3D GOI CMOSFETs with Novel IrO₂(Hf) Dual Gates and High- κ Dielectric on **lP6M-0.18pm-CMOS**

D. S. Yu¹, Albert Chin^{2,*}, C. C. Laio¹, C. F. Lee¹, C. F. Cheng¹, W. J. Chen³, C. Zhu², M.-F. Li², W. J. Yoo², S. P. McAlister⁴, and D. L. Kwong³

¹ Nano Sci. Tech. Ctr., Dept. of Electronics Eng., Nat'l Chiao-Tung Univ., Univ. System of Taiwan, Hsinchu, Taiwan, ROC ² Silicon Nano Devices Lab., Dept. of Electrical and Computer Engineering, National University of Singapore *on leave from Nano Sci. Tech. Center, E.E. Dept., NCTU, UST, Hsinchu Taiwan, ROC (albert achin@hotmail.com) ³ Graduate Inst. of Materials Eng., National Pingtung University of Science and Technology, Pingtung, Taiwan

4National Research Council of Canada, Ottawa, Canada

 $⁵$ Dept. of Electrical & Computer Engineering, The Univ. of Texas, Austin, TX 78712, USA</sup>

Abstract

For the first time, we demonstrate 3D integration of self-aligned $IrO₂(Hf)/LaAlO₃/GOI$ CMOSFETs above 0.18 μ m Si CMOSFETs. At EOT=1.4nm, the novel IrO₂(Hf) dual gates (4.4 and **5.1** eV workfunction) on control 2D $LaAlO₃/Si$ devices have high electron and hole mobilities of 203 and 67 cm²/Vs. On the 3D structure the LaAlO₃/ GOI shows even higher 389 and $234 \text{ cm}^2/\text{Vs}$ mobilities, and process compatibility with current Si VLSI. The higher drive current, larger integration density, shorter interconnects distance, and simple process of 3D approach can help solve the AC power issue and **2D** scaling limitation.

Introduction

As down-scaling continues beyond the implementation of high-r gate dielectrics for VLSI ICs, the AC power consumption from the interconnect capacitance $(Cv^2f/2)$ becomes a major barrier [IEDM 2003 panel session]. This arises from increasing interconnect density and operational frequencies (f). Although wireless **or** optical interconnects are useful [I]-[2], they currently only apply to inter-chip connections. Another difficult challenge is that the scaling limits of CMOS (<10nm), from source-drain quantummechanical tunneling, are being approached [3]-[4]. In this paper, we propose and demonstrate a solution for the AC power consumption and also address the scaling limitation. by using a simple 3D integration. The 3D IC structure is similar to the logic and memory functions in the brain, which may provide an effective low cost solution to rapidly increasing cost of IC fabs as scaling down. However there are technological challenges to realize such 3D **ICs** within a low thermal budget and small impact on the lower-layer devices. Previously we have shown that **GO1** MOSFETs [5]-[6] meet the required low thermal budget of a 500° C RTA, show dislocation free for high yield and display high mobility. To achieve full 3D integration and a VLSIcompatible process, we fabricated self-aligned $IrO₂(Hf)$ dual-gate high-K **[7]-[9]** LaAI03/GOI CMOSFET on 1-Poly -6-Metal (lP6M) 0.18pm Si devices. No degradation of bottom 0.18µm devices was measured due to low RTA. The **Ir02** gate has high 5.1 eV workfunction and 4 orders of magnitude lower J_g than SiO₂ at 1.4 nm EOT, which can largely reduce the DC power consumption. The control 2D $110₂(Hf)/LaAlO₃$ CMOS on Si have high electron and 80% universal hole mobility comparable with the best metalgate/ $HfO₂$ CMOS [10]. The 3D GOI CMOS had even higher electron and hole mobilities than similar devices on 2D Si. The high max operation voltage ($|V_{max}|$) of 1.2 V for a 10 year lifetime at 85°C is comparable with or better than HfAlO **[Ill** and HfSiON [I21 devices. The higher 3D integration density and 2.2-2.4X better drive current in the GO1 transistors are equivalent to device scaling. Thus, the $3D$ metal-gate/high- κ /GOI/Si integration not only reduces the AC and DC power consumptions, but also equivalently extends CMOS scaling beyond 2D quantum-mechanical limit. The low cost process and equivalent scaling in 3D GO1 IC may be one of the potential solutions to the rapidly increasing fab cost as continuously scaling down.

Experimental Procedure

The self-aligned 3D GO1 CMOS was formed by PECVD $SiO₂$ deposition on both H⁺-implanted Ge and lP6M 0.18pm MOSFETs, **O2** plasma enhanced bonding, a smart-cut at 300°C, followed by 400°C annealing and slight polishing [3]-[4]. The high- κ LaAlO₃ was deposited from a κ =25.1 LaAlO₃ source. Then 150nm-IrO₂ or 150nm-IrO₂/ 15nm-Hf gate was formed on LaAlO₃ followed by self-aligned P^+ or B^+ source-drain implant for n- or p-MOSFET, respectively. The activation was done by 500°C or 950°C RTA for respective 3D GO1 or **2D Si** CMOSFETs.

Results and Discussion

(A) **30** *integration:*

Figs. 1-4 show the 3D structure, S-parameters, measured S₂₁ loss, and power loss of 3D interconnects. The total AC power consumed by 3D interconnect is the sum of each $Cv^2f/2$, $Li^2f/2$ and $i^2Rf/2$, which can be calculated from S-parameters rather than from complicated CLR distributed circuit. The integrating 1 or *2* layers of GO1 CMOS on Si ICs can reduce the interconnect distance, S_{2i} signal coupling **loss** and AC power consumption very effectively.

[Fig.](#page-2-0) **5** is the picture of 3D GO1 selectively formed on lP6M Si device. This is due to the thicker surface profile of \sim 2 μ m M6 in Fig. 6, and Figs. 7-8 are the X-TEM views of bottom 0.18 μ m MOSFET and top GOI. The I_d -V_d and I_d -V_g data for the lower Si MOSFETs (Figs. 9-10) show minor degradation even after a 500°C RTA for top GO1 CMOS.

(B) IrO₂(Hf)/LaAlO₃ on 3D GOI and control 2D Si CMOS:

Fig. 11 is the V_{fb} and EOT plot for IrO₂(Hf)/LaAlO₃ /Si devices after 550-950°C RTA. The IrO₂ gate has a high workfunction of **5.1** eV, close to Ir (5.2 eV), which is reduced to 4.4 eV by adding low workfunction 15nm-Hf on LaAlO₃. The small $|V_{\text{th}}|$ decrease with increasing RTA to 950°C suggests little Fermi-level pinning. Figs. 12-13 show the J_{ρ} -V_g of IrO₂(Hf)/LaAlO₃ CMOS on Si or GOI. The J_{ρ} is \sim 10X lower using IrO₂ than Ir that is most probably due to lower metal diffusion in more thermal-dynamic stable **Ir02** compared with pure metallic Ir. Figs. 14-15 are the C-V and identical C_{inv} and C_{acc} using $IrO₂$ or $IrO₂/Hf$ indicating no gate depletion in CMOS with EOT=I.4nm and -4 orders lower J_g than SiO₂. Figs. 16-19 show the I_d -V_d and I_d -V_g of IrO₂(Hf)/LaAlO₃ CMOS on Si or GOI. The I_d is a lot higher using GOI, and further increases for PMOS on (110) GOI. Small V_t of -0.25V is measured in the PMOS devices, reflecting high workfunction and little Fermi-level pinning. Figs. 20-21 show the mobility data. Good electron and hole mobility of 203 and 67cm²/Vs are measured in $IrO₂(Hf)/LaAlO₃/Si CMOS$, comparable with the best metal-gate/HfO₂/Si data [10]. The hole mobility, up *to* -0.8X universal mobility, may he due to the perfect match of both oxide gate and oxide high- κ , and excellent metal and O_2 diffusion barrier of $IrO₂$. The electron and hole mobility improved, for $IrO₂(Hf)/LaAlO₃$ on GOI over Si, by 1.8X and $3.5X$ - to 357 and 234 cm²/Vs. This values are close to universal electron mobility and **2.5X** higher than universal hole mobility at 1 MV/cm E_{eff}. Further improving mobility beyond GOI is possible by integrating low temperature processed III-Vs on 3D IC [13]-[14]. Figs. 22-24 are the NBTI and PBTI, which are comparable with or better than the metal-gate on HfAlO **[I** I] or HfSiON **[I21** devices. This may be due to the strong A10 in high- κ LaAlO₃ but much reduced κ in HfAlO or HfSiON for better BTI improvement than $HfO₂$ [12]. High 1.9 or 1.2 V $|V_{\text{max}}|$ at RT or 85^oC is obtained from extrapolated NBTI (50mV change) for IO years lifetime. The good 3D CMOS may also provide equivalent scaling extension after 2D CMOS approaches the quantum mechanics limit, in addition to the advantage of low AC power consumption.

Conclusions

We have shown for the first time 3D integrated metalgate/high- κ /GO1 CMOSFETs on 1P6M 0.18um Si devices. The larger I_d , higher 3D density, shorter interconnects and 4 orders lower J_g in 3D provide low cost solutions to AC and DC power consumptions and scaling limitation.

Acknowledgments

The authors at NCTU-UST would like to thank Director **S.** J. King of Microelectronic Ctr, EECS Dept., UC-Berkeley for the help. This work was supported in part by Air Force Office of Scientific Research (AFOSR) Nanoscience Initiative and Media Tek.

References

- 1. **K.** T. Chan, A. Chin, Y. **B.** Chen, Y.-D. Lin, D. T. *S.* Duh, and W. 1. Lin, "Integrated antennas on Si, proton-implanted Si and Si-on-Quartz," in IEDM Tech. *Dig..* 2001, pp. 903-906.
- 2. A. Chin, C. *S.* Liang, C. Y. Lin, C. C. Wu, and J. Liu, "Strong and efficient light emission in ITO/Al₂O₃ superlattice tunnel diode," in IEDMTech. Dig.,20OI,pp. 171-174.
- 3. N. Yasutake, K. Ohuchi, M. Fujiwara, K. Adachi, A. Hokarono, K. Kojima, N. Aoki, H. Suto, T. Watanabe, T. Morooka, H. Mizuno, S. Magoshi, **T.** Shimizu, *S.* Mori, H. Oguma, T. Sasaki, M. Ohmura, K. Miyano, H. Yamad4 H. Tomita, **D.** Matsushita, K. Muraoka, **S.** Inaba, M. Takayanagi, K. lshimaru and H. Ishiuchi, "A hp22 nm node low operating power (LOP) technology with sub-lo nm gate length planar bulk CMOS devices, in *Symp. on VLSI Tech.*, 2004, pp. 84-85.
- **4. B.** Doris, M. leong, T. Kanarsky, Y. Zhang, R. A. Roy, *0.* Dakumaci, Z. Ren, F. F. Jamin, L. Shi, W. Natzle, H. J. Huang, J. Mezzapelle, A. Mocuta, S. Wamack, M. Gribelpk, E. C. **Jones,** R. J. Miller, H.-S.P. **Wone.** and W. Haensch. "Extreme scaline with ultra-thin Si channel MOfFETs," in IEDM Tech. Dig., 2002, **pi** 267-270.
- *5.* C. H. Huang, M. Y. **Yang,** A. Chin, W. J. Chen, C. X. Zhu, **B.** 1. Cho, M.-F. Li, and D. L. Kwong, "Very low defects and high performance Ge-On-Insulator p-MOSFETs with Al₂O₃ gate dielectrics," in *Symp*.
- *6. on VLSI Tech. Dig.*, 2003, pp. 119-120.
C. H. Huang, D. S. Yu, A. Chin, W. J. Chen, C. X. Zhu, M.-F. Li, B. J. Cho, **and** D. L. Kwang, "Fully silicided Nisi **and** germanided NiGe dual gates on SiO₂/Si and Al₂O₃/Ge-on-insulator MOSFETs," in IEDM Tech. Dig., 2003, pp. 319-322.
- *7.* C. C. Liao, A. Chin, and C. Tsai, "Electrical characterization of Al₂O₁ on Si from MBE-grown AlAs and Al," 10^{th} *Int'l MBE Conference*, Cannes, France, Aug. 1998; *J. Cryslal* Growh, 2011202,652, 1999.
- 8. A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tssai, "Device and reliability of high-k Al₂O₃ gate dielectric with good mobility and low D_{it}," in Symp. on VLSI Tech.Dig., 1999, pp. 135-136.
- 9. **A.** Chin, Y. H. Wu, S. **B.** Chen, C. C. Liao, **W.** J. Chen, "High quality La₂O₃ and Al₂O₃ gate dielectrics with equivalent oxide thickness
- **IO.** 5-lOA: *inSymp. OM* VLSl Tech. Dig., 2000, pp. 16-17. **S.** Dam, G Dewey, M. Doczy, **B. S.** Doyle, **B.** Jin, J. Kavalieros,'R. Kotlyar, M. Metz, N. Zelick, and R. Chau, "High mobility Si/SiGe strained channel MOS transistors with HfO₂/TiN gate stack," in IEDM Tech. Dig., 2003, pp. 653-656.
- 11. S.J.Dah, H.-S. Jung,Y.-S. Kim, H.-J. Lim, 1. P. **Kim, J.** H. Lee, J.-H. Lee, N:I. Lee, H.-K. **Kan.** K.-P. Suh, **S.** G Park. S. **B.** Kane, G H. Choi, Y.-S. Chung, H.-S. Baikz, H.-S. Chang, M.-H. Cho, D.-W. Moon, H. B. Park, M. Cho, and C. S. Hwang, "Improvement of NBTI **and** electrical characteristics by **ozone** pre-treatment and PBTI issues in HfAIO(N) high-k gate dielectrics," in IEDM Tech. Dig., 2003, pp. 943-946.
- 12. A. Shanware, M. R. Wsakay, J. J. Chambers, A. L. **P.** Rotondaro, **3.** McPherson, and L. Colombo, "Characterization and comparison of the charge trapping in HfSiON and HfO₂ gate dielectrics," in IEDM Tech. Dig., 2003, pp. 938-942.
- 13. A. Chin, C. C. Liao, and C. Tsai, $\ln_{0.52}Al_{0.48}As/InAs/In_xAl_{1-x}As$ pseudomorphic HEMT's on InP," IEEE Electron Device Lett. 18, pp. 157-159, 1997.
- 14 A. Chin, and **T.** Y. Chang, "Achievement of exceptionally high mobilities in modulation doped **Ga,,ln,As** on InP using **a** strain composited structure," 10^{th} Molecular *Beam Epitaxy workshop*, Raleigh, NC, September 1989; *J.* Vac. Sei. Techno/. B8,364, 1990.

CMOS. The AC power consumes $Cv^2/2$ 0.5pm spacing parallel lines. The consumed $Li^2f/2$ and $i^2Rf/2$ in parasitic C, L R circuits. AC powers can be calculated by solving CLR *LiV2* and *PRY2* m parasitic C, L R circuits. AC powers can be calculated by salving CLR the limit since **50%** signal **loss** to 2nd line.

level parallel interconnect lines and GOI 3D EM calculated S_{21} and S_{11} for 1mm long two parallel lines with various spacing from CMOS. The AC power consumes $Cv^2/2$ 0.5µm spacing parallel lines. The consumed 10 t

Fig. **4.** Calculated power loss of **I-mm** long **O.5pm** spaced parallel lines. The 3D integration can reduce line length to 0.5-mm (I GOI) or **0.25-mm (2** GO1 layers on Si IC).

Fig. **7.** The cross-sectional TEM of lower 0.18pm MOSFET.

Fig. 5. Pictures of 0.18µm MOSFETs with probing pads (M6 and 2μ m thickness). The "dark" area on the pad afler bonding is due to the selectively bonded Ge by **"smart** cut".

Fig. 6. Surface profile (dashed line in Fig. *5)* before and after Ge bonding and **"smart** cut". A Ge thickness of 1.6µm is obtained.

smooth $Ge/SiO₂$ interface are observed. occurs after processing thermal cycle.

Fig. 8. The cross-sectional TEM of Fig. 9. The l_a -V_d characteristics of the selectively bonded and smart cut Ge-on- 0.18 μ m MOSFETs beneath 3D GOI after Insulator on pad. Dislocation free and bonding. No drain curre selectively bonded and smart cut Ge-on- 0.18μ m MOSFETs beneath 3D GOI after Insulator on pad. Dislocation free and bonding. No drain current degradation Insulator **on** pad. Dislocation **free** and bonding. NO drain current degradation '

 $\frac{8}{5}$ 10

-
-
중10 톱10.

들10
년
다₁₀

10

 0.0

 0.5

bonding. Near identical I_{ds} is measured after RTA condition from 550 to 950°C. than Ir gate. processing thermal cycle.

550°C IrO_/Hf Gate

 $\frac{1.0}{V_a - V_{rB}}$ (V)

750°C Ir

400°C IrO.

950°C IrO

 2.0

 2.5

IrO₂ on LaAIO₃ MOSFETs on Si or GOI at 20nm-Hf on LaAIO₃ gate dielectric n- LaAIO₃ gate dielectric p-MOSFETs on Si and 1.4nm EOT. The J_g is ~10⁴X lower than SiO₂ MOSFETs on Si and GOI. at 1.4nm EOT.

Fig. 16. The I_d -V_d characteristics of $IrO_2/$ 20nm-Hf or IrO₂ on LaAlO₃ gate dielectric nand p-MOSFETs on Si.

Fig. 17. The I_d -V_d characteristics of IrO₂/ Fig. 18. The I_d -V_g characteristics of IrO₂/ 20nm-Hf or $\overrightarrow{hO_2}$ on LaAlO₃ gate dielectric 20nm-Hf on LaAlO₃ gate dielectric nn- and p-MOSFETs on GOI. Higher I_d is MOSFETs on Si or GOI. observed than on Si in Fig. 16.

Fig. 13. The J_g-V_g curves of IrO₂/20nm-Hf or Fig. 14. The C-V characteristics of IrO₂/ Fig. 15. The C-V characteristics of IrO₂ on GOL

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1

Gate Voltage (V)

Fig. 19. The I_a-V_g characteristics of IrO₂ on LaAlO₃ gate dielectric p-MOSFETs on Si or GOI. Low V_t of -0.25V is measured in Si and (110) Ge.

Time (sec) Fig. 22. V_t , shift as a function of time during NBTI measurement of IrO₂/LaAlO₃ on 3D GOI or 2D Si PMOS at 85°C and 10MV/cm.

Effective Field (MV/cm)
Fig. 20. The electron mobility of $IrO₂/$ 20nm-Hf on LaAlO₃ n-MOSFETs on Si or GOI. The GOI has 1.8X higher peak electron mobility improvement.

Fig. 21. The hole mobility of IrO_2 on LaAlO₃ p-MOSFETs on Si or GOI. The PMOS on Si and GOI have 0.8X and 2.5X universal hole mobility at 1 MV/cm E_{eff} S

10 years

NBTI.

at 25°C

 (110) GOI

PBTI

 $\Delta V = 50$ mV

at 85°C

NBTI-

GOI \bullet

 \circ

j, **Si**

lifetime. The $|V_{max}|$ is limited by NBTI that is reduced from 1.9 V at RT to 1.2 V at 85°C.