also in runtime. Moreover, the
monitoring services can be dynamically introduced based on
the architecture of OSGi platform.

Currently, our framework supports only message-based
communication. With application level socket, application
usually needs to manage the interaction between peers with
stream-based communication. The socket API should have
ability for P2P application and service to establish long-live
connections between peers. This long-live connection
reduces the effort on waiting message acknowledgement in a
frequent interaction scenario.

A P2P Blog system is planed to be built using this
framework. With implementing real-world P2P pub/sub
applications, we can further examine the usability of our
framework.

REFERENCES

[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi and
M. Hauswirth, "The Essence of P2P: A Reference Architecture for
Overlay Networks", In Proceedings of the Fifth IEEE international
Conference on Peer-To-Peer Computing, 2005, pp. 11-20.

[2] M. Castro, P. Druschel, A. -M. Kermarrec and A. I. T. Rowstron,
"Scribe: a large-scale and decentralized application-level multicast
infrastructure", Selected Areas in Communications, IEEE Journal on,
vol. 20, 2002, pp. 1489-1499.

[3] G. Ciaccio, "A Pretty Flexible API for Generic Peer-to-Peer
Programming", Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, 26-30 March 2007, pp. 1-8.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, "Wide-
area cooperative storage with CFS", SIGOPS Oper. Syst. Rev., vol.
35, 2001, pp. 202-215.

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica,
"Towards a Common API for Structured Peer-to-Peer Overlays",
Peer-to-Peer Systems II, 2003, pp. 33-44.

[6] D. Haussheer, "Decentralized auction-based pricing with PeerMart",
Integrated Network Management, 2005. IM 2005. 2005 9th
IFIP/IEEE International Symposium on, 2005, pp. 381-394.

[7] Y. Kulbak and D. Bickson, "The emule protocol specification", 2005.
[8] A. Loo, “The future of peer-to-peer computing”, Communications of

the ACM, vol. 46, issue 9, 2003, pp. 56-61.
[9] D. Malkhi, M. Naor and D. Ratajczak, "Viceroy: a scalable and

dynamic emulation of the butterfly", In Proceedings of the Twenty-
First Annual Symposium on Principles of Distributed Computing,
2002, pp. 183-192.

[10] P. Manish, J. Nanyan, S. Cristina and M. Vincent. (2007, Feb. 21).
Meteor. 2.4.1, Available: https://jxta-meteor.dev.java.net/

[11] J. Márk, M. Alberto, P. Gian Jesi and V. Spyros, PeerSim: A peer-to-
peer simulator, 1.0.3, 2007, Dec. 23. Available: http://peersim.
sourceforge.net/

[12] MONKIA Info., "NUWeb", 2007, Available: http://tw.nuweb.cc/

1261126112611261

[13] OSGi Alliance, "OSGi Service Platform Core Specification Release
4.1," October. 2007.

[14] D. Peter, E. Eric, G. Romer, H. Andreas, H. Jeff, C. Y. Hu, I. Sitaram,
L. Andrew, M. Alan, N. Animesh, P. Ansley, R. Charlie, S. Dan, S.
Jim, S. Atul and Z. RongMei.. FreePastry. 2.0_03, 2007, Nov. 2.
Available: http://freepastry.rice.edu/FreePastry/

[15] P. Pietzuch, D. Eyers, S. Kounev and B. Shand, "Towards a common
API for Publish/Subscribe", in DEBS '07: Proceedings of the 2007
Inaugural International Conference on Distributed Event-Based
Systems, 2007, pp. 152-157.

[16] J. Pouwelse, P. Garbacki, D. Epema and H. Sips, "The Bittorrent P2P
File-Sharing System: Measurements and Analysis", Peer-to-Peer
Systems IV, 2005, pp. 205-216.

[17] A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems", in
Middleware '01: Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, 2001, pp.
329-350.

[18] I. Stoica, D. Adkins, S. Zhuang, S. Shenker and S. Surana, "Internet
indirection infrastructure", in SIGCOMM '02: Proceedings of the
2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, 2002, pp. 73-86.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan,
"Chord: A scalable peer-to-peer lookup service for internet
applications", SIGCOMM Comput. Commun. Rev., vol. 31, 2001, pp.
149-160.

[20] Sun Microsystems Inc., “JXTA v2.0 protocols specification”, 2007,
Oct 16th. Available: https://jxta-spec.dev.java.net/

[21] Sun Microsystems Inc., “Java message service API”, 2003, Dec 2nd.
Available: http://www.jcp.org/en/jsr/detail?id=914

1262126212621262

