
lEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 8, AUGUST 1995 887

Short Notes

Message Complexity of the
Tree Quorum Algorithm

Shyan-Ming Yuan and Her-Kun Chang

Abstract-The tree quorum algorithm (TQA) uses a tree structure to
generate intersecting (tree) quorums for distributed mutual exclusion.
This paper analyzes the number of messages required to acquire a quo-
rum in TQA. Let i be the depth of the complete binary tree used in TQA,
and let Mi be the number of messages required to acquire a quorum or to
determine that no quorum is accessible. We discuss Mi as a function of i
and p, where p (+ < p < l) is the probability that each site is opera-
tional. Let Ci denote the average number of sites in the quorum that
TQA finds. The analysis shows that, although both Mi and Ci increase
without bound as i increases, Mi/Ci approaches to 9 as i increases.

According to the result, an approximate close form for Mi is derived.

Index Terms-Distributed mutual exclusion, tree quorum algorithm,
quorum size, message complexity.

I. INTRODUCTION
A distributed system consists of a set of sites which are loosely

coupled by a computer network. One advantage of distributed sys-
tems is resource sharing. That is the resources in a distributed system
can be shared among the sites in the system. Examples of sharable
resources are memory, peripheral, CPU, clock, etc. The sites in a
distributed system may issue requests to a shared resource at arbitrary
times. When two or more sites try to access the same resource at the
same time, a conflict occurs. A mechanism is required to synchronize
conflicting requests so that at most one site is allowed to access the
resource at a time. This problem is known as distributed mutual ex-
clusion [I], [2], [3], [4], [SI. A survey of various algorithms for mu-
tual exclusion can be found in [4] and a simple taxonomy for dis-
tributed mutual exclusion algorithms was reported in [5].

A central controller can be used to control mutually exclusive ac-
cesses to a shared resource. All requests for the resource are sent to
the controller and scheduled by the controller. Using a central con-
troller is simple and easy to implement. However, the controller is
vulnerable to site failure. When the controller fails, no access to the
resource is allowed, i.e., the entire system is halted. It is desirable to
reduce the probability that the system is halted by using more than
one site to participate in the decision making. For example, majority
consensus [6] can be used to achieve mutual exclusion wherein a site
is allowed to access the resource if i t can get permissions from a ma-
jority of sites.

Quorum consensus is a generalization of majority consensus. Let
U be the set of sites in a system. A quorum Q is a subset of U and
each access is allowed to perform if it can get permissions from all
sites in a quorum. To synchronize the accesses in a mutually exclu-
sive way, the quorums must satisfy the following property:

For each pair of quorums Q l and Q2, Ql n Q2 # 0.

Manuscript received Mar. 2, 1994; revised July 15, 1994.
S.-M. Yuan and H.-K. Chang are with the Department of Computer and In-

formation Science, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 30050, Taiwan; e-mal smyuan@cis.nctu.edu.tw.

IEEECS Log Number D95031.

Mutual exclusion is ensured by requiring the accesses to get per-
missions from intersecting quorums. Since the quorums intersect with
each other, it is impossible that two accesses can get permissions
from two quorums at the same time.

The communication cost of a quorum consensus algorithm can be
measured by the following metrics:

message complexity-expected number of messages that the al-
gorithm uses to acquire a quorum or to determine no quorum is
accessible.
quorum size-expected number of sites in the quorum that the
algorithm finds.

So far as we know, the communication cost of each quorum
consensus algorithm proposed in the literature is estimated by the
quorum size. The quorum size in majority consensus is [?I. The

tree quorum algorithm (TQA) uses a tree structure to generate tree
quorums [I]. The size of the tree quorums varies from log N to

In general, the communication cost can be measured by message
complexity more precisely than by quorum size. It was assumed in
[I] that the number of messages required to construct a quorum is
directly proportional to the size of the quorums. That is (in terms of
this paper) message complexity is proportional to quorum size. The
assumption motivates us to study the relationship between message
complexity and quorum size. Let Mi be the message complexity of an
i level (complete binary) tree, and let C, be the quorum size of the i
level tree. We discuss M i as a function of i and p, where
p (4 < p < 1) is the probability that each site is operational. To verify

the assumption, an asymptotic analysis of the ratio of message com-
plexity to quorum size, R, = M,/Ci , is presented. The analysis shows
that, although both Mi and C, increase without bound as i increases,
M i / C i approaches to ? as i increases.

Although both Mi and Ci can be computed by recurrence equa-
tions, Ci has a close form but Mi has no close form. An important
implication of the analytic result is:

As i increases, Mi/Ci =+ and Mi =?C,. That is, an approxi-

mate close form for Mi can be derived.
The remainder of the paper is organized as follows. Section I1

briefly reviews TQA. In Section 111, message complexity of TQA is
analyzed and an asymptotic analysis of the ratio of message com-
plexity to quorum size is presented. Some concluding remarks are
given in the final section.

[+I.

11. TREE QUORUM ALGORITHM
The model in the analysis is described as follows. The sites are as-

sumed to be fully connected by perfect links. When a request is sent
to a site, a reply is sent if the site is operational. If the site has failed,
no reply is sent.

The TQA uses a tree structure to generate (tree) quorums. The
analysis in this paper consider only complete binary trees. For a bi-
nary tree, a tree quorum (recursively) consists of

1) the root and a tree quorum of the left or right subtree, or

1045-9219/95$04.00 0 1995 IEEE

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

2) a tree quorum of the left subtree and a tree quorum of the right

It was shown in [I] that there is a nonnull intersection between each
pair of (tree) quorums. Thus mutual exclusion is ensured by requiring
that each access to get permissions from any quorum of sites.

The sites are either operational or failed. The state of a site
(operational or failed) is independent to the others. The probability
that a site is operational, is referred to as the availability of the site.
The availability of a tree is the probability that a quorum can be ac-
quired from the tree.

subtree.

The analysis uses the following notations

p : availability of a single site, 1/2 < p < 1 ,
Ai : availability of an i level tree, i 2 0,
Ci : quorum size of an i level tree, i 2 0,
Mi : message complexity of an i level tree, i 2 0,
Ri : Mi/Ci , i 2 0 .

The availability of a tree is the probability that a quorum can be ac-
quired from the tree. Thus the availability of a binary tree is the prob-
ability that

1) the root is operational and a tree quorum of the left or right

2) the root is failed, a tree quorum of the left subtree is available
subtree is available, or

and a tree quorum of the right subtree is available.

Formally, A. = p and Ai, 1 5 i I k , is given as

for all i 2 1 . If p = 1, Ai = 1 , for all i 2 0. So the analysis considers
only the case that 3 < p < 1.

The quorum size of a 0 level tree (i.e., a tree consists of only
one site) is 1 , i.e., CO = 1. Consider constructing a tree quorum at
level i, i 2 I . If the root is operational and thus can be included in
the quorum, the quorum size is I + Ci-,; otherwise, the quorum size
is 2Ci_l . Thus, for i 2 1 , Ci can be computed by the following re-
currence:

ci = p(l + CiJ + (1 - p)2C,-,
(2)

= (2 - P)C,-I + p

111. ANALYSIS OF TQA

In this section, message complexity of TQA is analyzed. An as-
ymptotic analysis of the ratio of message complexity to quorum size,
Ri, is presented. It is shown that R; converges to 9 as i increases.

A. Message Complexity
The recursive definition of the tree quorums in the previous sec-

tion also implies a quorum construction algorithm. That is, if the root
is operational, then the construction algorithm tries to construct a
(tree) quorum from left or right subtree; otherwise, it must construct
quorums from both left and right subtrees. In other words, the quo-
rum construction algorithm first visits the root and then traverses the
left and/or right subtrees (in some specified order or randomly).

First consider constructing a tree quorum from a 0 level tree, (i.e.,
a tree consists onlv one site).

1) If the site is operational, two messages are transmitted-one re-

2) Otherwise, only one message is sent-no reply.
quest and one reply.

Thus,
M , = 2 p + (l - p)

= 1 + p (3)

Consider constructing an i level tree quorum, i 2 1. Without loss of
generality, we assume that the quorum construction algorithm tries
to acquire a quorum (recursively) by the order: root, left subtree
and right subtree. If the root is operational, two messages are
transmitted; otherwise, only one message is sent. Thus, in average,
1 + p messages are sent. The messages required to traverse the
subtrees are described below:

1) if the root is operational and a quorum of the left subtree is
available-only messages for traversing the left subtree are sent,
i.e., Mi-] messages are needed;

2) if the root is failed and no quorum of the left subtree is avail-
able-since it is impossible to acquire a quorum, only messages
for traversing the left subtree are sent, i.e., Mi-] messages are
needed;

3) otherwise-messages are required to traverse both left and right
subtrees, Le., 2 messages are required.

Formally, for i 2 I ,

Mi = (1 + p)

B. Asymptotic Analysis of Ri

LEMMA 1. (Lemma 2 of [7]) If0 < axi < 1,for all i , rhen

(1+ax,)(1 + a x ,) . . . (l + a x n) < e u ~ r '

LEMMA 2. (Lemma 3 of [7]) For TQA, 9 < p < 1, Ai has thefollowing

properties:

1) I - A ; s (~ - p) (~ + p - 2 p 2) ' , f o r a l l i t ~ .

2) (1 - A i) + (l - A i + l) + . . . + (l +A,+,) <-(I +p-2p2) l , f o r

all i, m 2 0.

LEMMA 3. (Lemma 4 of [7]) For TQA, Ci has thefollowing prop-
erties:

LEMMA 4. For TQA, i 2 0,

Ri2 1 + p

PROOF. The proof is shown in the appendix.

LEMMA 5. For TQA, 3 < p < 1 ,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8. AUGUST 1995 889

By Lemma 4, R;-l 2 1 + p , we obtain

According to Lemma 5

(2p - 1)(1 - A j) 1-p2 a;+, < (1 + p)e p (2 - p) + -
(2-P) Ci+l

Therefore,

IRj+,,, - Ril= 16i+,,, + 6i+,,,-l+...+6;+ll
& 2p-1 (1 + p) e P (2 - P) ((1 - ~ i) + . . . + (i - ~ i + , _,)) <-

(2 - P)

c , + l c,+,
According to Lemma 2 and Lemma 3

4
1 - P (1 + p - 2p2y

2p-1

(2 - P)
l ~ ~ + ~ - ~ ~ l < -(I + p)e A - P) -

P(2P - 1)
+(I- p 2) ? L - 1

1 - p (2-p)'+l

where

x = 1 + p - 2 p 2
b = l + p

1 y = -
2 - P

0

LEMMA 6. If 5 < p < 1, IR,+, - RII < ax' +by' , for all i 5 0, m 5 1,
THEOREM 1. ~ f + < p c 1,

lim Ri = - 1 + P where
I+- D

x = 1 + p - 2p2
b = l + p

y = - 1

2 - P

PROOF. Let = Ri+l - R;, then

(1 + p + A; - 2pA;)M; + (1 + p) M; 6. = --
c; 1+1

(2 - PIC' + P

- Ci
(2p-1)(1-Aj)Mj + (l + p) - p %

+ P
By Lemma 4, Ri = Mi/Cj 2 1 + p , we obtain

(2p-1)(1-Aj)Mj (1-p2) +-
(2 - P)Ci Ci+l

U

PROOF. Let a , x, b and y be defined as in Lemma 6. Since p > 5,
x = (l + p - 2 p 2) < 1 and y = & < l . For any E > 0, there is a

positive integer N such that

If i > Nand m t 1, then

U?;+,,, - Ril <ax'+ byi< a$/+ b y < E

Thus, the sequence (R i) is convergent.
Let 1imi+ R; = Iimj+- Ri-l = y , that is,

C. Discussion
Giving p , the probability that each site is operational, both Mi and

Ci increase without bound as i increases. According to Lemma 3, Ci,
i t 0, has a close form:

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 8, AUGUST 1995

(5)

On the other hand, Mi has no close form, though Mi can also be com-
puted by recurrence relations. Using the analytic result in the previ-
ous subsection, an approximate close form for Mi can be derived as
follows. As i increases, Mi/Cj approaches to y and thus Mi can be

approximated by y C;. From (3, we obtain

((2 - PI’ - P) (l + P)
M. .= (6)

PO - P)

IV. CONCLUSION
The communication cost can be measured by message complexity

more precisely than by quorum size. So far as we know, quorum size
is used to measure the communication cost of each quorum consen-
sus proposed in the literature. It was assumed that message complex-
ity is directly proportional to quorum size [l].

The assumption motivates us to study the relationship between mes-
sage complexity and quorum size. To verify the assumption, an asymp-
totic analysis of the ratio of message complexity to quorum size is pre-
sented. It is shown that the ratio converges to y, where p is the prob-

ability that each site is operational. The result implies two things:

1) Giving p , the probability that each site is operational, the mes-
sage complexity is proportional to the quorum size, if the tree is
sufficiently large.

2) Since the quorum size can be evaluated by a close form, an ap-
proximate close form for the message complexity can be derived.

APPENDIX

PROOF OF LEMMA 4.
The proof is shown by induction.

1) Induction base: Ro = Mi&, = 1 + p .
2) Induction hypothesis: Rj-l = M,-l/Ci-l 2 1 + p , i.e.,

3) Induction step: From (2) and (4), we have, for i 2 1,
Mi-, 2 (1 + p)C;-, , i 2 1.

0

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the referees for
their helpful comments. This work was supported in part by National
Science Council of R.O.C. under the grant NSC82-0408-E009-289.

REFERENCES

[I] D. Agrawal, A. El Abbadi, “An efficient and fault-tolerant solution for
distributed mutual exclusion,” ACM Trans. Computer System, vol. 9,
no. 1, pp. 1-20, 1991.
H. Garcia-Molina, D. Barbara, “How to assign votes in a distributed
system,” J. ACM. vol. 32, no. 4, pp. 841-860, 1985.
T. lbaraki, T. Kameda, “A theory of coteries: Mutual exclusion in dis-
tributed systems,” IEEE Truns. Parallel & Distributed Systems, vol. 4,
no. 7, pp. 779-794, 1993.
M. Raynal, Algorithmfor mutuul exclusion. The MIT Press, 1986.
M. Singhal, “A taxonomy of distributed mutual exclusion,” J . Parullel
andDistributed Computing, vol. 15, pp. 94-101, May, 1993.
R.H. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Truns. Darubuse Systems, vol. 4,
no. 2, pp. 180-209, 1979.
H.K. Chang, S.M. Yuan, “Message complexity of the tree quorum al-
gorithm for distributed mutual exclusion,” Proc. 1994 IEEE Int’l Con$
on Distributed Computing System, pp. 76-80, 1994.

[2]

[3]

[4]
[SI

[6]

[7]

Performance of Barrier Synchronization
Methods in a Multiaccess Network

Shun Yan Cheung and Vaidy S . Sunderam

Abstracf-Barrier synchronization is a commonly used primitive in
parallel processing. In this paper, we present different algorithms for
barrier synchronization on the widely prevalent multiaccess bus net-
work, and derive analytical performance metrics for each of the pro-
posed schemes, which are then compared against simulation results.

Index Terms-Distributed computing, parallel virtual machine
(PVM), barrier synchronization, multiaccess networks, performance
evaluation.

I. INTRODUCTION
Barrier synchronization is a well-known and frequently used

primitive in parallel processing. A barrier is a powerful mechanism
that permits synchronization among a large number of cooperating
processes in a parallel program, while being straightforward in
terms of programming primitive(s) as well as semantics. Infor-
mally, a barrier is a function that causes the invoking process in a
parallel program to be suspended until all other processes also
invoke the function, at which point all processes are allowed to
continue. The simplest form of barrier synchronization assumes a
fixed number of related processes in a parallel application that wish
to synchronize periodically; in such situations, barriers are pro-
vided as parameter-less function calls. However, variants that allow
a “quorum” of participants to satisfy the barrier, or those that
permit “named” barriers, also exist.

The barrier primitive originally evolved on shared-memory
multiprocessors, but are currently used widely on distributed-
memory multiprocessors also. Algorithms to implement barriers, as
well as studies of their performance have received substantial at-

Manuscript received July 9, 1993; revised Jan. 5 , 1995.
S.-Y. Cheung and V.S. Sunderam are with the Department of Mathematics

and Computer Science, Emory University, Atlanta, CA 30322; e-mail:
[cheung, vss] @mathcs.emory.edu.

IEEECS Log Number D95016.

1045-9219/95$04.00 0 1995 IEEE

mailto:mathcs.emory.edu

