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STATISTICAL VALIDATION METHODS: APPLICATION TO
UNIT HYDROGRAPHS

By Bing Zhao,' Associate Member, ASCE, Yeou-Koung Tung,? Member, ASCE,
Keh-Chia Yeh,* Associate Member, ASCE, and Jinn-Chuang Yang,* Member, ASCE

ABSTRACT: In hydraulic and hydrologic studies, engineers develop new models or calibrate existing models
by various techniques. One is often concerned with the model validity regarding its ability to predict future
events. Five potentially useful statistical validation methods are presented. For illustration, they were applied
to examine the predictability of unit hydrographs derived by various methods in the framework of the least
squares and its variations. It was found that storm-stacking (conventional multistorm analysis) together with
storm-scaling yields the most desirable UH. The general framework of these validation methods can also be
applied to a validation study of other hydrologic and hydraulic models.

INTRODUCTION

Developing a model consists of derivation of a model, val-
idation of the derived model, and maintenance of the vali-
dated model. Validation is an important task in the process
of developing a model. By validation, one evaluates how well
the derived model can predict future events. If the derived
model performs well in a validation test, then the model will
be useful in prediction. Otherwise, the model is of limited
use and its predictions are unreliable.

Model validation can be performed in several ways. One
easy approach is to collect new data. However, this approach
implies two things: (1) additional costs; and (2) possible post-
ponement of the decision making affected by the model re-
sults. Hence, collection of new data for model-validation pur-
poses could be impractical for some real-life problems.

Alternatively, data splitting could be a viable approach.
The idea is to divide the observed data set into two subsets,
namely, the estimation subset and the validation subset. The
estimation subset is used to estimate the model parameters
or coefficients. Then, the validation set is used to imitate
future random observations to validate the estimated model
coefficients. Validation by data splitting is sometimes found
in hydrologic studies. The most commonly used practice is to
split data into two halves.

In data splitting, how to split the data is an important issue.
In the context of the regression model, Snee (1977) gave an
excellent description of the DUPLEX algorithm, developed
by R. W. Kennard, which finds the estimation subset and the
validation subset on the basis of the Euclidean distance be-
tween the standardized and orthonormalized observed data
points. Bruen and Dooge (1992) applied the DUPLEX al-
gorithm to evaluate a derived UH. Another approach to data
splitting regarding the linear regression model was discussed
by several authors (Picard and Cook 1984; Picard and Berk
1990). Since these two data splitting methods are only ap-
plicable in the context of a regression model, it is necessary
to have a general method for data splitting. The cross-vali-
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dation technique could be considered as a general method
(Allen 1971; Stone 1980; Geisser 1975; McCarthy 1976).

A more general method for model validation uses the
bootstrap technique (Efron 1977, 1982). The validation by
bootstrap has significant appeal when theories like the or-
dinary least squares is intractable and when it is difficult or
impractical to collect additional data for validation. Halfon
(1989) used the bootstrap technique in model validation with-
out performing more experiments on fish toxicity. Efron (1983)
presented an excellent discussion on the basis of the predic-
tion and on estimating the prediction error using the observed
data points. In his paper, several model validation methods
including the leave-one-out cross-validation, the bootstrap
validation methods (ordinary, randomized, and double boot-
strap), the jackknife validation, and the 0.632-estimator val-
idation were discussed.

The unit hydrograph (UH) proposed by Sherman (1932)
is defined as a direct runoff hydrograph (DRH) resulting from
one unit of effective rainfall (ER) distributed uniformly over
a watershed for a specified duration. In UH theory, the wa-
tershed is considered as a system with effective rainfall hy-
etograph (ERH) being the input, DRH being the output, and
UH being the kernel function. If the watershed is assumed
to be a linear and time-invariant system, one can derive a
convolution relationship between the input and output with
UH being the transformation function.

Since the derived UH is most likely to be used to predict
DRH when effective rainfall data are available, it is important
to investigate how well the derived UH can predict the DRH.
After the derived UH is evaluated through proper validation
procedures and found to have a good predictability of DRH,
engineers will have more confidence in using the derived UH
to predict the design runoff discharge for designing and eval-
uating hydrosystems.

In this paper, five statistical validation methods are pre-
sented and applied to examine the predictive capability of
UHs derived from various methods. The validation methods
considered herein are (1) the leave-one-out cross-validation
(1CV); (2) the leave-half-out cross-validation with replica-
tions (HCV); (3) the ordinary bootstrap validation (BV); and
(4) the 0.632-estimator validation (0.632) methods. In addi-
tion, a new validation method, called the bootstrap-leave-
half-out validation method (HBV), is proposed herein. All
five validation methods were applied to examine the pre-
dictability of UHs derived from 15 methods that are the com-
binations of the unconstrained ordinary least squares (OLS)
and two types of unconstrained ridge least squares (RLS),
together with the multistorm UH and the averaged single-
storm UHs. A brief description of the OLS and RLS methods
applied to multistorm UH determination is given in Appendix
1. The RLS method essentially adds a positive number called
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ridge parameter k to the diagonal of the design matrix in (13).
The first type of unconstrained RLS method is to find the
ridge parameter by minimizing the mean-squared-error (MSE)
of the UH, and the second type is to find the ridge parameter
by minimizing the MSE of the DRH (Zhao 1992).

For the multistorm analysis, storm-scaling and no-storm-
scaling were used along with storm-stacking and storm-com-
bining with time alignment at the origin (Zhao 1992). Storm-
stacking is the conventional multistorm analysis (Mays and
Coles 1980). Storm-combining is to directly add the DRH
ordinates and ERH ordinates of all selected storms, respec-
tively. Storm-scaling is to scale all selected storms so that all
storms have the same amount of total effective rainfall depth
of one unit with the intent to eliminate the dominant effect
of larger storms over smatler storms in UH determination
(see Appendix I). Even when an engineer is interested in
“large storms” for the design, the scaling may still be useful
because the storm magnitude, small or large, is only relative
and one may have several ‘““large” storms whose magnitudes
are not identical.

With 15 methods for UH determination, comparisons were
made for the predictability of the resulting UHs from (1)
multistorm analysis versus the averaged UHs from single-
storm analysis; (2) OLS versus RLS with minimization of the
MSE of UH; (3) OLS versus RLS with minimization of the
MSE of DRH; (4) two types of RLS methods; (5) storm-
scaling versus no-storm-scaling; and (6) storm-stacking versus
storm-combining.

The premise for the five validation methods presented in
the next section is that the observed storms are considered
to be statistically independent random samples. It is generally
difficult to theoretically verify statistical independence among
different storm events. However, storm independence can be
intuitively justified if the selected rainfall-runoff events are
not produced by the same storm system. For practical pur-
poses, as long as the time occurrence of the select storm events
is sufficiently large, the storm dependence assumption is gen-
erally justifiable.

METHODS OF VALIDATION

The presented statistical validation methods (excluding the
leave-one-out cross-validation) are based on resampling, by
which the population is approximated by resampling the ob-
served storm sample for a large number of times. In doing
0, the problem that the number of selected storms is small
can be alleviated.

Leave-One-Out Cross-Validation (1CV)

Suppose there are R observed storms. The 1CV method is
to leave out one storm from R storms at a time, then derive
a UH based on the remaining R — 1 storms. Further, use
the derived UH to predict the excluded storm. The value of
the RMSE for predicting the DRH of the excluded storm is
then calculated. After the leave-one-out is carried for each
of the R storms, the R values of the RMSE are averaged.
Then, the averaged RMSE is used for comparing the predic-
tive performance of the UHs from different methods. The
algorithm of the 1CV method can be outlined as follows:

. Consider R storm events, S = (S5, S,, . . ., Sg).

. Letr = 1.

. Leave out storm event S, from the original data set S.

- Use the selected method to determine a UH called UH,,,
based on the remaining R — 1 storms, that is, (5,, S,
S S, Sk)-

5. Use the derived UH,,, along with the effective rainfall

data of the excluded storm event S, to predict the DRH

FGR VIR NS R

of that storm event. Then, the corresponding RMSE,,,
value is calculated as

qr‘n)2

= 1

RMSE,,, N, ¢))]

in which g,,, = the nth observed DRH ordinate of the
removed storm event S,; and §,,, = the corresponding

predicted DRH ordinate.

6. Repeat steps (3)-(5) forr = r + 1tillr = R.

7. Compute the average of R RMSEs as the prediction
error

R
> RMSE,,

RMSE,, = = R 2

Leave-Half-Out Cross-Validation (HCV)

Consider that the number of storms R is even. The HCV
is to randomly split the storm sample into halves. The UH
derived from storms in the first half, using a selected method,
is used to predict the DRHs in the second half of the storms.
For each storm in the second half, one value of the RMSE
can be computed. Then, the mean of R/2 values of the RMSE
over the second half of the storms is calculated. Let B denote
a large integer number. This procedure is repeated B times
producing B values of the mean RMSE. Finally, the average
value of the B mean RMSE:s is calculated and serves as the
prediction error. The algorithm of the HCV method can be
outlined as follows:

1. Consider R storm events, S = (5, S,, . . . , Sg), where
R 1s an even number.

2. Letb = 1.

3. Randomly select R/2 storms without replacement from

S to obtain the first half of the storms, S, = (S,;, S,
..., 8, k) The remaining storms are the second half
of the storms, S, = (8,1, S22, .+ . » S5 k02)-

4. Use the selected method under consideration to deter-
mine a UH called UH,,,,, based on storms in set §,.

S. Use the derived UH,,, to predict the DRH of each storm
event in set S,. Then, calculate the corresponding
RMSE,,, r = 1,2,. .., R/2, for each storm in set S,
according to (1).

6. Average R/2 values of RMSE over the storms in set S,
by

RI2
> RMSE,,
r=1
RMSE, = R 3)

7. Repeat steps (3)—(6) with b = b + 1till b = B.

8. Compute the mean of the B RMSEs as the prediction
error

B
> RMSE,,,
RMSE; ¢y = LIB— (4)

Bootstrap Half Validation (HBV)

Suppose that S = (S,, S,,. . . , Sg)isthe observed random
sample from an unknown distribution. Let F be the empirical
probability distribution putting mass 1/R on each storm

E: mass 1/R on Siv 8 oL 8k
in which £ implies that each storm is equally sampled. Then,
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R/2 storms are randomly selected, with replacement, from S
to constitute the first storm set S, for the purpose of deriving
a UH. Then, a second storm set S, containing R/2 storms are
randomly selected, with replacement, from S for prediction
purpose. As can be seen, the establishment of the second
data set for prediction by this method is different from that
of the HCV method. The difference is “without™ or “with”
replacement sampling.

The UH determined from §, is used to predict the DRH
of each storm in S,. For each storm in 8,, the value of RMSE
can be found. Then, the mean of R/2 RMSE values over the
storms in S, is calculated. This procedure is repeated B times.
Then, the average of the B RMSE means is calculated and
used as the prediction error. The advantage of the HBV over
HCV is that one can do the validation analysis when the
number of storms is small. The algorithm of the HBV method
can be outlined as follows:

1. Consider R storm events, 8 = (S5,, S,, . . . , Sg), where
R is an even number.

2. Letb = 1.

3. Randomly select R/2 storms with replacement from S

to obtain the first set of the storms, S, = (§,,. S,
R Sl.R/Z)'

4. Randomly select R/2 storms with replacement from S
to obtain the second set of the storms, S, = (S,,, S22,
vty SZ.R[2)‘

5. Use the selected method to determine a UH, UH,,,,
based on S,.

6. Use the derived UH,,, to predict the DRH of each storm
event in S,, then calculate the corresponding RMSE,,,
value for each storm in 8, according to (1).

7. Average R/2 values of the RMSE over the storms in set
S, according to (3).

8. Repeat steps (3)-(7) with b = b + 1till b = B.

9. Compute the mean of the B RMSEs as the prediction
error

B
> RMSE,),

RMSE, gy = b= B (5)

Bootstrap Validation (BV)

Suppose that 8 = (§,, S;, . . . , Sg) are the observed ran-
dom samples from an unknown distribution. Let F be the
empirical probability distribution placing probability mass 1/
R on each storm.

The BV procedure is composed of two steps. The first step
is to use all original R storms in S to derive a UH. Then, use
the derived UH to predict the DRHs of these R storms. For
each storm in S, the value of the RMSE is calculated.: Thus,
the mean of the R values of the RMSE can be calculated,
yielding RMSE,,.

The second step is to randomly select R storms from §,
with replacement, to construct a random storm sample, called
the bootstrap random sample, denoted by $* = (87, 5%,. . .,
S%). This second step is repeated B times, yielding B boot-
strapped random storm samples S% = (S},, St.. ...,
Stp),b=1,2,...,B.

The UH, denoted by UH%, is derived based on 8%, b =
1,2, ..., B. Then, the derived UH? is used to predict the
DRHs of the storms in the original sample S from which the
value of RMSE,, can be calculated, b = 1,2, ..., Band
r=1,2,..., R. For the bth bootstrapped random storm
sample, the mean value of RMSE denoted by RMSE,, over
R storms is calculated. Then, the mean of B RMSE,, is com-
puted. Also, for each bootstrap random sample 87, one can
find the proportion
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ts for {S§* =
pro = counts o;e{ ; S} ©)

wherej = 1,2,...,R;r=1,2,...,R;and b = 1, 2,
. ., B. The final prediction error of bootstrap validation is

B Op*"
RMSE, 5, = RMSE, + -5 (7
b=1
where
&5 (1
op*r = 2, (E - P,*”) "RMSE, ®)
r=1

The algorithm of the BV method can be outlined as follows:

—

Consider R storm events, S = (5, S,, . . ., Sg).

2. Derive a UH based on S using a selected method.
Then, use the derived UH to regenerate the DRHs of
the storms in S to compute the RMSE for each storm
in 8. Average the R values of RMSE in S to yield
RMSE,.

3. Letb = 1.

4. Randomly select R storms with replacement from S to
obtain the bootstrap random sample S}, = (8., Si2,
oL ShR)

5. For the bootstrap sample 8%, compute the proportion
based on (5).

6. Use the selected method to determine a UH, UH?,
based on the storms in bootstrap sample S7,.

7. Use the derived UH? to predict the DRH of each storm
event in the original random sample S, then calculate
the corresponding RMSE,,, according to (1).

8. Average the R values of RMSE,, for each bth boot-

strap sample,r = 1,2, ..., R

R
> RMSE,,
=1
RMSE, = “=———
9. Repeat steps (3)—-(7) withb = b + 1tillb = B.
10. The final prediction error of the bootstrap validation
can be computed by (8)-(9).

9

0.632-Estimation Validation (0.632BV)

The 0.632BV method was proposed by Efron (1983). As
in the bootstrap validation method, B bootstrap random sam-
ples are obtained. Also, the quantity P;* is calculated. The
derived UH? is used to predict the storms in S for which
P*=0,b=1,2,...,Bandr = 1,2, ..., R. Then,
average the values of the RMSE to get RMSE,. Therefore,
the final prediction error by the 0.632BV method is

RMSE, 1.5y = 0.368RMSE,, + 0.632RMSE, (10)

The algorithm of the 0.632BV method can be outlined as
follows:

1. Consider R storm events, S = (S, S5, . . ., Sk).

2. Derive a UH using a selected method based on the storm
in S. Then use the derived UH to regenerate the DRHs
of the storms in S to compute the RMSE for each storm
in S. Average the R values of RMSE in § to yield RMSE,,

3. Leth = 1.

4. Randomly select R storms, with replacement, from S to
obtain the bootstrap random sample, S% = (S%,. Si 2.
ce L ShR)

5. For each bootstrap random sample 8%, compute the
proportion based on (6).
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6. Use the selected method to determine a UH, UH%,
based on the storms in bootstrap sample S%,.

7. Repeat steps (3)—(6) withb = b + 1till b = B.

8. Use the derived UH’, to predict the DRH of each storm
event in the original storm sample S for P}* = 0, b =
1,2,...,Bandr = 1,2, ..., R, then calculate the
corresponding RMSEs according to (1). Average these
RMSE: to yield RMSE,.

9. The final prediction error for the 0.632BV method is
computed according to (10).

APPLICATION AND DISCUSSIONS

Storms from three watersheds were used: one watershed
is from Bree’s paper (1978) with 20 storms and two others
(Lan-Yang watershed and Tong-Tou watershed) are in Tai-
wan, with 10 and nine storms, respectively. The 20 storms in
Bree's paper (1978) occurred in 1958 (five storms in winter),
1959 (nine storms in winter) and 1960 (three storms in winter
and three storms in summer) in the Nenagh River at the
catchment upstream of Clarianna with an area of 295 km?.
The time between observations of rainfall and discharge was
chosen as large as possible to minimize the amount of data
to be handled, and also to reduce the degree of collinearity
in the rainfall series (Bree 1978). The peak discharges of DRH
for these 20 storms vary from 9.44 m?s to 41.6 m%/s.

The drainage areas for Lan-Yang watershed and Tong-Tou
watershed in Taiwan are 820.69 km? and 259.2 km?, respec-
tively. The 19 storms selected in the analysis are from typhoon
events occurred in summer season. The 10 storms for Lan-
Yang watershed occurred from 1980 to 1987, and the nine
storms for Tong-Tou watershed occurred from 1970 to 1981.
The peak discharges of DRH for Lan-Yang and Tong-Tou
vary from 1,163 to 2,929 m*s and 955 to 3,149 m%s, respec-
tively.

For the purpose of reducing the amount of computation,
the adopted UH duration was 3 h. All five validation methods
were applied to evaluate the UHs derived from 15 methods
that are unconstrained OLS and two types of unconstrained
RLS, together with multistorm analysis and single-storm anal-
ysis. The first type of RLS, called RLS/UH herein, is to find
the ridge parameter that minimizes the MSE of the UH. The
second type, called RLS/DR, is to find the ridge parameter
that minimizes the MSE of the DRH. For multistorm analysis,
storm-scaling and no-storm-scaling were used along with storm-
stacking and storm-combining with time alignment at the origins
of the DRH.

The comparison is based on the prediction error criterion,
which should be consistent with the objective function or the
prediction rule. Because the least-squares method and its var-
iations were used to derive the UH, the mean of the RMSE
is adopted as the prediction error for comparison. it should
be noted that if the determination of model performance was
based on another prediction rule, the validation methods could
also be applied by comparing the prediction error related to
the prediction rule. Sometimes, hydrologists are interested
in comparing how the UHs by different methods can predict
the peak discharge of the DRH. This type of comparison can
only serve as a reference because the error of peak discharge
is not the objective function to be minimized by least-squares
methods. Although assigning higher weight to the error in
peak discharge yields a UH that can regenerate a more ac-
curate peak of DRH, there is no guarantee that this UH will
predict a more accurate peak of DRH for other storms, be-
cause regeneration and prediction are different (Zhao and
Tung 1994). If the hydrologists are more interested in pre-
dicting the peak of DRH, a different method, one that directly
minimizes peak discharge error, should be used. Herein, the
prediction rule used in UH validation evaluation is the RMSE,

which is consistent with the various LS methods used in this
study.

Efron (1983) discussed the validation problems in a general
context and suggested that B = 200 would give accurate
estimation of the prediction error. Resulis of validation study
are presented in Tables 1-3, each corresponding to a wa-
tershed. A general look of Tables 1-3 indicates that the pre-
diction errors for Taiwan’s two watersheds are much larger
than those for Bree’s watershed. This may be because the
runoff magnitudes for storms in the two Taiwan watersheds
are much larger than those from Bree’s.

Multistorm UH versus Averaged Single-Storm UH

If the OLS is used, one can observe that, from Tables 1—-
3, the averaged RMSE for DRHs based on the averaged
single-storm UHs, in most cases, is larger than that for the
UH from the storm-stacking. However, in most cases, it is
smaller than that for the UH from the storm-combining with
time-origin alignment.

The same observation can be made for RLS/UH and RLS/
DR as that for the OLS. Accordingly, the predictability of
the averaged single-storm UHs is less desirable than that of
the storm-stacking, but more desirable than that of the storm-
combining with time alignment at the origin. Storm-combin-
ing is inferior mainly because it is essentially a single-storm
procedure.

OLS versus RLS/UH and OLS versus RLS/DR

For UHs from the storm-stacking and from the single-storm
averaging, RLS/UH is not better than the OLS. For the storm-
stacking with scaling, the predictability of RLS/UH is even
worse. It can also be observed that, when using the storm-
combining procedure, the averaged RMSE for DRHs for the
RLS/UH, in most cases, is smaller than that for the OLS. It
appears that RLS/UH is effective only when the two-norm
condition number of the ERH matrix is large. This is the case
for the storm-combining. If the two-norm condition number
is small (i.e., the storm-stacking with the storm-scaling), the
RLS/UH procedure does not have advantage over the OLS
method to derive a UH.

For a given watershed, by using the storm-stacking with
scaling, there is no significant difference in the averaged RMSE
values between the OLS and RLS/DR procedures. For the
storm-stacking without storm-scaling, the predictability of the
RLS/DR was found better than the OLS in most cases. Also,
the RLS/DR is better than the OLS using the storm-combin-
ing with time-origin alignment in most cases. By using single-
storm averaging, there is no significant difference between
the OLS and RLS/DR. Observations from Tables 1-3 indi-
cate that the RLS/DR procedure is useful only when the two-
norm condition number is large when the storm-combining
is used. Otherwise, it is not necessary to use the RLS/DR.

RLS/UH versus RLS/DR

Using the storm-stacking with scaling, the predictability of
the resulting UH by the RLS/DR is better than that of the
RLS/UH in most cases. For the storm-stacking without scal-
ing, in more than half of the cases considered, the RLS/DR
is better than the RLS/UH. For the storm-combining with
storm-scaling, the RLS/DR is better than the RLS/UH for
11 cases out of 15. Using the storm-combining without storm-
scaling one cannot draw a clear conclusion with regard to the
superiority of predictability of the RLS/UH and RLS/DR.
For the single-storm averaging, the RLS/DR performs better
than the RLS/UH in most cases.
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TABLE 1. Averaged RMSE Associated with UHs from Different Methods by Five Validation Techniques for Watershed in Bree (1978)

Validation Method
1CV HCV HBV BV 0.6328v
(1) (2) (3) (4) (5) (6) @
OLS S/S 2.1731e + 00 2.2340e + 00 ' 2.1891e + 00 2.0647e + 00 2.1720e + 00
OLS S/N 2.2643e + 00 2.3457e¢ + 00 2.2469¢ + 00 2.1041e + 00 2.2608¢ + 00
OLS C/S 2.1963¢ + 00 2.3554¢ + 00 2.2651e + 00 2.0852¢ + 00 2.1878¢ + 00
OLS C/N 2.2982¢ + 00 2.4137e¢ + 00 2.4139 + 00 2.1616e + 00 2.3098¢ + 00
OLS AVG, 2.2580e + 00 2.3834e + 00 2.3661e + 00 2.148% + 00 2.2915¢ + 00
RLS/UH S/S 2.2027e + 00 2.2079¢ + 00 2.2405¢ + 00 2.1013e + 00 2.2142e + 00
RLS/UH S/N 2.2695¢ + 00 2.3175¢ + 00 2.2911e + 00 2.1255¢ + 00 2.2759% + 00
RLS/UH C/S 2.1881¢ + 00 2.3004e + 00 2.2263e¢ + 00 2.0788¢ + 00 2.2170e + 00
RLS/UH C/N 2.2850e + 00 2.3914e + 00 2.3357¢ + 00 2.1512e + 00 2.2632¢ + 00
RLS/UH AVG. 2.2254¢ + 00 2.2900e + 00 2.3355¢ + 00 2.1237e + 00 2.2157e + 00
RLS/DR S/S 2.1770e + 00 2.2557e + 00 2.1299¢ + 00 2.0709e + 00 2.1605e + 00
RLS/DR S/N 2.2578¢ + 00 2.3225¢ + 00 2.2407¢ + 00 2.1033e + 00 2.2003e + 00
RLS/DR C/S 2.1893¢ + 00 2.2853¢ + 0 2.2866e + 00 2.0795¢ + 00 2.1773e + 00
RLS/DR C/N 2.2873¢ + 00 2.3641e + 00 2.3812¢e + 00 2.1523¢ + 00 2.2931e + 00
RLS/DR AVG. 2.2175¢ + 00 2.2996¢ + 00 2.1987e + 00 2.1143e + 00 2.2328e + 00

Note: S/S = storm-stacking with storm-scaling; S/N = storm-stacking without storm-scaling (or no-storm-scaling); C/S = storm-combining with
storm-scaling; C/N = storm-combining without storm-scaling (or no-storm-scaling); and AVG. = averaged single-storm UH.

TABLE 2. Averaged RMSE Associated with UHs from Different Methods by Five Validation Techniques for Lan-Yang Watershed in Taiwan

Validation Method

1CV HCV HBV BV 0.632BV
m @ (3) () ) (6) @)
OLS S/S 1.7504¢ + 02 1.8417¢ + 02 1.7598e + 02 1.6132¢ + 02 1.7377e + 2
OLS S/IN 1.7823¢ + 02 1.8643¢ + 02 1.7982¢ + 02 1.6226e + 02 1.7993¢ + 02
OLS C/S 2.0315¢ + 02 2.4003e + 02 2.339%¢ + 02 1.9463e + 02 2.1836e + 02
OLS C/N 2.4085¢ + 02 2.5452¢ + 02 2.3922¢ + 02 2.1242¢ + 02 2.3875¢ + 02
OLS AVG. 1.78094 + 02 1.8826e + 02 1.8138¢ + 02 1.6275¢ + 02 1.7568¢ + 02
RLS/UH S/S 1.7710e + 02 1.8571e + 02 1.7945¢ + 02 1.6379¢ + 02 1.8067¢ + 02
RLS/UH S/N 1.7805¢ + 02 1.8683¢ + 02 1.78%0e + 02 1.6231e + 02 1.785te + 02
RLS/UH C/s 1.9144e + 02 2.1751e + 02 2.0017e + 02 1.7375¢ + 02 1.9777¢ + 02
RLS/UH C/N 2.0501e + 02 2.2645¢ + 02 2.1225¢ + 02 1.8163¢ + 02 2.1192¢ + 02
RLS/UH AVG. 1.7977¢ + 02 1.8691e + 02 1.8292e + 02 1.6630e + 02 1.7998e + 02
RLS/DR S/S 1.7585¢ + 02 1.8064e + 02 1.7083¢ + 02 1.6253¢ + 02 1.7223e + 02
RLS/DR S/IN 1.7738¢ + 02 1.8702¢ + 02 1.7777e + 02 1.6200e + 02 1.7409¢ + 02
RLS/DR C/s 1.9129¢ + 02 2.1115e + 02 2.077% + 02 1.7346e + 02 1.9653e + 02
RLS/DR CIN 2.0234e + 02 2.2021e + 02 2.1311e + 02 1.8011e + 02 2.0991e + 02
RLS/DR AVG. 1.7834¢ + 02 1.8877¢ + 02 1.8097e + 02 1.6486e + 02 1.7840e + 02

Note: $/S = storm-stacking with storm-scaling; S/N = storm-stacking without storm-scaling (or no-storm-scaling); C/S = storm-combining with
storm-scaling; C/N = storm-combining without storm-scaling (or no-storm-scaling); and AVG. = averaged single-storm UH.

TABLE 3. Averaged RMSE Associated with UHs from Different Methods by Five Validation Techniques for Tong-Tou Watershed in Taiwan

Validation Method
1CV HCV HBV BV 0.632BV
(1) (2) (3) (4) (5) (6) (7)
OLS S/S 1.2326e + 02 1.3013e + 02 1.2619¢ + 02 1.1440e + 02 1.2133¢ + 02
OLS S/N 1.3234e + 02 1.3829¢ + 02 1.2774¢ + 02 1.1514e + 02 1.2925¢ + 02
OLS C/S 1.67%¢ + 02 1.7864¢ + 02 1.7033¢ + 02 1.4054¢ + 02 1.6598e + 02
OLS C/N 1.6253¢ + 02 1.8701e + 02 1.7060¢ + 02 1.3447¢ + (2 1.6198¢ + 02
OLS AVG. 1.3273¢ + 02 1.4215¢ + 02 1.3689¢ + 02 1.2150e + 02 1.3364¢ + 02
RLS/UH S/S 1.2475¢ + 02 1.2887¢ + 02 1.2432¢ + 02 1.1681le + 02 1.2488¢ + 02
RLS/UH S/N 1.2899¢ + 02 1.3579¢ + 02 1.2963¢ + 02 1.1564e + 02 1.2566 + 02
RLS/UH C/S 1.7154¢ + 02 1.8286¢ + 02 1.6448¢ + 02 1.5428¢ + 02 1.7498¢ + 02
RLS/UH C/N 1.5663¢ + 02 1.7333¢ + 02 1.6818¢ + 02 1.3205¢ + 02 1.5398¢ + (02
RLS/UH AVG. 1.3617¢ + 02 1.4296¢ + 02 1.3959¢ + 02 1.2687¢ + 02 1.3629¢ + 02
RLS/DR S/S 1.2312¢ + 02 1.2832¢ + 02 1.2355¢ + 02 1.1480e + 02 1.2434e + 02
RLS/DR S/N 1.3008¢ + 02 1.3472¢ + 02 1.2305¢ + 02 1.1467¢ + 02 1.25%0e + 02
RLS/DR C/S 1.6527¢ + (02 1.7232¢ + 02 1.5893¢ + 02 1.4587¢ + 02 1.5936e + 02
RLS/DR C/N 1.5731e + 02 1.7474¢ + 02 1.6633¢ + 02 1.3205¢ + 02 1.5523¢ + 02
RLS/DR AVG. 1.3301e + 02 1.3676e + 02 1.3783¢ + 02 1.2334e¢ + 02 1.3316e + 02

Note: S/S = storm-stacking with storm-scaling; S/N = storm-stacking without storm-scaling (or no-storm-scaling): C/S = storm-combining with
storm-scaling; C/N = storm-combining without storm-scaling (or no-storm-scaling); and AVG. = averaged single-storm UH.
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Storm-Scaling versus No-Storm-Scaling

For the OLS, RLS/UH, and RLS/DR, the predictability
of the storm-scaling is better than that of no-storm-scaling in
most storm-stacking cases. In most cases for the Bree’s wa-
tershed and Lan-Yang watershed, the storm-scaling is better
than no-storm-scaling for the storm-combining as well. How-
ever, in the Tong-Tou watershed, there is no clear evidence
indicating the superiority of the storm-scaling over no-storm-
scaling for the storm-combining.

Storm-Stacking versus Storm-Combining

In most cases the storm-stacking results in better predict-
ability than does the storm-combining under both the storm-
scaling and no-storm-scaling conditions when the UH is de-
rived by the OLS, RLS/UH, and RLS/DR.

SUMMARY AND CONCLUSIONS

Five statistical validation methods were presented and ap-
plied to evaluate the predictability of UHs derived by 15
methods. A total of 39 storm events from three watersheds
were used in the analysis. The evaluation was based on the
prediction error represented by the averaged RMSE that is
consistent with the objective function of the adopted least-
squares methods. From the numerical results, one can con-
clude that, among the 15 methods, a UH obtained from the
storm-stacking with scaling in the framework of OLS and its
variations is the most desirable in predicting the future storm
events.

The estimation of an optimal UH, in essence, is an exercise
of parameter estimation or model calibration that is often
encountered in hydrologic and hydraulic engineering prac-
tices. The validation methods presented here can be applied
equally well to the calibration of other models in hydrologic
and hydraulic analyses. For example, if one adopted a par-
ticular method for model calibration, the validation methods
presented can be applied to assess the predictive error as-
sociated with the method. On the other hand, if one had
several methods for model calibration, the validation methods
can be applied to evaluate the predictability of the model
calibrated by the different methods.

When the available data are limited, methods such as leave-
half-out validation, bootstrap-half validation, bootstrap val-
idation, and 0.632 validation have significant appeal because
they are based on resampling procedure. By resampling, one
can “‘generate” a simulated population. Some words of cau-
tion should be said regarding the use of the validation meth-
ods in hydrologic and hydraulic applications. First, the re-
sampling procedures used in cross-validation are based on the
condition that data are statistically independent. This should
be checked or justified before the methods can be used. When
data are correlated, resampling techniques cannot be directly
applied. In such circumstances, appropriate transformations
can be made to break the correlation in the original data and
apply resampling techniques to the transformed uncorrelated
data. Second, one should check the consistency and homo-
geneity of hydrologic events selected for model calibration.
Consider the context of UH estimation as an example. Al-
though it is desirable to use as many independent storms as
possible, one should make sure that the selected storms occur
in a time period during which the hydrologic conditions in
the watershed are considered stationary.
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APPENDIX |. DETERMINATION OF UNIT
HYDROGRAPH BY LEAST SQUARE PROCEDURE AND
ITS VARIATIONS

In deriving a UH using multistorm analysis, one considers
solving the following equation involving R storms:

P, q,
Pu= [P ou={%]=q (11)
Py 4z

where P, and q, = the ERH matrix and DRH vector of the
rth storm, respectively; and u = the vector of UH ordinates
to be determined. This equation is for stacking individual
storms. Note that the number of ordinates of the unknown
UH u is suggested to be J = max{J,} where J, = N, — M,
+ 1 (Diskin and Boneh 1975; Bree 1978; Singh 1988) with
M,, N,, and J, being the number of ordinates for ERH, DRH,
and UH of the rth storm. Thus, before stacking the individual
equations, the DRHs for individual storms should be ad-
justed.

The multistorm UH by the unconstrained OLS method for
a watershed is

R -1 R
U, = (P'P) 'Plq = <2, P:P,> (2 P:q,) (12)

Using the ridge regression procedure, the multistorm UH can
be obtained as

R -1 R
u,,. = (PP + kI)-'Piq = (}_‘, PP, + kl) (2 P;,q,>
r=1 r=1
(13)

where k = a positive-valued number, & > 0, called the ridge
parameter. The ridge parameter & in (13) can be determined
based on two criteria: (1) minimization of the MSE of the
derived UH, MSE(i); and (2) minimization of the MSE of
predicted DRH, MSE(q). The MSE(@&) measures the ex-
pected Euclidean distance between the estimated UH(@) and
the true but unknown UH(u), whereas the MSE(q ) measures
the expected Euclidean distance between the estimated
DRH(§) and the true but unknown DRH(q). Mathemati-
cally, the two MSEs can be expressed as

MSE(8) = E[(& — u)(d — u)] (14)

MSE(@) = E[(4 — 9)(§ - q)] = E[(@ - wyP'P>i - w)]

(15)
Based on Hoerl and Kennard (1970, 1976) and Lee and

Campbell (1985), the MSE(i) and MSE({) can further be
expressed, respectively, as

4 e L k2
MSE(a) = 21 e ,21 TWEaE (16)

TN TN

AN j i J
MSE@) = 2, o+ ke T 2 O, + k) (17)

where N, (j = 1,2, ..., J) are the eigenvalues of P'P; ¢
can be estimated by ||q — Pu,,, ||?(N — J); @ = Hu,,, with
H being an eigenvector matrix of P'P. Appropriate numerical
optimization techniques can be applied to determine the val-
ues of ridge parameter that minimize MSE(i1) and MSE(§).
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respectively. The optimal ridge parameter then is used in (13)
to compute the corresponding UH.

Consider that in (11) some storms have DRH ordinates
that are significantly higher than those of other storms. In
this situation, the value of objective function (whichever is
adopted) containing deviations between the observed and
computed DRH ordinates is more sensitive to large storms
than smaller ones. Hence the resulting UH from minimizing
an error criterion is dominated by larger storms. This implies
that the inclusion of smaller storms is redundant and has little
or no contribution to the determination of the representative
UH in the watershed. Neglecting the system information em-
bodied in smaller stones could lead to a biased estimation of
the UH.

The scaling technique is used to take into account the effect
of storm magnitude in multistorm analysis by dividing the
ERH and DRH ordinates by the ER amount of the corre-
sponding storm. That is

- P,
= £ = 17 LRI )
B = g 2 R (18)
- q
= r=1,2,....R
a9 =7 p " (19)

where p, = §, = scaled (or standardized) ERH and DRH
for the rth storm, respectively. Through the scaling proce-
dure, (11) can be modified as

P, ‘:ll
Pu=|T]u=[%)=4q (20)
PR qR

The scaled q, can be viewed as the DRH resulting from a
total of one unit of ER. Hence, the scaled DRH has the same
dimension as the UH. Note that the original DRH is affected
by both the total amount of ER and its temporal distribution.
The scaling procedure removes the influence of ER amount
on the UH determination; leaving the temporal distribution
of ER with a total of one unit as the sole factor affecting the
shape of UH. Eqgs. (12) and (13) for the OLS and RLS pro-
cedures are also applicable to the scaled ERHs and DRHs
by simply replacing P by P and q by q.
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APPENDIX ll. NOTATION

The following symbols are used in this paper:

o]
[

= number of resampling;
H = eigenvector matrix of P'P;

J, = number of ordinates for UH of rth storm;
k = ridge parameter;
M, = number of ordinates for ERH of rth storm;
MSE(q) = mean squared error of DRH;
MSE(@) = mean squared error of UH;
N, = number of ordinates for DRH of rth storm;
P, = ERH matrix of rth storm;
p, = ERH vector of rth storm;
p, = scaled ERH vector for rth strom;
q, = DRH vector of rth storm;
q, = scaled DRH vector for rth storm;
S = random sample consisting of storms;
u, = vector of UH ordinates of rth storm; and
A, = eigenvalue of P'P.
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