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Short Notes 

Message Complexity of the 
Tree Quorum Algorithm 

Shyan-Ming Yuan and Her-Kun Chang 

Abstract-The tree quorum algorithm (TQA) uses a tree structure to 
generate intersecting (tree) quorums for distributed mutual exclusion. 
This paper analyzes the number of messages required to acquire a quo- 
rum in TQA. Let i be the depth of the complete binary tree used in TQA, 
and let Mi be the number of messages required to acquire a quorum or to 
determine that no quorum is accessible. We discuss Mi as a function of i 
and p, where p ( + <  p < l )  is the probability that each site is opera- 
tional. Let Ci denote the average number of sites in the quorum that 
TQA finds. The analysis shows that, although both Mi and Ci increase 
without bound as i increases, Mi/Ci  approaches to 9 as i increases. 

According to the result, an approximate close form for Mi is derived. 

Index Terms-Distributed mutual exclusion, tree quorum algorithm, 
quorum size, message complexity. 

I. INTRODUCTION 
A distributed system consists of a set of sites which are loosely 

coupled by a computer network. One advantage of distributed sys- 
tems is resource sharing. That is the resources in a distributed system 
can be shared among the sites in the system. Examples of sharable 
resources are memory, peripheral, CPU, clock, etc. The sites in a 
distributed system may issue requests to a shared resource at arbitrary 
times. When two or more sites try to access the same resource at the 
same time, a conflict occurs. A mechanism is required to synchronize 
conflicting requests so that at most one site is allowed to access the 
resource at a time. This problem is known as distributed mutual ex- 
clusion [I], [2], [3], [4], [SI. A survey of various algorithms for mu- 
tual exclusion can be found in [4] and a simple taxonomy for dis- 
tributed mutual exclusion algorithms was reported in [5]. 

A central controller can be used to control mutually exclusive ac- 
cesses to a shared resource. All requests for the resource are sent to 
the controller and scheduled by the controller. Using a central con- 
troller is simple and easy to implement. However, the controller is 
vulnerable to site failure. When the controller fails, no access to the 
resource is allowed, i.e., the entire system is halted. It is desirable to 
reduce the probability that the system is halted by using more than 
one site to participate in the decision making. For example, majority 
consensus [6] can be used to achieve mutual exclusion wherein a site 
is allowed to access the resource if i t  can get permissions from a ma- 
jority of sites. 

Quorum consensus is a generalization of majority consensus. Let 
U be the set of sites in a system. A quorum Q is a subset of U and 
each access is allowed to perform if it can get permissions from all 
sites in  a quorum. To synchronize the accesses in a mutually exclu- 
sive way, the quorums must satisfy the following property: 

For each pair of quorums Q l  and Q2, Ql n Q2 # 0. 

Manuscript received Mar. 2, 1994; revised July 15, 1994. 
S.-M. Yuan and H.-K. Chang are with the Department of Computer and In- 

formation Science, National Chiao Tung University, 1001 Ta Hsueh Road, 
Hsinchu 30050, Taiwan; e-mal smyuan@cis.nctu.edu.tw. 

IEEECS Log Number D95031. 

Mutual exclusion is ensured by requiring the accesses to get per- 
missions from intersecting quorums. Since the quorums intersect with 
each other, it is impossible that two accesses can get permissions 
from two quorums at the same time. 

The communication cost of a quorum consensus algorithm can be 
measured by the following metrics: 

message complexity-expected number of messages that the al- 
gorithm uses to acquire a quorum or to determine no quorum is 
accessible. 
quorum size-expected number of sites in the quorum that the 
algorithm finds. 

So far as we know, the communication cost of each quorum 
consensus algorithm proposed in the literature is estimated by the 
quorum size. The quorum size in majority consensus is [?I. The 

tree quorum algorithm (TQA) uses a tree structure to generate tree 
quorums [I]. The size of the tree quorums varies from log N to 

In general, the communication cost can be measured by message 
complexity more precisely than by quorum size. It was assumed in 
[ I ]  that the number of messages required to construct a quorum is 
directly proportional to the size of the quorums. That is (in terms of 
this paper) message complexity is proportional to quorum size. The 
assumption motivates us to study the relationship between message 
complexity and quorum size. Let Mi be the message complexity of an 
i level (complete binary) tree, and let C, be the quorum size of the i 
level tree. We discuss M i  as a function of i and p, where 
p (4 < p < 1) is the probability that each site is operational. To verify 

the assumption, an asymptotic analysis of the ratio of message com- 
plexity to quorum size, R, = M,/Ci ,  is presented. The analysis shows 
that, although both Mi and C, increase without bound as i increases, 
M i / C i  approaches to ? as i increases. 

Although both Mi and Ci can be computed by recurrence equa- 
tions, Ci has a close form but Mi has no close form. An important 
implication of the analytic result is: 

As i increases, Mi/Ci =+ and Mi =?C,. That is, an approxi- 

mate close form for Mi can be derived. 
The remainder of the paper is organized as follows. Section I1 

briefly reviews TQA. In Section 111, message complexity of TQA is 
analyzed and an asymptotic analysis of the ratio of message com- 
plexity to quorum size is presented. Some concluding remarks are 
given in the final section. 

[+I. 

11. TREE QUORUM ALGORITHM 
The model in the analysis is described as follows. The sites are as- 

sumed to be fully connected by perfect links. When a request is sent 
to a site, a reply is sent if the site is operational. If the site has failed, 
no reply is sent. 

The TQA uses a tree structure to generate (tree) quorums. The 
analysis in  this paper consider only complete binary trees. For a bi- 
nary tree, a tree quorum (recursively) consists of 

1 )  the root and a tree quorum of the left or right subtree, or 
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2 )  a tree quorum of the left subtree and a tree quorum of the right 

It was shown in [ I ]  that there is a nonnull intersection between each 
pair of (tree) quorums. Thus mutual exclusion is ensured by requiring 
that each access to get permissions from any quorum of sites. 

The sites are either operational or failed. The state of a site 
(operational or failed) is independent to the others. The probability 
that a site is operational, is referred to as the availability of the site. 
The availability of a tree is the probability that a quorum can be ac- 
quired from the tree. 

subtree. 

The analysis uses the following notations 

p : availability of a single site, 1/2 < p < 1 ,  
Ai : availability of an i level tree, i 2 0, 
Ci : quorum size of an i level tree, i 2 0, 
Mi : message complexity of an i level tree, i 2 0, 
Ri : Mi/Ci ,  i 2 0 .  

The availability of a tree is the probability that a quorum can be ac- 
quired from the tree. Thus the availability of a binary tree is the prob- 
ability that 

1) the root is operational and a tree quorum of the left or right 

2 )  the root is failed, a tree quorum of the left subtree is available 
subtree is available, or 

and a tree quorum of the right subtree is available. 

Formally, A. = p and Ai, 1 5 i I k ,  is given as 

for all i 2 1 .  If p = 1, Ai = 1 ,  for all i 2 0. So the analysis considers 
only the case that 3 < p < 1. 

The quorum size of a 0 level tree (i.e., a tree consists of only 
one site) is 1 ,  i.e., CO = 1. Consider constructing a tree quorum at 
level i, i 2 I .  If the root is operational and thus can be included in 
the quorum, the quorum size is I + Ci-,; otherwise, the  quorum size 
is 2Ci_l .  Thus, for i 2 1 ,  Ci can be computed by the following re- 
currence: 

ci = p(l + CiJ + (1 - p)2C,-, 
( 2 )  

= (2  - P)C,-I + p 

111. ANALYSIS OF TQA 

In this section, message complexity of TQA is analyzed. An as- 
ymptotic analysis of the ratio of message complexity to quorum size, 
Ri, is presented. It is shown that R; converges to 9 as i increases. 

A. Message Complexity 
The recursive definition of the tree quorums in the previous sec- 

tion also implies a quorum construction algorithm. That is, if the root 
is operational, then the construction algorithm tries to construct a 
(tree) quorum from left or right subtree; otherwise, it must construct 
quorums from both left and right subtrees. In other words, the quo- 
rum construction algorithm first visits the root and then traverses the 
left and/or right subtrees (in some specified order or randomly). 

First consider constructing a tree quorum from a 0 level tree, (i.e., 
a tree consists onlv one site). 

1) If the site is operational, two messages are transmitted-one re- 

2 )  Otherwise, only one message is sent-no reply. 
quest and one reply. 

Thus, 
M , = 2 p + ( l - p )  

= 1 + p  (3) 

Consider constructing an i level tree quorum, i 2 1.  Without loss of 
generality, we assume that the quorum construction algorithm tries 
to acquire a quorum (recursively) by the order: root, left subtree 
and right subtree. If the root is operational, two messages are 
transmitted; otherwise, only one message is sent. Thus, in average, 
1 + p messages are sent. The messages required to traverse the 
subtrees are described below: 

1) if the root is operational and a quorum of the left subtree is 
available-only messages for traversing the left subtree are sent, 
i.e., Mi-] messages are needed; 

2 )  if the root is failed and no quorum of the left subtree is avail- 
able-since it is impossible to acquire a quorum, only messages 
for traversing the left subtree are sent, i.e., Mi-] messages are 
needed; 

3) otherwise-messages are required to traverse both left and right 
subtrees, Le., 2 messages are required. 

Formally, for i 2 I ,  

Mi = (1  + p) 

B. Asymptotic Analysis of Ri 

LEMMA 1.  (Lemma 2 of [ 7 ] )  If0 < axi < 1,for all i ,  rhen 

(1+ax,)(1 + a x , ) . . . ( l + a x n ) < e u ~ r '  

LEMMA 2. (Lemma 3 of [ 7 ] )  For TQA, 9 < p < 1, Ai has thefollowing 

properties: 

1) I - A ; s ( ~  - p ) ( ~  + p - 2 p 2 ) ' , f o r a l l i t ~ .  

2 )  (1 - A i ) + ( l  - A i + l ) + . . . + ( l  +A,+,) <-(I +p-2p2) l , f o r  

all i, m 2 0. 

LEMMA 3. (Lemma 4 of [ 7 ] )  For TQA, Ci has thefollowing prop- 
erties: 

LEMMA 4. For TQA, i 2 0, 

Ri2  1 + p  

PROOF. The proof is shown in the appendix. 

LEMMA 5. For TQA, 3 < p < 1 ,  



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8. AUGUST 1995 889 

By Lemma 4, R;-l 2 1 + p ,  we obtain 

According to Lemma 5 

(2p - 1)(1 - A j )  1-p2 a;+, < (1 + p)e  p ( 2 - p )  + - 
(2-P)  Ci+l 

Therefore, 

IRj+,,, - Ril= 16i+,,, + 6i+,,,-l+...+6;+ll 
& 2p-1 (1 + p )  e P ( 2 - P ) ( ( 1 - ~ i ) + . . . + ( i - ~ i + ,  _,)) <- 

(2 - P) 

c , + l  c,+, 
According to Lemma 2 and Lemma 3 

4 
1 - P  (1 + p -  2p2y 

2p-1  

(2 - P) 
l ~ ~ + ~  - ~ ~ l <  -(I + p)e  A - P )  - 

P(2P - 1) 
+(I- p 2 ) ? L -  1 

1 - p  (2-p)'+l 

where 

x = 1 + p - 2 p 2  
b = l + p  

1 y = -  
2 - P  

0 

LEMMA 6. If 5 < p < 1, IR,+, - RII < ax' +by' ,  for all i 5 0, m 5 1, 
THEOREM 1. ~ f +  < p c 1, 

lim Ri = - 1 + P  where 
I+- D 

x = 1 + p - 2p2 
b = l + p  

y = -  1 

2 - P  

PROOF. Let = Ri+l - R;, then 

(1 + p + A; - 2pA;)M; + (1 + p )  M; 6.  = -- 
c; 1+1 

(2 - PIC' + P 

- Ci 
(2p-1)(1-Aj)Mj + ( l + p ) - p %  

+ P 
By Lemma 4, Ri = Mi/Cj 2 1 + p ,  we obtain 

(2p-1)(1-Aj)Mj (1-p2)  +- 
(2 - P)Ci Ci+l 

U 

PROOF. Let a ,  x, b and y be defined as in Lemma 6. Since p > 5, 
x = ( l  + p - 2 p 2 ) <  1 and y = & < l .  For any E > 0, there is a 

positive integer N such that 

If i > Nand m t 1, then 

U?;+,,, - Ril <ax'+ byi<  a$/+ b y <  E 

Thus, the sequence ( R i )  is convergent. 
Let 1imi+ R; = Iimj+- Ri-l = y , that is, 

C. Discussion 
Giving p ,  the probability that each site is operational, both Mi and 

Ci increase without bound as i increases. According to Lemma 3, Ci, 
i t 0, has a close form: 
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(5) 

On the other hand, Mi has no close form, though Mi can also be com- 
puted by recurrence relations. Using the analytic result in the previ- 
ous subsection, an approximate close form for Mi can be derived as 
follows. As i increases, Mi/Cj  approaches to y and thus Mi can be 

approximated by y C;. From (3, we obtain 

((2 - PI’ - P ) ( l +  P )  
M. .= (6) 

PO - P )  

IV. CONCLUSION 
The communication cost can be measured by message complexity 

more precisely than by quorum size. So far as we know, quorum size 
is used to measure the communication cost of each quorum consen- 
sus proposed in the literature. It was assumed that message complex- 
ity is directly proportional to quorum size [l]. 

The assumption motivates us to study the relationship between mes- 
sage complexity and quorum size. To verify the assumption, an asymp- 
totic analysis of the ratio of message complexity to quorum size is pre- 
sented. It is shown that the ratio converges to y, where p is the prob- 

ability that each site is operational. The result implies two things: 

1) Giving p ,  the probability that each site is operational, the mes- 
sage complexity is proportional to the quorum size, if the tree is 
sufficiently large. 

2) Since the quorum size can be evaluated by a close form, an ap- 
proximate close form for the message complexity can be derived. 

APPENDIX 

PROOF OF LEMMA 4. 
The proof is shown by induction. 

1) Induction base: Ro = Mi&, = 1 + p .  
2) Induction hypothesis: Rj-l  = M,-l/Ci-l 2 1 + p ,  i.e., 

3) Induction step: From (2) and (4), we have, for i 2 1, 
Mi-, 2 ( 1 + p)C;-, , i 2 1. 

0 
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Performance of Barrier Synchronization 
Methods in a Multiaccess Network 

Shun Yan Cheung and Vaidy S .  Sunderam 

Abstracf-Barrier synchronization is a commonly used primitive in 
parallel processing. In this paper, we present different algorithms for 
barrier synchronization on the widely prevalent multiaccess bus net- 
work, and derive analytical performance metrics for each of the pro- 
posed schemes, which are then compared against simulation results. 

Index Terms-Distributed computing, parallel virtual machine 
(PVM), barrier synchronization, multiaccess networks, performance 
evaluation. 

I. INTRODUCTION 
Barrier synchronization is a well-known and frequently used 

primitive in parallel processing. A barrier is a powerful mechanism 
that permits synchronization among a large number of cooperating 
processes in a parallel program, while being straightforward in 
terms of programming primitive(s) as well as semantics. Infor- 
mally, a barrier is a function that causes the invoking process in a 
parallel program to be suspended until all other processes also 
invoke the function, at which point all processes are allowed to 
continue. The simplest form of barrier synchronization assumes a 
fixed number of related processes in a parallel application that wish 
to synchronize periodically; in such situations, barriers are pro- 
vided as parameter-less function calls. However, variants that allow 
a “quorum” of participants to satisfy the barrier, or those that 
permit “named” barriers, also exist. 

The barrier primitive originally evolved on shared-memory 
multiprocessors, but are currently used widely on distributed- 
memory multiprocessors also. Algorithms to implement barriers, as 
well as studies of their performance have received substantial at- 
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