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Abstract--The mathematical model of the ZE-type worm gear set derived here is based on tool design 
parameters, machine tool settings, and worm and worm-gear cutting mechanisms. The backlash of the 
worm gear set is considered into the developed mathematical model. The developed mathematical model 
is most helpful in designing, contact and stress analyzing, manufacturing, measuring and optimizing worm 
gear sets. The profile of the fly cutter for small-lot worm-gear cutting is also investigated. Three-dimen- 
sional computer graphs of the worm gear set are presented to demonstrate the developed mathematical 
model. 

INTRODUCTION 

The worm gear set is a primary transmission device used by industry to transmit torque between 
crossed axes. Due to their high transmission ratios, which can be set from 4 to 400, compact 
structure and low noise, worm gear sets are widely used in gear-reduction mechanisms. 

Previous researchers have made significant contributions to the manufacturing of worm tooth 
surfaces. Bosch [1], Simon [2], and Oiwa et al. [3] proposed different methods of obtaining a more 
precise worm gear set. Pencil-type milling cutters and disk-type grinding wheels for generation of 
worm surfaces were studied by Litvin [4]. Winter et al. [5] proposed a calculation method for 
different tooth profiles of cylindrical worms. Worm tooth surfaces manufactured by a generating 
surface formed by the relative motion of an initial curve (a dresser's curve) were investigated by 
Zheng et al. [6, 7]. Contact surface topology of worm-gear teeth was studied by Janninck et al. [8]. 
Litvin et al. [9] studied the limitations of conjugate gear tooth surfaces. Concurrently, limitation 
of worm and worm-gear surfaces to avoid undercutting was investigated by Kin [10], and Tsai et 

al. [11] studied torque parameters and mathematical models of worm gear sets. Computer-aided 
design geometric modeling of worms and their machining tools was developed by B/it [12]. A 
mathematical model for applying the over-wire measurement to worm-thread surface measurement 
was investigated by Cheng et al. [13]. Litvin et al. [14] performed computerized simulation of 
meshing and bearing contact for single-enveloping worm-gear drives. Meanwhile, Simon [15] 
studied the characteristics of double-enveloping worm-gear drives. 

Based on geometry and DIN standards, worm gear sets can be categorized into four main types: 
ZA, ZN, ZE (or ZI) and ZK. This paper concerns the ZE-type worm gear set. The section of the 
ZE-type worm perpendicular to the axis of worm rotation is an involute shape. Up to now, two 
types of mathematical model have been developed for the ZE-type worm gear set. The mathemati- 
cal model proposed by Litvin et aL [3], which is based on the concept of generation line, was the 
simplest form or equation for the ZE-type worm gear set, and made it easy to simulate the contact 
process of the worm gear set. The mathematical model of the ZE-type worm proposed by Cheng 
et al. [14] was based on the concept of geometry transformation. The equations developed for the 
worm are easy to model the over-wire measurement process. 

In this paper, a mathematical model for the ZE-type worm gear set is developed based on tool 
design parameters and machine tool settings. The worm is cut by the screw motion of two cutters 
with straight-edged profiles, and the worm gear is produced by a hob cutter identical to the worm 
profile. Using this model, it is easy to modify the worm's surfaces simply by changing the tool 
design parameters or the machine tool settings. However, the oversize worm-type hob cutter is 
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widely used in industry for worm-gear production. In this case, the worm-gear tooth profiles can 
be obtained by modifying the configuration and machine tool settings of the oversize worm-type 
hob cutter. The contact of  the above-mentioned worm gear set becomes a point contact instead 
of a line contact. Due to the deformation of the gear tooth surface, the contact point of the worm 
gear set is spread over an elliptical area under load. The bearing contact of  the worm gear set is 
a set of contact ellipses. Therefore, by modifying design parameters of the oversize worm-type hob 
cutter, such as its pitch diameter, and machine tool settings, we can extend our research to the worm 
gear set produced by an oversize worm-type hob cutter. 

In this research, the profile of the fly cutter for small-lot worm-gear cutting, and worm-gear 
backlash are also investigated. Based on the mathematical model of the worm gear set, the precise 
coordinates of any point on the tooth surfaces of a worm gear set can be calculated. The calculated 
precise coordinates of  the tooth surfaces of worm gear set can be considered as the standard, and 
used to check the measured data of  the product. Computer graphics of  the ZE-type worm gear 
set are presented to demonstrate the developed mathematical model. In addition, the developed 
mathematical model enables us to simulate the tooth contact analysis (TCA) of the worm gear set. 
It can also be applied to the finite element gear stress analysis, kinematic error analysis, bearing 
contact, as well as the optimization of tooth profile and contact pattern of the worm gear set. 
Therefore, the developed mathematical model is most helpful in designing, analyzing and 
manufacturing worm gear sets. 

D E S I G N  C O N C E P T  OF T H E  Z E - T Y P E  WORM GEAR SET 

One of  the characteristics of the ZE-type worm is that its projection on the cross-section 
perpendicular to the rotation axis is an involute curve, as shown in Fig. 1. For comparison, three 
different axial cross-section of ZE-type worms are also shown in Fig. I. Cross-sections B and C 
are on planes tangent to the base cylinder. The profiles of the ZE-type worms in cross-sections B 
and C are straight lines on one side, and convex shapes on the other side. Therefore, the ZE-type 
worm profile can be generated by the screw motion of two cutters with straight-edged profiles. 
However, these two straight-edged cutters should be placed on planes parallel to each other and 
tangent to the base cylinder. Based on this concept, a mathematical model of the worm profile can 
be developed. 

The worm-gear can be designed to be generated by a worm-type hob cutter, and the generation 
mechanism is similar to the meshing mechanism of a worm gear set. The worm-type hob cutter 

C-C B-B A-A 

I n v o l u t e  c u r v e  

rded 

Fig. 1. Cross-section and profile of the ZE-type worm. 
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and the worm-gear form a conjugate kinematic pair during their generation process. This means 
that the equation of  meshing must be developed first, then the mathematical model of  the 
worm-gear can be obtained by finding the locus envelope of  the worm-type hob cutter which is 
represented in the worm-gear coordinate system. The developed mathematical model of  the worm 
and worm-gear provides precise surface coordinates of  any point on worm and worm-gear surfaces. 

MATHEMATICAL MODEL OF WORM SURFACE CUTTERS 
ZE-type worms can be produced on a lathe using two cutters with straight-edged profiles. These 

cutters should be set parallel to each other on planes tangent to the worm's base cylinder, as shown 
in Fig. 1. 

The cutter coordinate systems for producing ZE-type worms are represented in Fig. 2. 
Coordinate system Sr(X, Yr, Zr) is associated with the right-side cutter, and S~(Xt, Yt, Z~) is 
associated with the left-side cutter. The design parameters of  the cutter are u and ~. Parameter u 
represents the cutter surface coordinate along the straight edge, and ~ is the tip angle of  the cutter. 
Parameter r~ is the tool offset and is determined by the radii of base cylinder rb and dedendum 
cylinder rde d of  the worm, as shown in Figs 1 and 2. Based on the geometry shown in Fig. 2, the 
mathematical model of  the straight-edged cutter can be obtained as follows: 
(1) for the right-side cutter 

and 

(2) for the left-side cutter 

(a) Xr 

Xr = --(u cosa  +rg),  

y r = 0  

Zr=U sin ~. (1) 

x~ = - (u cos a + r,), 

Yl = 0 

zl = - u sin a. (2) 

MATHEMATICAL MODEL OF THE WORM SURFACE 
The ZE-type worm surface, a screw surface which can be generated by a straight-line, performs 

a screw motion. The right-side and left-side cutters generate the left-side and right-side worm 
surfaces, respectively. Figure 3 shows the relation between worm and cutter coordinate systems. 
Coordinate systems Sr(Xr, Y ,  Zr), Sl(Xt, YI, ZI) and $2(X2, Y2,Z2) are associated with the 

rg 

- T -  U 

O r Zr  

and 

(b) xt 

u O t ! ~  

Fig. 2. (a) Right-side cutter, (b) left-side cutter. 
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Xt 

lane P ~-.~Le ft 

Fig. 3. Relationship between the worm and cutter coordinate systems. 

right-side cutter, left-side cutter and worm surface, respectively. Coordinate system St (Xt, Yt, Z~ ) 
is the reference coordinate system; coordinate systems St and S~ are rigidly connected to coordinate 
system St which describes a screw motion with respect to coordinate system $2; axis Z2 is the axis 
of the screw motion. 

The left-side worm surface can be considered the locus of the right-side cutter represented in 
coordinate system S 2 ( X  2, Y2, Z2). Therefore, the equation of the left-side worm surface can be 
obtained by applying the following homogeneous coordinates transformation matrix equation: 

R~ = [M2, ][M,,]Rr (3) 

where 

[MIr] = 
I 0 0 0 1 0 I 0 r b 
0 0 I 0 ' 
0 0 0 I 

[n2,] = 

I cos$  - s i n s  0 0 

sin $ cos $ 0 0 
o o i p~, 

0 0 0 l 

and vector column Rr is the position vector of the right-fide cutter represented in equation (1), and 
R ~, is the position vector of the left-side worm surface represented in coordinate system $2. The 
homogenous coordinate transformation matrix [M,~] (i = 2, 1 and j = 1, r) transforms the position 
vector from coordinate system S: to coordinate system St. Parameter p is the lead of the worm 
surface per radian revolution, and ~ is the screw motion surface rotation angle of the cutter with 
respect to the worm in units of radian. By substituting equation (1) into equation (3), the left-side 
worm surface is obtained as follows: 

[- - -u  COS = + rs)cos ~b - r b sin ~ ] 

R~ = / - (u  c ° s = L  u + rs)sin ~ b s i n  = + p~b+rbc°sCJ" (4) 
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Similarly, the same homogenous coordinate transformation matrix equation can also be used to 
obtain the right-side worm surface. Nevertheless, position vector Rr should be replaced by RI, and 
the transformation matrix [M~,] is substituted by [Mu~] as follows: i 00 [M.,]= 0 1 0 - b (5) 

0 1 

0 0 

By substituting equations (2) and (5) into equation (3), the mathematical model of the right-side 
worm surface can also be obtained as follows: 

I 
-(U COS ~ + re)cos ~ + rb sin ~ ]  

R~= - - (ucos~+rg)s in~b- - rbcos  • 

- u sin • + pq/ 

(6) 

W O R M  S U R F A C E  M O D I F I C A T I O N  

The tip point Mr of the right-side cutter and the tip point M~ of the left-side cutter are located 
in the same plane P which is perpendicular to Z2 as shown in Fig. 3. In general, the axial tooth 
thickness and space width of the generated worm surface are not the same. Therefore, the worm 
surfaces expressed in equations (4) and (6) should be modified. The steps for the modification are 
listed below. 

1. Find the value of cutter parameter u, corresponding to the pitch cylinder, represented in the 
straight-edged cutter coordinate system. 

2. Based on the calculated value of u and the constraint of ?(2 = 0, the axial difference between 
the right-side and the left-side worm surfaces on the pitch cylinder can be obtained. Let the 
amount of this axial difference be denoted by Az. 

3. Comparing the value Az with the theoretical axial tooth thickness r c m / 2 ,  let us define 
2S0 = [rcrn/2 - Az[. 

4. For symmetry, 2S0 is equally divided into two parts as the modified amount for the right-side 
and left-side worm surfaces modification. 

5. Add the calculated modified amount So to the Z2 components of equations (4) and (6) to get 
the proper worm surface equations. This makes the right-side and left-side cutters symmetric 
along the Z 2 axis on the plane Z2 = 0. 

After considering the steps listed above together with the developed worm surface equations, the 
modified left-side worm surface equation is obtained as follows: 

and 

X~ = --(U COS • + rg)COS q/ -- rb sin ~, 

y l  = --(u cos • + rg)sin q/ + rbCOS 

z~ = u sin ~ + p q / +  So. 

Similarly, the right-sideworm surface equation is obtained as follows: 

x~ = - ( u  cos ~ + rg)cos ~ + rb sin ~O, 

y~ = --(u Cos ~ + rg)sin ~, -- rbcos 

and 

(7) 

z~ = - u sin ~ + p q / -  So. (8) 
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Based on the geometric relationship between the addendum circle and dedcndum circle, it is 
known that any point on the worm surface is located between the radii of dedcndum circle rd,d and 
addendum circle tad d . This yields 

2 2 ( 9 )  rdcd~~ ~radd- 
According to equation (9), the two limiting values of cutter parameter u can bc determined. 

Some important design parameters of the worm gear set arc given by (I) gear set: mod- 
ulc=8.00mm, (2)worm: number of thread= l, pitch dia=80.00mm, base cyclindcr 
dia = 21.I0 ram, addendum cyclinder dia = 96.00 mm and dcdcndum cylinder dia -- 60.97 ram, 
(3) worm-gear: number of teeth = 30, pitch dia = 240.00 mm, addendum cylinder dia - 255.84 mm 
and dedcndum cylinder dia = 220.82mm. Based on the calculated limiting values of u and 
equations (7) and (8), a three-dimensional computer graph of the left-side and right-side worm 
surfaces can bc obtained as shown in Fig. 4. 

WORM-GEAR PRODUCTION CONCEPTS 

Because worm-gears mate with worms, they can be cut with a worm-type hob cutter, and the 
cutting process is similar to the mating action of the worm gear set. This cutting/mating mechanism 
is shown in Fig. 5. The coordinate system, $2(X2, Y2, Z:) is associated with the worm, the 
coordinate system $3(X3, Y3, Z3) is associated with the worm-gear, and the fixed coordinate 
systems SA(XA, YA, Z~), Ss(X n, Yn, Zs) and Sc(Xc, Yc, Zc) are the reference systems. In the 
worm-gear cutting process, the worm is replaced by a worm-type hob cutter which cuts worm-gear. 
In the cutting simulation, the worm-type hob cutter rotates about axis ZA through an angle ~01 with 
respect to the reference coordinate system SA while the worm-gear rotates about Zc axis through 
an angle qJ2 with respect to the reference coordinate system Sc. In order to develop the 
mathematical model of the worm-gear, it is necessary to find the locus equation of the worm-type 
hob cutter, and the equation of meshing of the worm-type hob cutter and the worm-gear. For 
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Fig. 4. Computer graphic of the worm profile. 
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Fig. 5. Cutting mechanism of the worm and worm-gear. 

convenience, the worm surface equations [i.e. equations (7) and (8)] can be represented in the 
reference coordinate system SA by applying the homogeneous coordinates transformation matrix 
equation as follows: 

where 

R^ = [M~a]R2 (10) 

[MA2 ] = 

I COS I//l -sin#, 0 0 1 
sin ~1 cos  ~//l 0 0 

0 0 1 0 

0 0 0 1 

By substituting equations (7) and (8) into equation (10), the worm surface equation represented 
in coordinate system SA becomes: 
(1) The left-side worm surface 

x~ = - ( u  cos • + rg)cos(~ + ~,)  - rb sin(~ + ~,), 

y~ = -- (u cos a + rg)sin(~ + ~,)  + rb cos(~ + ~b, ), 

and 

zk = u  sin~ + p ~  +So.  

(2) The right-side worm surface 

x~. = - ( u  cos ~, + rs)cos(~, + ¢,,) + rb sin(~, + ~,), 

y~ = --(u cos ~ + rg)sin(~ + ~, ) -- rb cos(~ + ~1 ), 

( l l )  
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and 

z k = - u s i n  ~ + p q ,  - S o .  (12) 

NATURE OF THE C O N J U G A T E  ACTION 

Due to the conjugate action of  the worm gear set, the worm and worm-gear are in continuous 
tangency at every moment during their meshing process. Therefore, the relative velocity of the 
common contact point (or line) of the worm gear set must lie on the common tangent plane. Since 
the tooth surface common normal vector N is perpendicular to the common tangent plane, the 
relative velocity V (t2) is perpendicular to the common normal vector N at the contact point or line. 
Therefore, the following equation must be observed 

N" V "2) = 0. (13) 

The above equation is known in the theory of gearing as the equation of  meshing for conjugate 
kinematic pairs. The equation of meshing relates the surface coordinates and motion parameters 
of conjugate kinematic pairs. In this paper, worm-gears are generated by a worm-type hob cutter. 
The mathematical model of  the worm-gear is obtained by simultaneously considering the equation 
of meshing of the worm-type hob cutter and worm-gear, and the locus of  the worm-type hob cutter 
which is represented in the worm-gear coordinate system S 3. 

THE NORMAL VECTOR OF T H E  WORM SURFACE 

If there is a surface position vector R (u, ~k)~ C 2, where u and ~b are the surface parameters, then 
the normal vector N of  this regular surface can be obtained by the equation 

OR 0R 
N = ~ - u  x 0 0 '  (14) 

Therefore, for the left-side worm surface vector R~, represented in equation (11), we have 

0Rk 
Ou = [ - c o s  ~ cos(qJ + 01)]iA + [-- COS ~ sin(0 + 01)]JA + [sin ~]kA 

and 

0r~ 
04, 

- -  = [(u cos ~ + rg)sin(~b + $1) - rb cos(~b + $1)]iA 

-- [(U COS ~ + rg)cos(~b + ~b, ) + rb sin($ + $t )]JA + pkA. (15) 

By substituting equation (15) into equation (14), it is found that the normal vector of the left-side 
worm surface is 

NIA = [(--p cos ~ + r b sin ~)sin(~b + ~bl) + (u cos ~ + rs)sin ~ cos($ + St)]iA 

+ [(p cos • - rb sin ~)cos(~b + $1) + (u cos ~ + re)sin ~ sin($ + $1)]JA 

+ [(U COS ~ + re)COS 0~]kA, (16) 

where iA, JA and kA are the unit vectors of three orthogonal axes of coordinate system SA. Similarly, 
according to equations (12) and (14) the normal vector of the right-side worm surface can be 
obtained as follows: 

N~, = [ ( - p  cos ~ + rb sin ~)sin(~b + ~t) - (u cos ~ + rg)sin • cos(~k + ~l)]iA 

+ [(p COS ~ -- r b sin ~)cos(~b + ~,)  + (u cos ~ + re)sin ~ sin(~k + ~b,)]jA 

+ [(u COS ~ + rg)cos ~]kA. (17) 

RELATIVE VELOCITY AND E Q U A T I O N  OF M E S H I N G  

To determine the relative velocity V "2) between the worm and worm-gear, we must consider the 
meshing action of  the worm and worm-gear as shown in Fig. 5. Symbols cot and co2 are the angular 
velocities of the worm and worm-gear, respectively. The position vectors of any common contact 
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point M (X, Y, Z) represented in coordinate systems SA and Sc are denoted by R2 and R3, 
respectively. The velocity at the common contact point of the worm surface, represented in 
coordinate system SA, is denoted by V~ ). The velocity at the common contact point of the 
worm-gear surface, represented in coordinate system SA, is denoted by V~ ). According to the 
meshing mechanism shown in Fig. 5, it is found that 

and 

V2 ) = oJ2 x R2 (18) 

V ~  ) = to 3 × R 3 --- to 3 × (Of t  OA q- R 2 ). 

Therefore, the relative velocity of the worm and worm-gear is 

VO2) __ V(l) V ~  ) = (¢°2 - 0)3) × RA - -  O A O B  × ~3"  A - -  VA - -  

According to Fig. 5, the angular velocities of worm and worm-gear are 

OJ2 = ~2  k a  

and 

(19) 

(20) 

L O C U S  OF T H E  W O R M - T Y P E  H O B  C U T T E R  

Since the worm-gear surface is cut with a worm-type hob cutter, the worm-gear surface equation 
can be obtained by finding the locus envelope of the worm-type hob cutter, represented in the 
worm-gear coordinate system. According to the cutting relationships shown in Fig. 5, the locus 

By substituting equations (22) and (23) into equation (13), the equation of meshing is obtained as 
follows: 

Ao~3(NA~ cos ~ + NA~ sin ~ + (~o 2 -- 0~3 COS 7)(XANAy -- yANA~) + C03 sin 7(yANA: -- ZANAy ) = 0. (24) 

With consideration of the relation XANAy--yANA~ = --pNAz for the meshing of both sides of the 
worm and worm-gear surfaces, equation (24) can be simplified as follows: 

NA~(Ao93cosT)+ NAy(--o~3ZASinT)+ NA~(A~3sin7 --c02p q-fo3p cosy +~03YASinT)=0. (25) 

Actually, equation (25) is the equation of meshing of the worm-type hob cutter and worm-gear. 
It relates the surface parameters u and ~k of the worm-type hot cutter, and the rotation parameters 
092 and ~o 3 of the worm-type hob cutter and the worm-gear. The worm surface coordinates XA, YA 
and ZA expressed in equation (25) are represented in coordinate system S A, as shown in equations 
(11) and (12). The normal vectors of the worm surface NAx, NAy and NA~ are also represented in 
the coordinate system SA as expressed in equations (16) and (17). 

to3 = (-o~3 sin ~) l  A -'1- ((03 COS ~ ) k  A . (21) 

By substituting equation (21) into equation (20), the relative velocity becomes 

V(~ 2) = (Aft)  3 c o s  7 - (-O2YA "~" o)3yA COS ~) i  A 

+ (-o93z A sin 7 + a~2XA -- ~03XA COS ~)JA + (o)3YA sin y + A t o  3 sin 7)kA (22) 

where A = I OA OBI. In equation (22), parameters XA, YA and ZA are the coordinates of worm surfaces 
represented in equations (11) and (12). 

Since the normal vector NA of the worm surface and the relative velocity V~ 2) of the worm and 
worm-gear have been obtained, the equation of meshing can be determined by substituting 
equations (16), (17) and (22) into equation (13). 

To avoid complicated expression in the derivation process, the normal vector is expressed by 
three components as follows: 

NA = /NA, | .  (23) 

LN,~J 



786 Chung-Biau Tsay et al. 

of the worm-type hob cutter represented in coordinate system S 3 can be obtained by applying the 
following coordinates transformation matrix equation: 

R3 = Y3 = [M3c] [Mc~] [MeA]RA (26) 

Z3 

[MBA] = 

where 

and 

1 0 0 0 

0 1 0 A 

0 0 1 0 

0 0 0 0 

cosy 0 siny 0 ] 

] 0 1 0 0 

- s i n y  0 cosy 0 

0 0 0 1 

[M~c] = 

I cos@2 sin ~2 0 0 ] 

-sin@2 cos~b2 0 0 

0 0 1 0 

0 0 0 1 

Parameters ~ and ~k2 are the rotation angles of the worm-type hob cutter and worm-gear, 
respectively, y is the crossed angle of two rotation axes of  the worm-type hob cutter and worm-gear, 
and A is the shortest distance between two rotation axes. By substituting equation (11) into 
equation (26), the locus equation of the left-side worm-type hob cutter surface, represented in 
coordinate system $3, can be obtained as follows: 

x3 = (p~ + So + u sin ~)sin y cos ~2 - [(u cos • + rg)sin ~k2 + rbcos y cos ~2]sin(~k + ~k~) 

+ A sin ~2 - [(u cos ~ + rg)cos ~b2 cos y - rb sin @2]cos(~ + ~q), 

Y3 =" ( - - P ~  - -  So - -  U sin ~)sin y sin Lb2 - [(u cos ~ - re)cos ~b 2 - rbcos ? sin ~2]sin(~b + ¢1) 

+ A cos ~b2 + [(u cos ~ + rg)sin @2 cos y + r~ cos ¢,2]cos(~b + ~q), 

and 

z3 = [(u cos ~ + rg)cos(~ + ~l ) + rb sin(Lb + ~bt )]sin y + (u sin ~ + p~ + S0)cos y. (27) 

Similarly, by substituting equation (12) into equation (26), the locus equation of the right-side 
worm-type hob cutter can also be obtained as follows: 

x3 = (p~ - So - u sin ~)sin y cos ~k2 - [(u cos ~ + rg)sin ~2 - rb cos y cos ~,2]sin(~ + ~t) 

+ A sin ~2 - [(u cos • + rg)cos ~b 2 cos y + rb sin ~b2]cos(~b + ~kl), 

Y3 = ( - - P ~ /  + So + U sin ~)sin y sin @2 -- [(u cos ~ + rg)cos ~2 + rb cos y sin ~2]sin(~, + ~1) 

+ A cos ~2 + [(u cos u + rg)sin ~b 2 cos ~ - r b cos ~k2]cos(@ + ~bl), 

and 

z3 = [(u cosu + rg)cos(~ + ~bl)- rb sin( ~ + @1)]sin ~ + ( - u  sin~ + p ~  -So)cosy .  (28) 

THE M A T H E M A T I C A L  M O D E L  OF THE W O R M - G E A R  S U R F A C E  

The mathematical model of the worm-gear surface can be obtained by simultaneously consider- 
ing the locus equation of the worm-type hob cutter and its corresponding equation of meshing. 
Note that the left-side worm-type hob cutter surface cuts the right-side worm-gear surface. 
Therefore, system equations (25) and (27) define the surface equation of the right-side worm-gear. 
Similarly, system equations (25) and (28) define the surface equation of the left-side worm-gear. 

In this research, the IMSL computer software package was applied to solve for these non-linear 
system equations. If  the design parameters of the worm and worm-gear are chosen the same as 
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Fig. 6. Computer graphic of the worm-gear profile. 

those given in previous section, then a three-dimensional computer graph of the worm-gear surfaces 
as shown in Fig. 6 can be obtained by applying these design data, the worm-gear surface equation 
and the AUTOCAD software. In addition, the cross-section of the worm gear set under meshing, 
as shown in Fig. 7, can also be obtained by applying the developed mathematical model of the 
worm gear set. 

B A C K L A S H  

In the production process, the backlash of the worm gear set should be considered to ensure 
smooth running. In general, an amount of AS0 is added to the axial tooth thickness of the 
worm-type hob cutter, then the axial tooth thickness of the worm-gear is reduced by a 
corresponding amount of AS0 to produce the backlash. However, this backlash allowance should 
be carefully calculated to produce minimum noise and vibration in the finished gear set. In practice, 
the mathematical model of the worm-type hob cutter with backlash consideration can be obtained 
by replacing So of equations (7) and (8) by So + AS0/2. The suggested values of the backlash for 
the worm gear set under various conditions can be referred to as shown by Ref. [16]. 

THE FLY CUTTER 

For small-lot worm-gear manufacturing, gear companies always use fly cutters to manufacture 
worm-gears in order to reduce the product cost. The profile of the fly cutter, in fact, is the 
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Fig. 7. Cross-section of the worm gear set under meshing. 

cross-section perpendicular to the helix of the worm-type hob cutter. Figure 8 shows the 
relationship between the worm-type hob cutter and its normal plane to the helix. They can be 
related by the following equation: Y2 

- tan 70 = -- (29) 
z2 

where 7o is the lead angle of the worm-type hob cutter. By considering equation (29) and equations 
(7) and (8), the profile of the working portion of the fly cutter can be obtained and shown in Fig. 9. 

N o r m a l  
P l a n e  

22 

j~ 7o 

Y 2  

Fig. 8. Relationship between the worm-type hob cutter and its normal plane to the helix. 
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Fig. 9. Profile of the working portion of fly cutter. 

C O N C L U S I O N S  

In this paper ,  we have deve loped  a ma themat i ca l  model  o f  the ZE- type  w o r m  gear  set. The  w o r m  
is cut  by the screw m o t i o n  o f  two cut ters  with s t ra ight -edged profiles,  and  the worm-gea r  surface 
is p r o d u c e d  by  a worm- type  hob  cutter .  The worm equa t ion  is ob ta ined  by the locus method .  
Because the w o r m - t y p e  hob  cut ter  and  the worm-gea r  form a conjugate  k inemat ic  pa i r  dur ing  the 
cut t ing  process,  the equa t ion  o f  meshing  and  the locus equa t ion  o f  the worm- type  hob  cut te r  define 
the ma thema t i ca l  mode l  o f  the worm-gear .  The  profile o f  the fly cut ter  for  smal l - lo t  worm-gea r  
cut t ing,  and  worm-gea r  backlash  are also invest igated.  The  deve loped  ma themat i ca l  mode l  is mos t  
helpful  in designing,  analyzing,  manufac tur ing ,  measur ing  and opt imiz ing  worm gear  set. Based 
on the p r o p o s e d  ma thema t i ca l  mode l  o f  the w o r m  gear  set, the precise coord ina tes  o f  any  po in t  
on the too th  surfaces o f  the ZE- type  worm gear  set can be calculated.  The  ca lcula ted  precise 
coord ina tes  o f  the w o r m  and  worm-gea r  too th  surfaces can be used to measure  the p roduc t .  In  
addi t ion ,  the deve loped  ma themat i ca l  mode l  enables  us to s imulate  too th  con tac t  analysis,  and  can 
also be appl ied  to F E M  stress analysis ,  as well as k inemat ic  e r ror  analysis  and  T C A  op t imiza t ion  
o f  the w o r m  gear  set. 
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