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The Transform Image Codec Based on Fuzzy 
Control and Human Visual System 

Kuei-Ann Wen, Member, ZEEE, Chung-Yen Lu, and Ming-Chang Tsai 

Abstruct-A novel processing scheme for gray level image 
compression based on the human visual system ( H V S )  and fuzzy 
control is proposed. The spatial model of the threshold vision that 
incorporates the masking p r o c ~  takes account of two major 
sensitivities of the human visual system, namely background 
illumination levels and spatial frequency sensitivities. The distor- 
tion measures use common sense fuzzy rules for image quality 
prediction. The human visual models have been successfdly 
applied in image compression. By the addition of the visual 
model, performance of these system have a visible improvement 
of subject quality depending on visual perception. 

The processed image performs both improved compression ra- 
tio as well as improved SNR (signal to noise ratio) in compression 
to the standardized still image compression technique, i.e., the 
JPEG. 

I. INTRODUCTION 

S the field of digital image processing advanced due to A technical progress in its hardware and in its processing 
algorithms, there is simultaneously an increase in efforts 
aimed at developing sophisticated real-time automatic systems 
capable of emulating human abilities or imitating human 
thought. Be one of the most obvious concerned of these, the 
human vision acts not only as an organ of contact with outer 
world but also as an intermediary of recognition, learning, 
and amusement. 

The applications of digital speech and image signals are 
more and more intensive today than ever before. The transmis- 
sion of digital image data increases communication accuracy 
by requires increased bandwidth. The transmission of infor- 
mation is limited by the information carrying capacity of 
transmission media and approaches. Numerous strategies have 
been developed to minimize the bandwidth required by specific 
applications without significantly changing the characteristics 
of the transmitted signals. The subjectively pleasing appear- 
ance of high-definition television pictures creates a demand 
for systems with the bandwidth capable of delivering high 
image quality to the reviewers; thus high ratio compression 
schemes without loss of visual appearance are the subject of 
continuous research. 

In this paper, we proposed a compression system based 
on JPEG baseline system which is inherently a transform 
coding system. With human visual model and fuzzy control 
combined, not only the compression ratio but also the decoding 
performance can be increased simultaneously. 
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n. TRANSFORM CODING 

Transform coding has been widely used in image data 
compression [1]-[4]. In a typical transform coding scheme, 
an input image is divided into nonoverlapping blocks and 
each block is transformed to produce an array of coefficients. 
The idea behind transform coding is to decorrelate the image 
pixels so that redundancy can be removed more efficiently in 
the transform domain. In this respect, the energy compaction 
property of the transform used is important. It is well known 
that the Karkunen-Loeve transform (KLT) is the optimum 
transform in the mean square error (MSE) sense, subject to 
the assumption that the image data are spatially wide-sense 
stationary. The basis functions for the KLT are data-dependent, 
however, and it is necessary to send them to the decoder. In 
addition, there are no fast computation algorithms for IUT. 
As a result, the IUT is rarely used in practice, and other 
orthogonal transformations that are easier to implement and 
are based on fixed-basis functions are preferred. 

The two-dimensional (2-D) discrete cosine transform of a 
sequence f(j, k) for j, k = 0,1, .  . . , N - 1, can be defined as 

(2 j  + 1 ) U T  (2k + 1)VT 
x cos[ 2N ]cos[ 2N ] (1) 

for U ,  ZI = 0,1 , .  . . , N - 1 where 
1 

C(w) = - for w = 0 Jz 
= 1  f o r w = l , . . . , N - I  

and the inverse transform is given by 
N-1 N-1 

u=o v=o 

( 2 j  + 1)un (2k + 1 ) V T  

xcos  [ 2N ]cos[ 2N ] (2) 

for j, k = 0,1, .  . . , N - 1. 
Among the many transforms commonly used, the cosine 

transform has been shown to process a superior energy com- 
paction property [5]-[8]. A basis DCT transform coder is 
illustrated in Fig. 1. The input image is first decomposed 
into disjoint blocks of equal sizes, say N x N pixels. The 
choice of block size is a trade-off between the compression 
efficiency and image quality. For typical images, larger block 
sizes usually result in a better compression since more pixels 

1063-6706/95$04.00 0 1995 IEEE 



254 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 3, AUGUST 1995 

Fig. 1. The block diagram of the basic discrete cosine transform coding. 

are provided for redundancy reduction. The assumption of data 
stationary no longer holds, however, if the block size becomes 
too large after degradations. Such things as rings and blocking 
artifacts are introduced, especially in blocks containing high- 
contrast edges. Experimental results have shown that a block 
size of 8 x 8 or 16 x 16 is a good compromise. After the image 
is blocked, the DCT is applied to each block of image data. 

The transformed coefficients are then processed with thresh- 
old and quantization. The characteristics for threshold and 
quantization are defined as 

2 = sign(X) min{T, 1x1) 
Y = NINT(Z/Q) 

where NINT stands for the nearest integer. X is the input 
before the threshold, Y is the output of the quantizer, and 
T , Q  are the threshold and quantization step size. To ensure 
mean intensity continuity for adjacent blocks, the DC com- 
ponents are usually exempt from the thresholding process 
and are quantized with a relatively small step size. Finally, 
the 2-D quantized coefficients are zigzag scanned into a 
one-dimensional (1 -D) sequence whose nonzero amplitudes 
and run-length of zeros are entropy coded. Arranging the 
coefficients in the zigzag pattern results in long run-length 
codebook designed from their statistics. 

111. FUZZY CONTROL QUANTIZATION LEVEL 

transform image coding now available, Ai represents the AC 
energy distribution of a subimage, and Bi denotes its quanti- 
zation amount. After the fuzzy rules decide the quantization 
level, we can threshold and quantize the DCT coefficients of 
subimages for compression. 

IV. IMAGE QUALITY ASSESSMENT 

Image quality assessment is a measure of degradation when 
an image is distorted from processing. The quality of an image 
depends on the purpose for which the image is intended. 
The image may be intended for causal human viewing, as 
in the case of a TV image, or it may be needed for precise 
quantitative measurement of some sort. The types and degrees 
of degradation that would be objectionable or acceptable might 
be quite different in these two cases. 

There are many ways of measuring the fidelity of an image 
2(m,n) to its original z(m,n). One class of such methods 
uses simple measures of the similarity or difference between 
z and 2. For example, a widely used difference measure is the 
mean square deviation cm cn(z - 2)2 .  Note that this type of 
measure cannot distinguish between a few large deviations and 
many small ones. One can, of course, also use measure such 
as the mean absolute deviation cm En Iz - 21, the maximum 
absolute deviation max (z - 21, or various measures of the 
correlation between 2 and ?. 

The image quality measure, actually a measure of quality 
degradation that has most often been used in digital compres- 
sion research is the MSE which deals primary with objective 
quality criteria. The mean square quantization error between an 
original image z(m, n)  and its reconstructed image 2(m, n) 
can be written as 

The theory of fuzzy sets provides a suitable algorithm 
in analyzing complex systems and decision processes when 1 nf- lN- l  MSE = - [z(m.n) - 2(m:n)12. (3) 

m=O n = O  
the pattern indeterminacy is due to inherent variability or M N  
vagueness rather than randomness. A gray-level image having 
multivalue levels of brightness possesses some ambiguity The MSE is a global measure of degradation that treats 
and uncertainty due to the image character and pixels. It is 
justified to apply the concept and logic of fuzzy sets to image 
processing problems rather than ordinary set theory. An image 
can be considered as an array of fuzzy singletons each with 
a membership function denoting the degree of having some 
brightness levels. Our efforts and modifications are aimed at 
image compression. 

Adaptive cosine transform coding [9] produces high qual- 
ity images at the rate less than 1 bivpixel. In almost all 
adaptive transform designs to date, transform is computed 
first, and transform energy is then measured to determine the 
quantization levels and code words so that those blocks of 
coefficients containing large amounts of energy are allocated 
more quantization levels and code bits formed classes of bit 
maps, the adaptive system classifies subimages into classes 
according their AC energy levels and encodes each class with 
different bit maps. 

Transform coding based on fuzzy control uses common 
sense fuzzy rules for determination of a quantization level 
decision. Fuzzy rules [lo] encode structured knowledge as 
fuzzy associations. The fuzzy association (Ai, Bi) represents 
the linguistic rule “IF X IS Ai, THEN Y IS Bi.” In fuzzy 

all spatial frequencies and brightness levels in the image 
uniformly, and it does not adequately tract the types of degra- 
dation caused by image compression processing techniques. 
We have no idea of what actually the degradation is and how 
it affects the image’s quality to a certain extent. 

Some researchers, [ 111 and [ 121, have attempted to improve 
upon quality assessment by incorporating elaborate models of 
the visual processes. Such models have been desired in an 
attempt to simulate the effects of many of the parameters 
affect vision, such as orientation, field angle, and Mach 
bands, but their utility for practical problems is small due to 
their complexity, inherent unknowns, and need for sometimes 
detailed a priori knowledge of viewing condition parameter 
values. 

We have known that though the MSE has a good physical 
and theoretical basis, it often correlates poorly with the subjec- 
tively judged distortion of the image. Much of the reason for 
this is due to the fact that the human visual system does not 
process the image in a point by point fashion but extracts 
spatial, temporal, and chromatic feature for neural coding. 
Image quality assessment can be viewed as the search for a 
metric which will reflect these subject properties of the image. 
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Fig. 2. Block diagram of image compression coding scheme. 

It has been found, however, that several simplifying as- 
sumptions for the visual model can still lead to a quality 
measure that performs better than, for instance, the MSE, 
which does not incorporate a visual model [ 191, [ 121. Even 
after incorporating a visual response function in a quality 
measure, however, a further refinement is in order. To refine 
more closely and mimic how a human assesses quality [20], a 
mathematical visual response function is applied as well as a 
weighting factor incorporated. It puts more emphasis on high- 
structure subimage areas and less emphasis on low-structure 
subimage areas. Bringing together the previous concepts and 
the framework of the MSE difference between the original 
and processed images, the quality measure in the 2-D discrete 
spatial frequency domain is given as 

E M-1 N-1 

K-l wi H2(r)[Fz(u, v) - Fi(U, 4 1 2  (4) 
i=l u=O u=o 

where 
B number of subimage blocks. 
K normalization factor. 
H ( r )  spatial frequency response of H V S .  
Fi, Fi discrete cosine transform of unprocessed and 

processed subimage ith, respectively. 
wi weighting factor of the ith subimage. 

V. THE TRANSFORM IMAGE CODEC BASED ON 

The block diagram of our image compression coding 
scheme is illustrated in Fig. 2. Scheme in spatial domain 
is first transformed to frequency domain by DCT. In the 
following sections, the operation of the various stages of the 
transmitter are described. Those in the receiver are basically 
the reverse of the transmitter. 

FUZZY CONTROL AND HlJh4AN VISUAL SYSTEM 

A. Cosine Transform 

The input image is divided into nonoverlapping blocks of 
8 x 8 pixels. The 2-D discrete cosine transform of a sequence 
f(j, k) for j, k = 0,1, .  ,7, can be defined as 

for U ,  v = 0,1 , .  . . ,7, where 

C(W) = - 1 for w = 0 

for w = 1,2,...,7 
\/z 
= 1 

and the inverse transform is given by 
7 7  

u=o v = o  
( 2 j  + 1)ua (2k + 1)va 

x cos[ 16 ]cos[ 16 ] (6) 

for j, k = 0,1, .  . . ,7. 

B. Human Visual System (HVS) Model 

Many researches [ 131-[15] have measured the human 
threshold contrast to periodic patterns viewed at a range 
of spatial frequencies of sine waves, square waves, etc. 
Mathematically applied linear systems concepts to the 
response of the visual system to an impulse light stimulus, 
the Fourier transform of the response has proposed in the 
literature [14], [16]. The generalized human visual system 
response [17] can be represented by 

(7) 

where w is the radial frequency in cycle per degree of visual 
angle subtended and a, b, c are constants that determine the 
shape of the H V S  curve. It is found that the best filter function 
whose peak value falls between 3 and 5 cycle/degree of visual 
angle subtend at the normal viewing distance of four times 
the picture height. 

To use the cosine transform in image coding, an even 
extension of original scene has to be created, but this causes 
the loss of physical significance since the human observer is 
not viewing this altered scene. Nil1 [17] proposed a function 
\A( w) 1 to overcome this 

H(w) = ( a  + bw) exp(-cw) 

4a2w2 
IA(w)l= ['+'(In( 4 a 2  ?+ (7 + 1) '))'I ' (8) 

for the HVS model. Thus (8) is rewritten as 

a ( w )  = IA(w)(H(w). (9) 

& ( U ,  v) = a ( w )  (10) 

A 2-D circularly symmetric HVS function defined by 

where w = u2 + v2 is formed. 

to give 
H(u, v) is used to weigh the cosine transform coefficients 

F(u,  v )  = H(u,  v )F(u ,  v). (11) 

It simply implies that the high spatial frequencies in the DCT 
domain play a more important role for image quality than they 
do in the equivalent FFT domain. 

The coefficients are weighted by the visual response func- 
tion H(w) with w,,, = 3 cycleddegree which experimentally 
proved to be optimal for decoding image SNR consideration. 

L J L  J For such a filter, a = 0.31. b = 0.69 and c = 0.29. 
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Fig. 3. Fuzzy-set values of fuzzy variables T, B,  and C 

C. Fuzzy Decision 

Transform coding based on fuzzy control uses common 
sense fuzzy rules for determination of quantization level. 
Fuzzy rules encode structured knowledge as fuzzy association 
(Ai, Si) represents the linguistic rule “If X is Ai, Then Y is 
Bi.” 

We exploit the HVS property that human sensitivity to 
noise is less in the very bright and very dark areas (contrast 
sensitivity). The areas can be more coarsely quantized than 
the middle luminance range. The human sensitivity to noise is 
also less in the high-variance region than in the low-variance 
region. 

We computed the total AC power T and the low-frequency 
AC power L, background luminance B and compaction degree 
C of a subimage in terms of the DCT coefficients { F ( u ,  U)} as 

7 7  

u=o v=o 
3 3 - U  

The fuzzy variable T assumed only one fuzzy-set values: BG 
(big). The fuzzy variable B assumed only the three fuzzy-set 
values: BR (bright), MO (medium), and DA (dark). The fuzzy 
variable C assumed only the two fuzzy-set values: LG (large) 
and SM (small). The membership functions of fuzzy variables 
T, B, and C are shown in Fig. 3. 

We build the fuzzy set decision rules for quantization level 
(QL). 

Rule 1: If T is large, then QL should be small. 
Rule 2: If B is medium, QL should increase. If B is not 

medium, QL will decrease, and QL will decrease more when 
B is light than when B is dark. 

Rule 3: If C is large, QL should increase. If C is small, 
QL should decrease. 

Rule 4: If T is small, a small variation of B will be 
distinguishable, and the affect of B should increase. 

Rule 5: If T is large, small variation of C will be distin- 
guishable, and the affect of C should decrease. 

Rule 1 is set owing to that human sensitivity to noise is 
less in the high-variance region than in low-variance region. 
Rule 2 is owing to two reasons: one is that human sensitivity 
to noise is low in the bright and dark areas, two is that the 

Fig. 4. Fuzzification and defuzzification of T: QT = Z.  

X 

Fig. 5. Fuzzification and defuzzification of B: Q B  = w ’ * ~ . ~ ~ ~ ; ~ ~ ~ 3 * 3 .  

X 

Fig. 6. Fuzzification and defuzzification of C :  Qc = w. 

sensitivity in dark areas is high than in the bright areas. Rule 
3 is owing to that more compaction will make the subimages 
being dependent on fewer coefficients and we should increase 
the quantization level. Rules 4 and 5 are based on human 
heuristic. 

The fuzzy rules are illustrated as shown in Figs. 4, 5, and 6. 

Qfina l=  QT + AFB * QB + AF, * Q c  (16) 

where AFB is the affect factor of B and AFc is the affect 
factor of C. 

where Q(o) means threshold and quantization. 

QL is defined from level 1 to level 12, i.e., QL,, is 12 
and QLmin is 1. The HVS masks are based on the human 
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visual system response function described in the previous 
section with a different size scale, and 12 H V S  masks are 
generated. After the multiplication of an HVS mask, the 
weighted coefficients are quantized and the quantizer is a 
uniform quantization. 

D. Adaptive Block Distortion Equalization 

In block coding schemes, the distortion measure on each 
block indicates the reconstruction quality of each of the 
image blocks. When two or more adjacent blocks have large 
differences in distortion measures, the human observer is likely 
to detect some distortion gradients across the blocks. Such 
distortion gradients will be perceived as the presence of block 
edge structures. An approach to reduce the block structure is 
to reduce this distortion gradient by equalizing the distortion 
gradient across the adjacent blocks. This can be done by 
remultiplying with a larger H V S  mask coefficients for the 
block with large distortion. Block distortion gradient can be 
estimated by the inter-block distortion ratio G(m,n) of the 
(m, n)th block defined as 

where E(m,  n)  and E(m,  n-1) are the perceptual MSE of the 
current and preceding block, respectively. E(m, n) is given by 

7 7  

where Fm,n(u, w) are the weighted transform coefficients of 
the (m,n)th block. 

Fm,,(u,v) are the quantized transform coefficients of the 
(m, n)th block. 

A positive value of G(m, n) indicates that the distortion in 
the current block is greater than that of the preceding block 
and vice versa. We established distortion gradient threshold 
bound empirically such that the block structures become 
objectionable when G(m, n) is out of the bound. To carry out 
distortion equalization, G(m,  n) between two adjacent blocks 
is calculated. If G(m,n) falls within the threshold bounds, 
no equalization will be needed. If G(m, n) is greater than the 
upper bound, larger HVS mask coefficients are selected to be 
remultiplied. 

E. Zigzag Scan, Normalization Table, and Coding 

The quantized transform coefficients are coded according 
to the zigzag scan. The zigzag scan order of two-dimension 
8 x 8 block is shown in Table I. Before the quantization 
of coefficients, normalization factors Z(u, w) will be used to 
weigh each coefficient of a fuzzy transformed subimages as 
listed in Table 11. We use Huffman codes and runlength codes 
for further compression. 

As for the other nonzero coefficients, their magnitudes are 
coded by an amplitude lookup table, and the addresses of the 
coefficients are coded using a runlength lookup table. The 

TABLE I 
ZIGZAG SCAN OF 8 X 8 COSINE TRANSFORM COEFFICIENTS 

1 2 6 7 15 16 28 29 
3 5 8 14 17 27 30 43 
4 9 13 18 26 31 42 44 
10 12 19 25 32 41 45 54 
11 20 24 33 40 46 53 55 
21 23 34 39 47 52 56 61 
22 35 38 48 51 57 60 62 
36 37 49 50 58 59 63 64 

TABLE II 
NORMALIZATION TA~LE Z( U, U) 

16 1 1  10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

TABLE Ill 
MEASURES OF PSNR, MSE, CR UNDER H V S  AND FUZZY CONTROL 

Image CR PSNR(dB) MSE 

Lena 36.25 29.74 68.97 

Pepper 36.25 29.45 73.86 

amplitude and runlength tables are simply Huffman codes 
derived from the his_tograms of quantized weighted transform 
coefficients Round[F,,,(u, w)/Z(u, U)]. As demonstrated by 
the histograms, the domination of low amplitudes and short 
runs of zero-valued coefficients indicates that Huffman tables 
are relatively insensitive to the type of input images. 

VI. PERFORhfANCE EVALUATION 

For functionality simulation, we used the compression ratio 
(CR), MSE, and peak signal-to-noise (PSNR) to evaluate 
reconstructed image quality objectively 

0 CR= - n 
L, 

where 0 denotes the total bits of the original image and C 
denotes the total bits of the encoded image. 

The objective quality measure is shown in Table m, and 
the images are shown in Figs. 7 and 8. In comparison to the 
P E G  baseline system, as listed in Table IV, we found that both 
the CR and PSNR are increased, and the comparison images 
are shown in Figs. 9 and 10. The comparison is under a very 
high compression ratio as mentioned above, and better human 
perceptual quality can be obtained with fuzzy transformed 
images based on H V S  model. 
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TABLE IV 
MEASUREMENT OF PSNR, MSE, CR UNDER JPEG 

Image CR PSNR(dB) MSE 

Lena 35.83 29.40 74.70 

Pepper 35.37 29.30 76.45 

Fig. 9. Lena (.512 x 312) under JPEG. 

Fig. 7. Lena (512 x 51%) under HVS and fuzzy control 

Fig. IO. Pepper (512 x 512) under JPEG 

knowledge to the processing of images. We have combined 
HVS, fuzzy control, and image compression and obtained 
satisfied performance on the decoded images. It promotes the 
use of HVS and fuzzy control on image sequences, i.e., the 
video for video transmissions. 

Fig. 8. Pepper ( j12 x ,512) under HVS and fuzzy control. 

VII. CONCLUSION 
We have presented novel processing schemes for gray level 

image compression based on HVS and fuzzy control. Many 
of the complexities of human visual behavior have been 
mathematically modeled in sufficient quantitative detail and 
comprehensively organized in sufficient qualitative detail to be 
implemented with digital solutions. The human visual system 
provides us with a unifying basis for our understanding of 
the visual process itself as well as for the application of the 
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