
Contents lists available at ScienceDirect

Journal of Economic Dynamics & Control

Journal of Economic Dynamics & Control 34 (2010) 2288–2301
0165-18

doi:10.1

� Cor

Tel.: +8

E-m
1 Se

et al. (2
journal homepage: www.elsevier.com/locate/jedc
The economic value of volatility timing using a range-based
volatility model
Ray Yeutien Chou a,b,�, Nathan Liu c

a Institute of Economics, Academia Sinica, #128, Yen-Jio-Yuan Road, Sec 2, Nankang, Taipei, Taiwan
b Institute of Business Management, National Chiao Tung University, Taiwan
c Department of Finance, Feng Chia University, Taiwan
a r t i c l e i n f o

Available online 31 May 2010

JEL classification:

C5

C52

G11

Keywords:

Asset allocation

CARR

DCC

Economic value

Range

Volatility timing
89/$ - see front matter & 2010 Elsevier B.V. A

016/j.jedc.2010.05.010

responding author at: Institute of Economics,

86 2 27822791x321; fax: +886 2 27853946.

ail address: rchou@econ.sinica.edu.tw (R.Y. Ch

e for example, Garman and Klass (1980), Wi

002).
a b s t r a c t

There is growing interest in utilizing the range data of asset prices to study the role of

volatility in financial markets. In this paper, a new range-based volatility model was

used to examine the economic value of volatility timing in a mean–variance framework.

We compared its performance with a return-based dynamic volatility model in both

in-sample and out-of-sample volatility timing strategies. For a risk-averse investor, it

was shown that the predictable ability captured by the dynamic volatility models is

economically significant, and that a range-based volatility model performs better than a

return-based one.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there has been considerable interest in volatility. The extensive development of volatility modeling has
been motivated by related applications in risk management, portfolio allocation, assets pricing and futures hedging. In
discussions of econometric methodologies for estimating the volatility of individual assets, ARCH and GARCH have been
emphasized most. Various applications in finance and economics are provided as a review in Bollerslev et al. (1992, 1994),
and Engle (2004).

Several studies have noted that range data based on the difference of high and low prices in a fixed interval can offer a
sharper estimate of volatility than the return data. Range data are available for most financial assets and intuitively have
more information than return data for estimating volatility. They utilize the two pieces of information (high and low)
comparing with the return data that use only the close to close price. Parkinson (1980) showed that it reduced the variance
of the volatility estimator by five times comparing with the traditional return-based volatility estimator. Furthermore,
range is an unbiased estimator of the standard deviation. There are quite a few extensions of Parkinson’s original results.1

More recently, Brandt and Jones (2006), Chou (2005, 2006), and Martens and van Dijk (2007). In particular, Chou (2005)
proposed a conditional autoregressive range (CARR) model which can easily capture the dynamic volatility structure, and
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provides sharper volatility forecasts comparing with the return-based GARCH model. The CARR model is a conditional
mean model and it is easily to incorporate other explanatory variables.

However, the literature above just focuses on the volatility forecast of a univariate asset. It should be noted that there
have been some attempts to establish a relationship between multiple assets, such as VECH (see Bollerslev et al., 1988),
BEKK (see Engle and Kroner, 1995) and a constant conditional correlation model (CCC) (see Bollerslev, 1990), among
others. VECH and BEKK allow time-varying covariance processes which are too flexible to estimate, and CCC with a
constant correlation is too restrictive to apply to general applications. Seminal work on solving the puzzle was carried out
by Engle (2002a). A dynamic conditional correlation2 (DCC) model proposed by Engle (2002a) provides another viewpoint
to this problem. The estimation of DCC can be divided into two stages. The first step is to estimate univariate GARCH, and
the second is to utilize the transformed standardized residuals to estimate time-varying correlations (see Engle and
Sheppard, 2001; Cappiello et al., 2006).

A new multivariate volatility, recently proposed by Chou et al. (2009), combines the range data of asset prices with the
framework of DCC, namely range-based DCC.3 The range-based DCC model is flexible and easy to be estimated through the
two-step estimation. It also has the relative efficiency of the range data over the return data in estimating volatility.
Through the statistical measures RMSE and MAE, based on four benchmarks of implied and realized covariance,4 they
concluded that the range-based DCC model performs better than other return-based models (MA100, EWMA, CCC, return-
based DCC, and diagonal BEKK).

Asset allocation efficiency is closely linked to the predictions of asset returns and volatilities. West et al. (1993) was
the first to focus on this insight and devise a way to use the utility function to derive the economic value of
dynamic volatility models. The economic intuition is simple. A more accurate volatility prediction will render the
investors a way to adaptively adjust their portfolio positions to achieve a higher utility level. Hence investors will be
willing to pay a fee to switch from a fund manager with poor volatility prediction skill (or model) to another
manager offering better volatility predictions. The maximum of such a switching fee is a measure of the difference of
economic values of the two competing volatility models. The above described strategy of adjusting portfolio
weights according to the prediction of volatility changes is called ‘‘volatility timing’’. This is different from the other
type of ‘‘market timing’’ technique in which the portfolios are adjusted following the prediction of changes in expected
returns. Market timing is usually not an effective tool given that an efficiency market implied the returns are
unpredictable.

Following West et al. (1993), some studies have concentrated on whether some newly devised volatility models
have sufficiently high economic values (see Busse, 1999; Fleming et al., 2001, 2003; Marquering and Verbeek, 2004;
Thorp and Milunovich, 2007; Corte et al., 2009). The questions upon which we focused were two: first, whether the
range-based DCC model contains economic value comparing with a benchmark model using a static or buy-and-hold
strategy; and second, whether economic value of range-based volatility model still exists comparing with a return-based
DCC model.

In comparing the economic value of return-based and range-based models, it is helpful to use a suitable measure to
capture the trade-off between risk and return. Most literature evaluates volatility models through error statistics and
related applications but neglects the influence of asset expected returns. A more precise measurement should consider
both of them, but only a few such studies have been made at this point. However, a utility function can easily connect them
and build a comparable standard. Before entering into a detailed discussion for the economic value of volatility timing, it
was necessary to clarify its definition in this paper. In short, the economic value of volatility timing is the gain compared
with a static strategy. Our concern was to estimate the willingness of the investor with a mean variance utility to pay for a
new volatility model rather than a static one.

In light of the success of the range-based volatility model, the purpose of this paper was to examine its economic
value in volatility timing by using the conditional mean–variance framework developed by Fleming et al. (2001).
We considered an investor with different risk-averse levels using conditional volatility analysis to allocate three assets:
stocks, bonds and cash. Fleming et al. (2001) extended the utility criterion derived from West et al. (1993) to test
the economic value of volatility timing for short-horizon investors with different risk tolerance levels.5 In addition to the
short-horizon forecast of selected models, we also examined the economic value of longer horizon forecasts and
an asymmetric range-based volatility model in our empirical study. This study may lead to a better understanding of
range volatility.

The reminder is laid out as follows. Section 2 introduces the asset allocation methodology, economic value
measurement, and the return-based and the range-based DCC. Section 3 describes the properties of data used and
evaluates the performance of the different strategies. Finally, the conclusion is showed in Section 4.
2 See Tsay (2002) and Tse and Tsui (2002) for other related methods for estimating the time-varying correlations.
3 Fernandes et al. (2005) propose another kind of multivariate CARR model using the formula Cov(X,Y)= [Var(x+Y)�Var(X)�Var(Y)]/2. However, this

method can only apply to a bivariate case.
4 Daily data are used to build four proxies for weekly covariances, i.e. implied return-based DCC, implied range-based DCC, implied DBEKK, and

realized covariances.
5 They found that volatility-timing strategy based on one-step ahead estimates of the conditional covariance matrix (see Foster and Nelson, 1996)

significantly outperformed the unconditional efficient static portfolios.
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2. Methodologies

To carry out this study we used the framework of a minimum variance strategy, which was conductive to determine the
accuracy of the time-varying covariances. We wanted to find the optimal dynamic weights of the selected assets and the
implied economic value of a static strategy for a risk-adverse investor. Before applying the volatility timing strategies, we
needed to build a time-varying covariance matrix. The details of the methodology are as follows.
2.1. Optimal portfolio weights in a minimum variance framework

Initially, we considered a minimization problem for the portfolio variance subjected to a target return constraint. To
derive our strategy, we let Rt be the k�1 vector of spot returns at time t.6 Its conditional expected return lt and
conditional covariance matrix Rt were calculated by E½RtjOt�1� and E½ðRt�ltÞðRt�ltÞ

0
jOt�1�, respectively. Here, Ot was

assumed as the information set at time t. To minimize the portfolio volatility subject to a required target return mtarget, it
can be formulated as

min
wt

w0tStwt

s:t: w0tltþð1�w0t1ÞRf ¼ mtarget ð1Þ

where wt is a k�1 vector of portfolio weights for time t. Rf is the return for the risk-free asset. The optimal solution to the
quadratic form (1) is

wt ¼
ðmtarget�Rf ÞR

�1
t ðlt�Rf 1Þ

ðlt�Rf 1ÞR�1
t ðlt�Rf 1Þ

ð2Þ

Under the cost of carry model, we regarded the excess returns as the futures returns by applying regular no-arbitrage
arguments.7 It is clear that the covariance matrix Rt of the spot returns is the same as that of the excess returns. Eq. (2) can
be simply expressed as

wt ¼
mtargetR

�1
t lt

l0tR
�1
t lt

ð3Þ

where the vector lt and the matrix Rt are redefined in terms of futures. A bivariate case (k=3) of Eq. (3) can be written as

w1,t ¼
mtargetðm1,ts2

2,t�m2,ts12,tÞ

m2
1,ts2

2,tþm2
2,ts2

1,t�2m1,tm2,ts12,t

w2,t ¼
mtargetðm2,ts2

1,t�m1,ts12,tÞ

m2
1,ts2

2,tþm2
2,ts2

1,t�2m1,tm2,ts12,t
ð4Þ

where m1,t and m2,t are the futures returns of S&P 500 index (S&P 500) and 10-year Treasury bond (T-bond) in our empirical
study. In addition, futures contracts are easy to be traded and have lower transaction cost compared to spot contracts. The
above analysis pointed out that the optimal portfolio weights were time-varying. Here we assumed that the conditional
mean lt was constant.8 Therefore, the dynamics of weights only depend on the conditional covariance Rt . In this study, the
optimal strategy was obtained based on a minimum variance framework subject to a given return. The mean–variance
framework above is used to derive the optimal portfolio weights under different target returns. In the following section, we
want to build criterion9 to compare means and variances of the portfolios from the static and dynamic strategies. However,
it is not easy to decide the best strategy, especially for the investors with different risk aversions. In this study, we want to
apply the quadratic utility function to calculate economic value under some settings.
2.2. Economic value of volatility timing

Fleming et al. (2001) uses a generalization of the West et al. (1993) criterion which builds the relationship between a
mean–variance framework and a quadratic utility to capture the trade-off between risk and return for ranking the
6 Through out this paper, we have used blackened letters to denote vectors or matrices.
7 There are no costs for futures investment. This means the futures return equals the spot return minus the risk-free rate.
8 The changes in expected returns are not easy to detect. Merton (1980) points out that the volatility process is more predictable than the return

series.
9 The Sharpe ration is one of the candidates for comparison. However, it may underestimate the performance of dynamic strategies, see Marquering

and Verbeek (2004).
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performance of forecasting models. According to their work, the investor’s utility can be defined as

UðWtÞ ¼WtRp,t�
a �W2

t

2
R2

p,t ð5Þ

where Wt is the investor’s wealth at time t, a is his absolute risk aversion, and the portfolio return at period t is w0tRt .
For comparisons across portfolios, we assumed that the investor had a constant relative risk aversion10 (CRRA),

gt ¼ a �Wt=ð1�a �WtÞ ¼ g. This implies a �Wt is a constant. The CRRA setting means an investor’s loss tolerance increases in
proportion to the investor’s wealth. It implies that the expected utility is linearly related to wealth. With this assumption,
the average realized utility Uð�Þ can be used in estimating the expected utility with a given initial wealth W0.

Uð�Þ ¼W0

XT

t ¼ 1

Rp,t�
g

2ð1þgÞR2
p,t

" #
ð6Þ

where W0 is the initial wealth.
Therefore, the value of volatility timing calculated by equating the average utilities for two alternative portfolios is

expressed as

XT

t ¼ 1

Rb,t�D
� �

�
g

2ð1þgÞ ðRb,t�DÞ2
� �

¼
XT

t ¼ 1

Ra,t�
g

2ð1þgÞR2
a,t

" #
ð7Þ

where D is the maximum expense that an investor would be willing to pay to switch from the strategy a to the strategy b.
Ra,t and Rb,t are the returns of the portfolios from the strategy a and b.11 If the expense D is a positive value, it means the
strategy b is more valuable than the strategy a. In our empirical study, we reported D as an annualized expense with three
risk aversion levels of g¼ 1,5, and 10.

2.3. Return-based and range-based DCC

We used the DCC model of Engle (2002a) to estimate the covariance matrix of multiple asset returns. It is a direct
extension of the CCC model of Bollerslev (1990). The covariance matrix Ht for a vector of k asset returns in DCC can be
written as

Ht ¼Dt �Ct �Dt ð8Þ

Ct ¼ diag Q�1=2
t �Q t � diag Q�1=2

t ð9Þ

where Dt is the k� k diagonal matrix of time-varying standard deviations from univariate GARCH models with
ffiffiffiffiffiffiffi
hi,t

p
for the

i-th return series on the i-th diagonal. Gt is a time-varying correlation matrix. The covariance matrix Qt=[qij,t] of the
standardized residual vector Zt ¼ ðz1,t ,z2,tÞ

0 is denoted as

Q t ¼ ð1�a�bÞQ þa � Zt�1Z0t�1þb � Q t�1 ð10Þ

where Q ¼ fqijg denotes the unconditional covariance matrix of Zt. The coefficients, a and b, are the estimated parameters
depicting the conditional correlation process. The dynamic correlation can be expressed as

r12,t ¼
ð1�a�bÞq12þa � z1,t�1z2,t�1þb � q12,t�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1�a�bÞq11þa � z2
1,t�1þb � q11,t�1�½ð1�a�bÞq22þa � z2

2,t�1þb � q22,t�1�

q ð11Þ

We estimated the DCC model with a two-stage estimation through quasi-maximum likelihood estimation (QMLE) to get
consistent parameter estimates. The log-likelihood function can expressed as L=LVol+LCorr, where LVol, the volatility
component, is �1

2

P
tðk logð2pÞþ logjDt j

2þr0tD
�2
t rtÞ, and LCorr, the correlation component, is �1

2

P
tðk logjRtjþZ0tR

�1
t Zt�Z0tZtÞ.

The explanation is more fully developed in Engle and Sheppard (2001) and Engle (2002a).
In addition to using GARCH to construct standardized residuals, we can also build them by other univariate volatility

models. In this paper, CARR was used as an alternative to verify whether the specification selected adequately suits DCC or not.
The CARR model is a special case of the multiplicative error model (MEM) of Engle (2002b). It can be expressed as

Ri,t ¼ li,t � ui,t , ui,tjIt�1 � expð1,�Þ, i¼ 1,2

li,t ¼oiþai �Ri,t�1þbi � li,t�1

zc
i,t ¼

ri,t

l�i,t
where l�i,t ¼ adji � li,t ,adji ¼

s i

l̂ i

ð12Þ
10 West et al. (1993), Fleming et al. (2001), and Corte et al. (2009) also applied CRRA to their studies.
11 In our setting, we let the strategy pair (a,b) be (OLS, return-based DCC), (OLS, range-based DCC) and (return-based DCC, range-based DCC),

respectively. Because the rolling sample method was adopted in the out-of-sample comparison, this type of OLS was named by rollover OLS.
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Fig. 1. S&P 500 index futures and T-bond futures weekly closing prices, returns and ranges, 1992–2006. These Panels A, B and C shows the weekly close

prices, returns, and ranges of S&P 500 index futures and 10-year treasury bond (T-bond) futures over the sample period.

Table 1
Summary statistics for weekly S&P 500 and T-bond futures return and range data, 1992–2006.

S&P 500 futures T-bond futures

Return Range Return Range

Mean 0.158 3.134 0.016 1.306

Median 0.224 2.607 0.033 1.194

Maximum 8.124 13.556 2.462 4.552

Minimum �12.395 0.690 �4.050 0.301

Std. dev. 2.112 1.809 0.855 0.560

Skewness �0.503 1.756 �0.498 1.390

Kurtosis 6.455 7.232 4.217 6.462

Jarque–Bera 421.317 985.454 80.441 642.367

(0.000) (0.000) (0.000) (0.000)

The table provides summary statistics for the weekly return and range data on S&P 500 stock index futures and T-bond futures. The returns and

ranges were computed by 100� logðpclose
t =popen

t Þ and 100� logðphigh
t =plow

t Þ, respectively. The Jarque–Bera statistic is used to test the null of whether

the return and range data are normally distributed. The values presented in parentheses are p-values. The annualized values of means (standard

deviation) for S&P 500 and T-bond futures were 8.210 (15.232) and 0.853 (6.168), respectively. The simple correlation between stock and bond returns

was �0.023. The sample period ranges from January 6, 1992 to December 29, 2006 (15 years, 782 observations) and all futures data were collected from

datastream.
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Table 2
Estimation results of return-based and range-based DCC model using weekly S&P500 and T-bond futures, 1992–2006.

S&P 500 futures T-bond futures

GARCH CARR GARCH CARR

Panel A: Volatilities estimation of GARCH and CARR models

c 0.188 0.008

(3.256) (0.242)

ô 0.019 0.103 0.028 0.075

(1.149) (2.923) (1.533) (2.810)

â 0.051 0.248 0.060 0.157

(3.698) (9.090) (2.031) (5.208)

b̂ 0.946 0.719 0.902 0.785

(71.236) (23.167) (18.645) (18.041)

Q(12) 26.322 5.647 15.872 23.121

(0.010) (0.933) (0.197) (0.027)

S&P 500 and T-bond

Return-based DCC Range-based DCC

Panel B: Correlation estimation of return- and range-based DCC models

â 0.037 0.043

(4.444) (4.679)

b̂ 0.955 0.951

(85.621) (80.411)

ri,t ¼ cþei,t ,hk,t ¼okþak � e2
k,t�1þbk � hk,t�1 ,ek,t jIt�1 �Nð0,hk,tÞ, Ri,t ¼ ui,t ,lk,t ¼okþak �Rk,t�1þbk � lk,t�1 ,Rk,t jIt�1 � expð1,�Þ,k¼ 1,2, Q t ¼ ð1�a�bÞQ þa �

Z0t�1Zt�1 þb � Q t�1, and then r12,t ¼ ð1�a�bÞq12þa � z1,t�1z2,t�1þb � q12,t�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1�a�bÞq11þa � z2

1,t�1þb � q11,t�1�½ð1�a�bÞq22þa � z2
2,t�1þb � q22,t�1�

q
where

Rt is the range variable, Zt is the standard residual vector which is standardized by GARCH or CARR volatilities. Qt={qij,t} and Q t ¼ fqij,tg are the

conditional and unconditional covariance matrix of Zt. The three formulas above are GARCH, CARR and the conditional correlation equations, respectively,

of the standard DCC model with mean reversion. The table presents estimations of the three models using the MLE method. Panel A is the first step of the

DCC model estimation. The estimation results of GARCH and CARR models for two futures were presented here. Q(12) is the Ljung-Box statistic for the

autocorrelation test with 12 lags. Panel B is the second step of the DCC model estimation. The values presented in parentheses are t-ratios for the model

coefficients and p-values for Q(12).
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where the range Ri,t is calculated by the difference between logarithm high and low prices of the i-th asset during a fixed
time interval t, and it is also a proxy of standard deviation. li,t and l̂ i are the conditional and unconditional means of the
range, respectively. ui,t is the residual which is assumed to follow the exponential distribution. s i is the unconditional
standard deviation for the return series. In considering different scales in quantity, the ratio adjt was used to adjust the
range to produce the standardized residuals.12
3. Empirical results

The empirical data employed in this paper consists of the stock index futures, bond futures and the risk-free rate. As to
the above-mentioned method, we applied the futures data to examine the economic value of volatility timing for return-
based and range-based DCC. Under the cost of the carry model, the results in this case can be extended to underlying spot
assets (see Fleming et al., 2001). In addition to avoiding the short sale constraints, this procedure reduces the complexity of
model setting. To address this issue, we used the S&P 500 futures (traded at CME) and the T-bond futures (traded at CBOT)
as the empirical samples. According to Chou et al. (2009), the futures data were taken from datastream, sampling from
January 6, 1992 to December 29, 2006 (15 years, 782 weekly observations). Datastream provided the nearest contract and
rolls over to the second nearby contract when the nearby contract approaches maturity. We also used the 3-month
Treasury bill rate to substitute for the risk-free rate. The Treasury bill rate is available from the Federal Reserve Board.

Fig. 1 shows the graphs for close prices (Panel A) returns (Panel B) and ranges (Panel C) of the S&P 500 and T-bond
futures over the sample period. Table 1 presents summary statistics for the return and range data on the S&P 500 and
T-bond futures. The return was computed as the difference of logarithm close prices on two continuous weeks. The range
was defined by the difference of the high and low prices in a logarithm type. The annualized mean and standard deviation
in percentage (8.210, 15.232) of the stock futures returns were both larger than those (0.853, 6.168) of the bond futures
12 Parkinson (1980) derived the adjustment ratio as a constant, 0.361, but an asset price was required to follow a geometric Brownian motion with

zero drift, which is not truly empirical.
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Fig. 2. In-sample volatility estimates for the GARCH and CARR model. Panel A: volatility estimates for the GARCH model and Panel B: volatility estimates

for the CARR model.
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returns. This fact indicated that the more volatile market may have a higher risk premium. Both futures returns have
negative skewness and excess kurtosis, indicating a violation of the normal distribution. The range mean (3.134) of the
stock futures prices was larger than that (1.306) of the bond futures prices. This is reasonable because the range is a proxy
of volatility. The Jarque–Bera statistic was used to test the null of whether the return and range data were normally
distributed. Both return and range data rejected the null hypothesis. The simple correlation between stock and bond
returns was small13 (�0.023), but this does not imply that their relationship was very weak. In our latter analysis, we
showed that the dynamic relationship of stocks and bonds will be more realistically revealed by the conditional
correlations analysis.
3.1. The in-sample comparison

To obtain an optimal portfolio, we used the dynamic volatility models to estimate the covariance matrices. The
parameters fitted for return-based and range-based DCC, were both estimated and arranged in Table 2. We divided the
13 The results are different from the positive correlation value (sample period 1983–1997) in Fleming et al. (2001). After 1997, the relationship

between S&P 500 and T-bond presented a reverse condition.
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table into two parts corresponding to the two steps in the DCC estimation. In Panel A of Table 2, one can use GARCH (fitted
by return) or CARR (fitted by range) with individual assets to obtain the standardized residuals. Fig. 2 provides the
volatility estimate of the S&P 500 futures and the T-bond futures based on GARCH and CARR. Then, these standardized
residuals series were brought into the second stage for dynamic conditional correlation estimating. Panel B of Table 2
presents the estimated parameters of DCC under the quasi-maximum likelihood estimation (QMLE).

The correlation and covariance estimates for return-based and range-based DCC are shown in Fig. 3. It seems that the
correlation became more negative at the end of 1997. This means that it is more desirable to diversify in this
period because the bond holding will help offset the volatility caused by the equity component in the portfolio. This
conjecture is confirmed in our latter analysis of the estimated portfolio weights. A deeper investigation is also given in
Connolly et al. (2005).

Following the model estimation, we constructed the static portfolio (built by OLS) using the unconditional mean and
covariance matrices to get the economic values of dynamic models. Under the minimum variance framework, the weights
of the portfolio were computed by the given expected return and the conditional covariance matrices estimated by return-
based and range-based DCC. Then, we compared the performance of the volatility models on 11 different target annualized
returns (5–15%, 1% in an interval).

Table 3 presents how the performance comparisons varied with the target returns and the risk aversions. Panel A of
Table 3 presents the annualized means ðmÞ and volatilities ðsÞ of the portfolios estimated from three methods, return-based
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Table 3
In-sample comparison of the volatility timing values in the minimum volatility strategy using different target returns, 1992–2006.

Target return (%) Return-based DCC Range-based DCC Rollover OLS

m s m s m s

Panel A: Means and volatilities of optimal portfolios

5 5.201 2.100 5.241 2.100 5.000 2.190

6 6.366 3.814 6.438 3.813 6.000 3.977

7 7.530 5.527 7.635 5.526 7.000 5.764

8 8.694 7.241 8.832 7.239 8.000 7.551

9 9.859 8.954 10.028 8.952 9.000 9.338

10 11.023 10.668 11.225 10.665 10.000 11.125

11 12.187 12.381 12.422 12.378 11.000 12.912

12 13.352 14.095 13.619 14.091 12.000 14.699

13 14.516 15.808 14.815 15.804 13.000 16.486

14 15.680 17.521 16.012 17.517 14.000 18.273

15 16.845 19.235 17.209 19.230 15.000 20.060

Target return (%) OLS to return DCC OLS to range DCC Return to range DCC

D1 D5 D10 D1 D5 D10 D1 D5 D10

Panel B: Switching fees with different relative risk aversions

5 0.303 0.376 0.393 0.343 0.417 0.434 0.040 0.041 0.041

6 0.703 0.950 1.008 0.777 1.025 1.084 0.074 0.076 0.076

7 1.244 1.771 1.897 1.353 1.883 2.009 0.109 0.112 0.112

8 1.929 2.845 3.063 2.073 2.994 3.213 0.144 0.149 0.151

9 2.761 4.173 4.507 2.940 4.360 4.696 0.180 0.189 0.191

10 3.739 5.753 6.224 3.956 5.979 6.453 0.217 0.230 0.233

11 4.866 7.578 8.206 5.121 7.846 8.477 0.255 0.273 0.277

12 6.142 9.641 10.441 6.434 9.951 10.754 0.294 0.318 0.324

13 7.565 11.932 12.914 7.897 12.283 13.270 0.334 0.365 0.373

14 9.135 14.436 15.609 9.507 14.831 16.009 0.375 0.414 0.424

15 10.851 17.142 18.509 11.262 17.580 18.952 0.418 0.466 0.479

The table reports the in-sample performance of the volatility timing strategies with different target returns. The target returns were from 5% to 15%

(annualized). The weights for the volatility timing strategies were obtained from the weekly estimates of the conditional covariance matrix and the

different target return setting. Panel A presents the annualized means ðmÞ and volatilities ðsÞ for each strategy. The estimated Sharpe ratios for the return-

based DCC model, the range-based DCC model, and the OLS strategy were 0.680, 0.699, and 0.560, respectively. Panel B presents the average switching

annualized fees ðDrÞ from one strategy to another. The values of the constant relative risk aversion g were 1, 5, and 10.
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DCC, range-based DCC and OLS. At a quick look, the annualized Sharpe ratios14 calculated from return-based DCC (0.680)
and range-based DCC (0.699) were higher than the static model (0.560). Panel B of Table 3 presents the average switching
fees ðDrÞ from one strategy to another. The value settings of CRRA g were 1, 5, and 10. As for the performance fees with
different relative risk aversions, in general, an investor with a higher risk aversion should be willing to pay more to switch
from the static portfolio to the dynamic ones. With higher target returns, the performance fees increased steadily. In
addition, Panel B of Table 3 also reports the performance fees for switching from return-based DCC to range-based DCC.
Positive values for all cases show that the range-based volatility model can give more significant economic value in
forecasting covariance matrices than return-based ones.

In the real practice, the transaction costs should be considered when the dynamic strategies are compared to the static
one. For S&P 500 futures, the bid/ask spread and round-trip commission totally cost about $0.10 index unit. The annualized
cost of a one-way transaction in our study can be calculated by 0.05/941.55 �52=0.28%, where 941.55 is an average index
level from 1992 to 2006. It means the advantage of the dynamic strategies will not be offset by the transaction costs. For
example, with a fixed target return 10%, the economic advantage is about 6% for an investor with relative risk aversion of 5.

Fig. 4 plots the weights of an in-sample minimum volatility portfolio derived from two dynamic models. OLS has
constant weights for cash, stocks, and bonds, i.e. �0.1934, 0.7079, and 0.4855.

It is interesting to observe the dynamic patterns of the portfolio weights implied by the two dynamic models. In
contrary to the OLS (buy-and-hold strategy), they have substantial fluctuations across the sample periods. The two
strategies (panel A for return-based DCC and panel B for range-based DCC) have roughly similar patterns in movements but
with noticeably quantitative differences. The stock portfolio weight is most stably fluctuating around o0:8 before 1997
after which it drops to a lower level of about 0.65 with larger variations. It is interesting to observe that the bond weights
have been negative or zero before 1997 and become positive after late 1997. The zero or negative weights are the result of
the booming equity market in the mid 90s hence it is desirable to invest mostly in the equity market. The mid-crash in the
14 The Sharpe ratio is constant with different target multipliers. For the further details, see Engle and Colacito (2006).
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late 1997 has caused an increase of volatility which would cause a drop in investor’s utility and hence should be hedged
away. As is seen in Fig. 3, this is a period when the correlation between stock and bond returns became negative. The
negative correlation in bond/equity return suggests an increase in the bond position would help to reduce the total
portfolio volatilities. The lower level and higher variations of stock weights since then is also a reflection of the fact that the
stock/bond correlations in the later periods are mostly negative but with wide swings. Finally, the cash position serves as a
residual in the portfolio since the three asset weights add up to one. The movements will be related to the term spread or
the term structure of interest rates and the bond volatility.

It is also useful to contrast the time-varying pattern of the bond position to the fixed weight suggested by OLS. The
latter suggest that roughly 48% should be invested in the bond market regardless of the movements in the volatility and
correlation structures. This is obviously too naive given our discussion above that volatilities and correlations of stock and
bond returns do vary over time. A buy-and-hold strategy will therefore yield a poor performance.
3.2. The out-of-sample comparisons

For robust inference, a similar approach was utilized to estimate the value of volatility timing in the out-of-sample
analysis. Here the rolling sample approach was adopted for all out-of-sample estimations. This meant that the rollover OLS
method replaced the conventional OLS method used in the in-sample analysis. Each forecasting value was estimated by
521 observations over about 10 years. Then, the rolling sample method provided 261 forecasting values for the one period
ahead comparison. The first forecasted value occurred the week of January 4, 2002.



Table 4
Out-of-sample comparison for the one period ahead volatility timing values in the minimum volatility strategy with different target returns, 1992–2006.

Target return (%) Return-based DCC Range-based DCC Rollover OLS

m s m s m s

Panel A: Means and volatilities of optimal portfolios

5 4.691 1.698 4.747 1.661 4.344 1.749

6 5.438 3.083 5.540 3.016 4.808 3.176

7 6.186 4.468 6.333 4.370 5.273 4.603

8 6.933 5.853 7.127 5.725 5.737 6.030

9 7.681 7.239 7.920 7.080 6.202 7.456

10 8.428 8.624 8.714 8.435 6.667 8.883

11 9.176 10.009 9.507 9.790 7.131 10.310

12 9.923 11.394 10.300 11.145 7.596 11.737

13 10.671 12.779 11.094 12.500 8.060 13.164

14 11.418 14.165 11.887 13.854 8.525 14.591

15 12.166 15.550 12.680 15.209 8.990 16.018

Target return (%) OLS to return DCC OLS to range DCC Return to range DCC

D1 D5 D10 D1 D5 D10 D1 D5 D10

Panel B: Switching fees with different relative risk aversions

5 0.393 0.425 0.433 0.481 0.537 0.550 0.089 0.112 0.118

6 0.781 0.890 0.916 0.991 1.176 1.220 0.210 0.289 0.308

7 1.232 1.463 1.518 1.606 1.998 2.090 0.377 0.545 0.585

8 1.746 2.144 2.239 2.328 3.001 3.159 0.589 0.882 0.953

9 2.323 2.935 3.079 3.156 4.185 4.425 0.848 1.303 1.413

10 2.963 3.834 4.039 4.092 5.545 5.881 1.154 1.810 1.967

11 3.667 4.842 5.116 5.133 7.077 7.522 1.509 2.402 2.617

12 4.435 5.956 6.309 6.280 8.774 9.338 1.913 3.083 3.363

13 5.267 7.174 7.614 7.531 10.629 11.321 2.366 3.851 4.206

14 6.162 8.495 9.029 8.885 12.634 13.460 2.869 4.707 5.146

15 7.121 9.914 10.548 10.340 14.781 15.746 3.422 5.651 6.181

The table reports the one period ahead out-of-sample performance of the volatility timing strategies with different target returns. There were 521

observations in each of the estimated models and the rolling sample approach provided 261 forecasting values for each out-of-sample comparison. The

first forecasted value occurred the week of January 4, 2002. The target returns were from 5% to 15% (annualized). The weights for the volatility timing

strategies were obtained from the weekly estimates of the one period ahead conditional covariance matrix and the different target return setting. Panel A

presents the annualized means ðmÞ and volatilities ðsÞ for each strategy. The estimated Sharpe ratios for the return-based DCC model, the range-based DCC

model, and the rollover OLS strategy were 0.540, 0.586, and 0.326, respectively. Panel B presents the average switching annualized fees ðDrÞ from one

strategy to another. The values of the constant relative risk aversion were 1, 5, and 10.
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Table 4 reports how the performance comparisons varied with the target returns and the risk aversions for one period ahead
out-of-sample forecast. We obtained a consistent conclusion with Table 3. The estimated Sharpe ratios calculated from
return-based DCC, range-based DCC and rollover OLS were 0.540, 0.586 and 0.326, respectively. The performance fees switching
from rollover OLS to DCC were all positive. In total, the out-of-sample comparison supported the former inference. Fig. 5 plots
the weights that minimize conditional volatility while setting the expected annualized return equal to 10%.

In addition to examining the performance of short-horizon investors, we further reported the results of the long-
horizon asset allocations. Table 5 reports one to 13 periods ahead of out-of-sample performance for three methods. Here
the rolling sample approach provided 249 forecasting values for each out-of-sample comparison. The portfolio weights for
all strategies were obtained from the weekly estimates of the out-of-sample conditional covariance matrices with a fixed
target return (10%). In general, the Sharpe ratios taken from range-based DCC were the largest, and return-based DCC were
the next. For each strategy, however, we could not find an obvious trend in the Sharpe ratios forecasting periods ahead. As
for the result of the performance fees, it seems reasonable to conclude that an investor would still be willing to pay to
switch from rollover OLS to DCC. Moreover, the economic value seems to indicate a decreasing trend for forecasting
periods ahead. For a longer forecasting horizon (12–13 weeks), however, the results of estimated switching fees were
mixed. Switching from return-based DCC to range-based DCC always remains positive.

Thorp and Milunovich (2007) show that a risk-averse investor holding selected international equity indices, with
g¼ 2,5, and 10, would pay little for symmetric to asymmetric forecasts. In some cases, the switching fees would even be
negative. In order to further understand this argument, we examined it based on the range-based volatility model. Chou
(2005) provides an asymmetric range model namely CARRX: lt ¼oþa � Rt�1þb � lt�1þf � rett�1. The lagged return in the
conditional range equation was used to capture the leverage effect. For building an asymmetric range-based volatility
model, CARR in the first step of range-based DCC can be replaced by CARRX. Cappiello et al. (2006) introduced asymmetric
DCC: Q t ¼ ð1�a�bÞQ�c � Nþa � Zt�1Z0t�1þb � Q t�1þc � nt�1n0t�1. nt is the k�1 vector calculated by IðZt o0Þ � Zt to allow
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correlation to increase more in both falling returns than in both rising returns, and N ¼ Eðntn0tÞ, where � denotes the
Hadamard matrix product operator, i.e. element-wise multiplication. Table 6 presents the one period ahead performance of
the volatility timing values for asymmetric range-based DCC compared with rollover OLS. The switching fees from rollover
OLS to asymmetric range DCC seem to be smaller than the fees from rollover OLS to symmetric range DCC in Table 4. One of
the reasons for this may be the poor performance of the bond data. In this case, it is not valuable to switch the symmetric
strategy to the asymmetric one.



Table 5
Out-of-sample comparison for one to 13 periods ahead volatility timing values in the minimum volatility strategy, 1992–2006.

Periods ahead Return-based DCC Range-based DC Rollover OLS

m s SR m s SR m s SR

Panel A: Means and volatilities of optimal portfolios

1 7.717 8.724 0.452 8.060 8.540 0.502 6.022 8.956 0.251

2 7.868 8.830 0.464 8.562 8.556 0.560 6.068 8.933 0.257

3 7.371 8.807 0.408 8.312 8.572 0.529 6.660 8.931 0.323

4 8.117 8.838 0.491 8.750 8.604 0.578 7.103 8.928 0.373

5 8.464 8.860 0.529 9.200 8.653 0.627 6.869 8.989 0.344

6 9.088 8.903 0.597 9.600 8.637 0.674 7.232 8.973 0.385

7 9.361 8.840 0.632 10.033 8.629 0.725 7.872 8.945 0.458

8 8.853 8.897 0.571 9.429 8.683 0.651 7.644 8.975 0.431

9 9.806 8.878 0.679 10.093 8.664 0.729 8.476 9.023 0.521

10 9.746 8.887 0.672 9.576 8.695 0.667 8.189 8.983 0.491

11 9.436 8.908 0.636 8.986 8.712 0.598 8.031 8.910 0.478

12 8.737 9.003 0.551 8.076 8.791 0.489 7.424 8.853 0.412

13 8.713 9.111 0.542 8.272 8.914 0.505 7.794 8.867 0.453

Panel B: Switching fees with different relative risk aversions

1 2.772 3.546 3.727 3.944 5.289 5.599 1.196 1.831 1.983

2 2.282 2.633 2.716 4.223 5.448 5.731 1.970 2.914 3.137

3 1.293 1.721 1.823 3.308 4.495 4.772 2.029 2.830 3.019

4 1.440 1.758 1.834 3.152 4.244 4.499 1.728 2.544 2.738

5 2.210 2.665 2.773 3.900 5.032 5.297 1.712 2.446 2.622

6 2.191 2.442 2.503 3.938 5.078 5.345 1.775 2.730 2.958

7 1.993 2.373 2.464 3.647 4.740 4.997 1.674 2.440 2.625

8 1.581 1.861 1.928 3.161 4.172 4.410 1.597 2.369 2.555

9 2.028 2.556 2.683 3.319 4.578 4.875 1.313 2.103 2.295

10 2.019 2.370 2.455 2.753 3.767 4.007 0.753 1.465 1.638

11 1.416 1.424 1.426 1.891 2.591 2.758 0.489 1.209 1.383

12 0.593 0.037 �0.100 0.945 1.164 1.217 0.358 1.128 1.313

13 �0.269 �1.202 �1.436 0.251 0.078 0.035 0.518 1.243 1.417

The table reports the one to 13 periods ahead out-of-sample performance of the volatility timing strategies with the fixed 10% (annualized) target return.

The weights for the volatility timing strategies were obtained from the weekly estimates of the one to 13 periods ahead conditional covariance matrix.

There were 521 observations in each of the estimated models and the rolling sample approach provided 249 forecasting values for each out-of-sample

comparison. The first forecasted mean value occurred the week of January 4, 2002. Panel A presents the annualized means ðmÞ, volatilities ðsÞ, and Sharpe

ratios (SR) for each strategy. Panel B presents the average switching annualized fees ðDrÞ from one strategy to another. The values of the constant relative

risk aversion were 1, 5, and 10.

Table 6
The one period ahead performance of the volatility timing values for the asymmetric range-based volatility model, 1992–2006.

Target return (%) Means and volatilities of optimal portfolios for asymmetric range-

based DCC

Switching fees from rollover OLS to asymmetric range-

based DCC

m s D1 D5 D10

5 4.643 1.666 0.373 0.425 0.438

6 5.352 3.025 0.787 0.962 1.003

7 6.060 4.384 1.301 1.670 1.757

8 6.769 5.744 1.915 2.550 2.699

9 7.478 7.103 2.630 3.601 3.827

10 8.187 8.462 3.445 4.818 5.136

11 8.895 9.821 4.361 6.199 6.621

12 9.604 11.180 5.377 7.738 8.274

13 10.313 12.540 6.491 9.428 10.087

14 11.022 13.899 7.703 11.262 12.050

15 11.730 15.258 9.011 13.232 14.155

The table reports the one period ahead out-of-sample performance of the volatility timing strategies for the asymmetric range-based volatility model

with different target returns. There were 521 observations in each of the estimated models and the rolling sample approach provided 261 forecasting

values for each out-of-sample comparison. The first forecasted value occurred the week of January 4, 2002. The target returns were from 5% to 15%

(annualized). The weights for the volatility timing strategies were obtained from the weekly estimates of the one period ahead conditional covariance

matrix and the different target return setting. The annualized means ðmÞ and volatilities ðsÞ of the optimal portfolio are presented here. Dr is the average

switching annualized fee from the rollover OLS model to the asymmetric range-based volatility model. The estimated Sharpe ratio for the asymmetric

range-based DCC model was 0.521. The values of the constant relative risk aversion were set as 1, 5, and 10.
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4. Conclusion

In this paper, we examined the economic value of volatility timing for the range-based volatility model in utilizing
range data which combines CARR with a DCC structure. Our analysis is carried out by utilizing S&P 500 and T-bond futures
in a mean–variance framework with a no-arbitrage setting. By means of the utility of a portfolio, the economic value of
dynamic models can be obtained by comparing it to OLS (a buy-and-hold strategy). Both the in-sample and out-of-sample
results show that a risk-averse investor should be willing to switch from OLS to DCC with substantial high switching fees.
Moreover, the switching fees from return-based DCC to range-based DCC were always positive. We concluded that the
range-based volatility model has more significant economic value than the return-based one. The results gave robust
inferences for supporting the range-based volatility model in forecasting volatility. Future studies can consider more
general type of utility functions and also include other asset classes such as commodity futures, REIT’s and VIX’s.
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