
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 8, 253-265 (1995)

SHARED BUFFER ATM SWITCH WITH DOUBLY
LINKED LISTS

YEONG-FONG LIN AND C. BERNARD SHUNG
Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu,

Taiwan 30050. R.O.C.

SUMMARY

The shared buffer memory switch (SBMS) architecture was originally proposed as an effective approach
to implement ATM switch fabrics. However, in this paper we find that if an error occurs in the address
chain memory of one linked list which stores the address of the next cell in the shared buffer memory,
the erroneous situation will spread over all linked lists in the SBMS in a short time. In order to
prevent the fault spread phenomenon, we propose two doubly linked list based architectures to combat
address chain failure; these are referred to as the Flush and In-Seq schemes. The first scheme flushes
the remaining cells in the faulty queue but collect their addresses for later usage. The second scheme
outputs the remaining cells in their correct sequence. From our simulation, if the error injection rate
is low, the performance of the In-Seq scheme experiences slight degradation compared with the error-
free situation.

KEY WORDS: ATM; broadband ISDN; fault tolerance; shared buffer switch

1. INTRODUCTION

The telecommunication networks today are experi-
encing a rapid evolution. In the early eighties, the
first field trials of ISDN took place, with commercial
introduction in the late eighties. The volume deploy-
ment of ISDN has not yet been achieved, probably
because of the lack of new attractive services and
terminals. This lack of attractive services can poss-
ibly be filled by a broadband network. This network
can transport many new telecommunication ser-
vices, and each of these services will generate other
requirements for the Broadband ZSDN (BISDN).
The large span of service requirements such as digi-
tal TV, digital HDTV, high quality videophony,
high-speed data transfer, video on demand, etc.
introduces the need for one universal network which
is flexible enough to provide all of these services in
the same way. Two other parameters are influencing
the directions taken by the BISDN. These are fast
evolution of VLSI and optical technology, and the
evolution in system concepts such as the shift of
superfluous transport functions to the edge of the
network. These system concepts are made possible
by the technological progress to put more functions
on a chip operating at a higher speed and higher
quality transmission systems. Owing to these rapid
advances in technology, solutions not feasible some
years ago will become economically available in the
near future.

Both the need for a flexible network and the
progress in technology and system concepts led to
the definition of the asynchronous transfer mode
(ATM) principle. This ATM concept is now
accepted as the ultimate solution for the BISDN by
CCIlT (International Consultative Committee for

Telecommunications and Telegraphy). The major
characteristics of the ATM protocol include (1) no
error protection or flow control on a link-by-link
basis, (2) a connection-oriented operation and (3) a
relatively small information field length. In ATM
networks no dynamic actions are defined against
packet loss. Only preventive actions are provided
by ATM, by allocating resources during connection
set-up and checking whether enough resources are
available. Therefore, loss of cells due to queuing
overflow is a typical problem. However, this
momentary cell loss is controlled and limited to
very small values because of the connection-oriented
mode. Typical values which are considered in ATM
systems range between lops and for the prob-
ability of losing a cell. In order to reduce the internal
buffers in the switching nodes, and to limit the
queuing delays in those buffers, the payload is kept
relatively small to guarantee a small delay value and
delay jitter as required by real-time services.

The shared buffer memory switch (SBMS) is one
of the most attractive alternatives for the ATM
switch design for BISDN telecommunications. l s 2

The switch described in this paper uses a common
buffer to dynamically allocate a memory location to
each output port. Favourable results have been
shown under various homogeneous and hetero-
geneous traffic conditions3 in terms of memory util-
ization efficiency. For example, the required mem-
ory space in an SBMS is only 14 per cent of the
separated output buffers to achieve the same cell
loss rate under bursty traffic. As illustrated in Figure
1, memory sharing in SBMS is made possible by
using single-link lists for output queues. An architec-
ture of the SBMS was proposed in Reference 4,
and this is shown in Figure 2.

CCC 1074-535 1 /9S/040253- 13
@ 1995 by John Wiley & Sons, Ltd.

Received August 1994
Revised May 1995

254

Header + Data

Header + Da~a

Header + Data
-

Header + Data

Y.-F. LIN AND C. B. SHUNG

\
\ F} - - - - -:

cell buffer pan

Header t Data I

I Header + Data

Empty I Empty I I

Figure 1. A11 cells are shared in a buffer memory by using single-
link list to indicate each port. A pair of RA and WA is used to

indicate the header and tail of the single-link list

In Figure 2, RA and WA indicate the beginning
and the end of the address chain of one output port.
When a cell is input into the switch, the write
address is obtained from WA. An idle address is
simultaneously read out from the idle address FIFO
to overwrite WA and the next address field corre-
sponding to the incoming cell. When a cell is read
out from the switch, the reading address is obtained
from RA and consequently pushed into the idle
address FIFO after the reading. At the same time
RA is replaced by the next address field correspond-
ing to the read out cell.

From the viewpoint of hardware utilization, the
above storage structure is quite simple and efficient.
However, this storage structure is not robust
because the SBMS could result in catastrophic dam-
age if the address used to indicate the next cell is
wrong. In this situation, it will read out cells which
do not belong to the proper port, and the cells
which are destined to the port will never be read
out because of the broken link. More seriously, such
an error may cause errors on other ports in the
same switch. In other words, the SBMS with a single
link error will propagate the errors to all other links!
We refer to this phenomenon as fault spread and
will discuss it in more detail in Section 3.

From the software point of view, a doubly linked
list is more robust than a singly linked list (or linked
list) because there are three fields storing the same
address. For any location p in the doubly linked
list, p = p.rlink.Nink = p.1link.rlink. On the other
hand, a linked list uses only one field to store the

address. An algorithm has been proposed6,’ to cor-
rect an erroneous field in a doubly linked list. This
algorithm is not directly applicable in hardware
because it requires multiple memory references dur-
ing correction. In this paper, we propose two modi-
fied versions of the algorithm, called the Flush and
the Zn-Seq schemes, which are suitable for hardware
implementation of SBMS switches. Although the
first scheme may incur an increased cell loss rate
and the second an increased queuing delay, they are
effective in preventing the SBMS from catastrophic
situations if there is no more than one error per
port during repairment. Simulation results will be
presented to compare the two schemes. From these
results, we contend that the Zn-Seq scheme is prefer-
able because the performance degradation is negli-
gible, compared with the singly linked based SBMS
without link failure.

2. DOUBLY LINKED LIST
ARCHITECTURES

2.1. In-Seq and Flush schemes

In the architecture proposed in Reference 4, two
registers, RA and WA, were used to indicate the
beginning and the end of the queue. If we want to
implement a doubly linked list with the capacity of
fault-tolerance, we have to use four registers RA1,
RA2, WA1 and WA2, where RA1 and RA2 store
the addresses of the first and the second cells in the
shared memory, WA2 stores the address of the
last cell and WA1 stores the address of the newly
incoming cell, respectively. Each incoming cell is
appended with two addresses. They are referred to
as dink and llink, and store the addresses of the
next and the preceding cell, respectively.

The algorithm proposed in Reference 6 can be
used to correct one error and detect two errors of
double-link list data structures. The procedure scans
the list in the forward direction until an identifier
field error or forward/back pointer mismatch is
detected. When this occurs, a reverse scan is
initiated until an error is encountered, at which
point repair is attempted. When an error is detected,
the algorithm proposed in Reference 6 tries to go
around the list in the reverse direction to repair
the error. This is infeasible in hardware realization
because it requires multiple memory references
when traversing the list in the reverse direction.
In the following we describe our solution to this
problem.

We use the following equation to decide whether
the SBMS is in normal or erroneous mode. Strictly
speaking, some ports in the SBMS may be in normal
and some in the erroneous mode simultaneously.
Here for simplicity we assume only one erroneous
port.

(1) RAl = RA2.llink

The above equation is checked when we are reading

SHARE BUFFER ATM SWITCH

..

Cell
Buffer

:...... : 2. Memory

Line Interfaces - ' (D i %
i a

4 - Output Queue
: a ...

255

- p i

E L
p i .
S i .

% : .
g ;-*-*

..,

C..

WA: write pointer register

RA: read pointer register

HD CNV:header converter

9 WA

output b Counter

CTRL-VLSIB

I ,

I ..

Idle Address FIFO

...

Figure 2. Architecture of the shared buffer memory switch proposed by Hitachi. Although the architecture is simple and easy for
memory sharing and hardware implementation, it is not robust at all if the address for reading out is wrong

out cells from BFM via RA1. If (1) is true, the
SBMS is in normal mode; otherwise, SBMS is in
the erroneous mode.

In Figure 3, for example, the test of (1) is not
true. After this error detection we cannot use read-
ing address pointers RA1 or RA2 because we do
not know which of the two is correct. In Figure 3
we show that the error is at the RA1.rlink field
which causes RA2 to point to another queue. On
the other hand if the error is at the RA2.llink field,
although the contents in RA1 and RA2 are correct,
the test of (1) is still not true.

Our technique is to use WA2 and WA1 (which
are the only known correct addresses of the port)
as the starting point to traverse the list in the reverse
direction until reaching the faulty location. Owing
to the memory speed limitation, we can only back
traverse one location during one cell reading time.

Figure 3. One error scenario in which KAI.rlink is wrong

During back traversing, we cannot read out cells at
the same time because the read out cells will be out
of sequence. It is obvious that we cannot afford
to have another link error during back traversing,
because in that situation we can never reach the
original faulty location if the two errors are injected
at the dink and llink fields, respectively. This obser-
vation indicates that our technique can be effective
only when there is no more than one error in each
queue.

In Figure 3, the back traversing will stop when
WA2 reaches RA1. In this case, the content of
WA1 (which constantly follows WA2 during back
traversing) can be used to correct RA2. On the
other hand, if the error is at the RA2.lfink field,
then the back traversing will stop when WA1
reaches RA2. In this case, the content of RA1 can
be used to correct the RA2.lfink. After the error is
corrected, we can now read out cells from RA2.

In this paper, we refer to the above method as
the Zn-Seq scheme, because it can guarantee that
all cells in the faulty queue be read out in sequence.
Note that, however, there is a latency for the back
traversing, and hence the performance of average
queueing delay may be degraded. In fact, the cell
loss rate may also be degraded in the erroneous
situation because the shared buffer memory is more
likely to be full.

An alternative to the Zn-Seq scheme is not to
output cells after fixing the faulty queue. In Figure

256 Y.-F. LIN AND C. B. SHUNG

3, this scheme is to give up all cells between RA1,
RA2 and WA2, WA1 (in the dashed box). We
therefore refer to this method as the Flush scheme.
In this scheme, a new queue is created right after
error detection, and cells entering this new queue
can be output normally.

Note that back traversing is performed in the
Flush scheme when there is no cell output. Back
traversing is still important because (1) the error
location needs to be fixed (2) the address of the
flushed cells needs to be reclaimed to the idle
address FIFO. Intuitively the Flush scheme should
enjoy a short delay because it makes use of the free
time to perform back traversing, and a worse cell
loss rate due to the flushed cells. In Section 3, we
will present simulation results for both schemes.

2.2. Algorithms

In the following BFM is the buffer memory, AVL
is the idle FIFO, r-old-cell is the first cell to read
out, w-new-cell is the new cell to be written in,
wpl is the auxiliary register used in error detection
for WA1, wp2 is the auxiliary register used in error
detection for WA2 and rpl is the auxiliary register
used in error detection for RAI.

Write (In-Seq)
BFM c w-new-cell(address = W A l)
llink(w-new-cell) t WA2
WA2 c WAl
WAl c AVL
rlink(w-new-cell) t AVL

Read-Normal (In-Seq)
if (RAl = RA2.llink) then

r-old-cell c BFM(address
AVL t RAl
RA1 t RA2
RA2 t RAl.rlink
mode t normal

else

wpl t WAl
wp2 t WA2
mode c erroneous

Read-Erroneous (In-Seq)
if (wp2 = rpl) or (wpl =-rp2) then

mode t normal

else

wpl t wp2
wp2 t wp2.llink
mode t erroneous

Write (Flush)
BFM t w-new-cell(address = W A l)
llink(w-new-cell) t WA2
WA2 t WAl

WAl t AVL
rlink(w-new-cell) t AVL

Read-Normal (Flush)
if (RAl = RA2.llink) then

r-old-cell t BFM(address = RAl)
AVL t RAl
RAl t R A 2
RA2 t RAl.rlink
mode t normal

else

wp2 t WA2
rpl t RAl
rp2 t RA2
mode + erroneous

Read-Erroneous (Flush)

if (wp2 = rp2) AVL t rp2
mode t normal

if (wp2 = rpl) or (wp2 = rp2) then

else

AVL t wp2
wp2 + wp2.llink
mode t erroneous

2.3. Examples

In Figure 4 we illustrate how the In-Seq scheme
is used. When reading out the cell from the port,
we check if the condition RAl = RA2.llink is true.
In the above example, the error is at the rlink field
and the checking condition is false because RA2
has pointed to the cell not belonging to the original
port. If no action is taken, the port will read out
the cell not belonging to the port.

At the same time, we load the values WA2 and
WA1 into wp2 and wpl , respectively, because those
cells incoming into the faulty port after error detec-
tion will be updating the content of WA2 and WA1.
In Figure 5 we use wp2 and wpl for back traversing
by using left link until RA1 = wp2 or wpl = RA2.
The condition is used when the error is at the llink
field. Therefore it is not shown in Figure 5. When
back traversing is finished, in the example we
overwrite RA2 with wpl. Now we can use RA1 and
RA2 for cell reading because the value in RA2 has
been corrected. Note that while we perform back
traversing we cannot afford another error in the left
link. Otherwise we never reach the faulty location.

Consider now the another Flush scheme shown
in Figure 6. When reading out the cell from the
port, we check if the condition RAl = RA2.llink is
true. In the above example, the condition is false
because RA2 has pointed to the cell not belonging
to the original port. At the same time, we copy the
values in RA1, RA2 and WA2 into auxiliary regis-
ters because the original registers RA1, RA2 and
WA2 will be needed to record the addresses of

SHARE BUFFER ATM SWITCH 257

located at 7 located at 16 located at 12

located at 20 located at 10

RA1 RA2 WA2 WA1

Figure 4. Normal mode enters erroneous mode in the In-Seq scheme

located at 7 located at 16 located at 12

located at 6 located at 20 located at 10

Figure 5. Hack traversing in the erroneous mode in the In-Seq scheme

newly arrived cells during erroneous mode. Figure
6 shows the operation of erroneous port link
repairment. We back traverse to the header of faulty
port by using the register wp2. During traversing
we collect the addresses of flushed cells for later
use. If there are newly arrived cells, we output them
at once. If there is no newly cell arrived, the queue
performs back traversing. It stops traversing by

checking if rpl = wp2 is true and the port is
returned to normal mode by using RA1 and RA2
for reading cells out.

2.4. Architectures

The architecture of In-Seq is shown in Figure 7.
The detailed operations of Zn-Seq are described in

258 Y.-F. LIN AND C. B. SHUNG

located at 7 located at 16 located at 12

0 0 0

located at 20 located at 10

Figure 6. Back traversing in the erroneous mode in the Flush scheme

Shared Buffer Memory

I

/

RT

DEC

address chain include dink and llink

1 t t
I

W A 2 m R A 2 N R A 1 1

-A-

-+/ W A l r A W A 2 E 4 RA2 N RA11 - t r link repairment circuitry
t

I I link repairment circuitry 1

I back traversing circuitry /---

I Avail Oueue

comp - 5% \

OUTPUT

DEC

/
Figure 7. Architecture of the fault-tolerant shared buffer memory switch using the In-Seq remedy is shown. In the Figure we only

show one port equipped with the capacity of fault tolerance for read and write under only one faulty link field

SHARE BUFFER ATM SWITCH 259

the following. Two auxiliary registers, wpl and wp2
are required to store the contents of WA1 and WA2
at the time when an error is detected, through the
link repairment circuitry. The functions in the link
repairment circuitry include register transfer control
(for example wpl t WA1) and link repairment (for
example RA2 c wpl in Figure 5) . When the port
is requested to output cells during erroneom mode,
the back traversing circuitry performs one back trav-
ersing per reading cell time until wp2 = RA1 or
wpl = RA2. When the link error is repaired, we
return to normal reading. The switch (denoted as
SW) is used to select the content of RA1 (normal
mode) and wpl (erroneous mode).

In the Flmh scheme three auxiliary registers, wp2,
rpl, rp2 are required to store the contents of WA2,
RA1 and RA2 at the time when an error is detected,
as shown in Figure 8. The function of gateway is to
dump register values and form an isolation between
the new created queue and the faulty queue. After
error detection a new queue is created by using
WA1, WA2, RA2 and RA1 to store new incoming
cells. During this mode when the port is not
requested to output cells, the output decoder
through SW performs back traversing by the recov-
ery and read circuitry until wp2 = rp2 or wpl = rp l .
At the same time the addresses of flushed cells
are pushed back to the idle address FIFO through
recovery and read circuitry. The port can use RA1
and RA2 to read cells out before and after the link
repairment .

There are two drawbacks in our techniques:
(1) cells read out from the faulty port had longer
delay or increased cell loss rate, (2) no more errors
are allowed during reverse traversing and reading
(one fault per port at any time). However, in the
next section, we will show by computer simulations
that the performance (delay and cell loss rate)
degradation is quite small. The hardware overhead
for fault tolerant design includes some multiplexers,
comparators, registers and an extra address chain
memory. In comparison to the catastrophic conse-
quences of address chain faults, we consider such
hardware investment to be worthwhile.

3. SIMULATION RESULTS

3.1. Traffic model and simulation set-up
To model switch performance quantitatively, we

consider the uniform geometrically bursty traffic
model5 in which an input alternates between active
and idle periods of geometrically distributed dur-
ation. Cells destined for the same output port arrive
continuously during an active period. The duration
of the active period is characterized by a parameter
p . The probability that the burst lasts for a duration
of i time slots (consists of i cells) is then

P(i) =p(1 - ~) ~ - l

Note that we assume that there is at least one cell
in a burst. The mean burst length is given by

Shared Buffer Memory

I address chain include rllnkandllink

I I I

I I

Figure 8. Architecture of the fault-tolerant shared buffer memory switch using Flush remedy is shown. In the Figure we only show
one port equipped with the capacity of fault tolerance for read and write under only one faulty link field

260 Y.-F. LIN AND C. B. SHUNG

1
i= 1 P

m

&[i] = iP(i) = -

The idle period is geometrically distributed with
parameter q. The probability that an idle period
lasts for j time slots is

Unlike the duration of an active period, the duration
of an idle period can be 0. The mean idle period is
given by

Given p and q, the offered load p can be found by

We assume that there is no correlation between
different bursts, and that the destination of each
burst is uniformly distributed among the outputs.
Note that the uniform random traffic model is a
special case with p = 1 and q = p.

Our simulation experiments measure the queuing
delay and cell loss rate of an 8 X 8 shared buffer
memory switch. Queuing delay is measured as the
duration between when the cell is written into the
SBMS and when it is read out. Cell loss rate is
measured by the ratio of the number of lost (due
to flushing or buffer overflow) cells to the number
of total cells. Simulated cells that arrive at the SBMS
will be discarded or lost when there is no available
address in the idle address FIFO. The statistics of
about lo7 cells are collected (over all queues in the
switch) for each simulation. Thus, a loss probability
smaller than lo-' cannot be measured and a loss
probability below could contain only a few
errors. If needed, however, loss probabilities below
lop5 can be extrapolated based on our results. Aver-
age burst lengths of 1 (the uniform random traffic)
and 8 are considered. If the offered load and buffer
size must be fixed, the load is 0.9 under uniform and
bursty traffic and the buffer size is 256, respectively.
Error injection probabilities are lo-" and and
the faults are only injected into the address chain
memory, not the registers in the queuing manage-
men t circuits .

3.2. Simulation results and interpretations

Figure 9 shows the fault spread duration versus
load. In single-link based SBMS, we choose one
port randomly and inject an error into the next
address of one cell in this queue. Normally each
address in BFM is either in the idle address FIFO
or in the address chain memory of some queue. If
there were two addresses in the address chain mem-

ory with the same content due to a fault, the queue
management of the SBMS will later produce two
copies of the same address in the FIFO. When these
two copies are used in some other two address
chains, this will generate a new fault and the
phenomenon will spread all over the SBMS. Finally
it results in a catastrophic situation because every
port will output the cells that do not belong to the
proper port. The duration from the first erroneous
port to the last erroneous port is simulated and
shown in Figure 9. From Figure 9 the duration will
decrease as the load is increased and we see that
after about 100 cell slot times, all eight ports will
be in erroneous situations.

When errors are injected under bursty traffic,
Figure 10 shows the queuing delay versus load of
these two schemes. At a higher error injection rate
of the Flush scheme experiences less queuing
delay compared with the In-Seq scheme as load
increases. At a lower error injection rate, the
difference is negligible among the Flush, In-Seq and
no error cases.

When errors are injected under bursty traffic,
Figure 11 shows the cell loss rate versus load for
these two schemes. At the higher error injection
rate of the Flush scheme experienced higher
cell loss rate compared with the In-Seq scheme as
load increased. At the lower error injection rate of

the difference is negligible among the Flush,
In-Seq and no error cases for loads ranged from 0.8
to 0.99. Notice that cell loss rate of the In-Seq
scheme is almost the same under error injection
rates and lo-".

When errors are injected under uniform traffic,
Figure 12 shows the queuing delay versus load of
these two schemes. At the higher error injection
rate of the In-Seq scheme experiences a
slightly higher queuing delay compared with the In-
Seq scheme with load ranging from 0.9 to 0.97.
The other four curves almost collapse together even
though different remedies are attempted with differ-
ent error rate.

When errors are injected under uniform traffic,
Figure 13 shows the cell loss rate versus load for
these two schemes. Under uniform traffic with
buffer size 256, there is almost no cell loss when
the load is below 0.97 for the no error case and the
In-Seq scheme. On the other hand, the Flush scheme
has experienced some cell loss.

For short-term performance degradation which is
of concern for transmission impact on a particular
connection, it is desirable for our schemes to intro-
duce little fluctuation at delay or cell loss in order
to maintain quality of service (QoS). In Figures 14
and 15, we show the delay and cell loss performance
of the two schemes within a small window (100 or
lo00 time slots) after error injection. It can be
seen that the In-Seq scheme is faster to leave the
fluctuating situation than the Flush scheme.

In summary, we have investigated the perform-
ance measures when distinct remedies are used

SHARE BUFFER ATM SWITCH 261

N-PORT = 8, B-SIZE = 256

Figure 9. The fault spread duration versus load at uniform traffic

B-SIZE = 256, N-PORT = 8, TICK = E7

35

!
flush remedy with

In-seq remedy with
flush remedy with

in-seq remedy with

E 30t -
Q,
U

I

ror insertion rate 10E-5 -e-
ror insertion rate 10E-5 -+-+
ror insertion rate 10E-6 -0 . -
ror insertion rate 10E-6 w +

no error inserted -b -

.& . . . , ,
-29

,$2
#.$' /

0.7 0.8 0.9
load at bursty traffic with average bursty length 8

0.99

Figure 10. Queuing delay versus load at bursty traffic

262

-1

-2
Q -
8
In
0
0
d
Q -3
E
c

-5

Y.-F. LIN AND C. B. SHUNG

B-SIZE = 256, N-PORT = 8, TICK = E7
! I I

flush remedy with error,insertion rate 10E-$ -+
in-seq remedy with errorhsertion rate 10E-5 -+-.

flush remedy with error ;insertion rate 1 OE-6: -0- -
in-seq remedy with error ;insertion rate 1 OE-6 - x -

. : noermr.inserte@..,=&:=

0.7 0.8 0.9 0.97
load at bursty traffic with average bursty length 8

Figure 11. Cell loss rate versus load at bursty traffic

B-SIZE = 256, N-PORT = 8, TICK = E7

20

15

5

flush remedy with error insertion rate 1OE-5 4.-
in-seq remedy with error insertion rate 10E-5 -+--

flush remedy with error insertion rate 10E-6 -0 . -
in-seq remedy with error insertion rate 1 OE-6 x

no error inserted -b -

... . i

I I I I

0.7 0.8 0.9 0.97
load at uniform traffic

Figure 12. Queuing delay versus load at uniform traffic

SHARE BUFFER ATM SWITCH 263

-1

-2 -
W

v)

0

W

-
2
0 -3
d
E Y

-4 v)
v)
0 -

-5

-6

0.7

35

0
C
3
W
3
U

.-

20

15

9-SIZE = 256, N-PORT = 8, TICK = E7
I I I

flush remedy with error insertion rate 1 OE-5 +
in-seq remedy with error insertion rate 1 OE;5 -t

flush remedy with 4rror insertion rate lOEj6 -0 .
. in,seq.remedy..with.error.inse~ion.rate.1OE~..-.:;~-

no error inserted - ~ r

0.8 0.9
load at uniform traffic

0.97 0.99

Figure 13. Cell loss rate versus load at bursty traffic

BSIZE = 256, N-PORT = 8

0.7 0.8 0.9 0.97
load at bursty traffic with average bursty length 8

Figure 14. Queuing delay versus load at bursty traffic by changing window size

264 Y.-F. LIN AND C. B. SHUNG

B-SIZE = 256, N-PORT = 8
I

flush reme
in-seq rem

flush rem
in-seq rernc

................
... . ~ . ~ ~~). i.." ... ̂..% ... (.I .-,:,: ... :.:

__-- - T.7 :.
/---

.....

.... ,' _. ,. I

-
f with window size 1000 4-
ly with window size 100 -t--
ly with window size la0 -0 . -
y with window size 1000 . x

no-error-mserW *-- - -
..................................... ;

0.7 0.8 0.9 0.97
load at bursty traffic with average bursty length 8

Figure 15. Cell loss rate versus load at bursty traffic by changing window size

under different error injection rates. We observed
that under random uniform traffic we cannot easily
tell the difference between these two schemes. The
difference is enlarged under bursty traffic. If the
error injection rate is small, we prefer the Zn-Seq
scheme which has a negligible delay penalty, better
cell loss rate performance and endures shorter time
to converge to the error free situation.

4. CONCLUSION

Rapid evolution in the field of telecommunications
has led to the emergence of new switching techno-
logies to support a variety of communication services
with a wide range of transmission rates in a common,
unified integrated services network. At the same
time, the progress in the field of VLSI technology
has brought up new design principles of high-per-
formance, high-capacity switching fabrics to be used
in the integrated networks of the future. Among
most proposals for switching architecture, the shared
buffer memory switch (SBMS) is one of the best
alternatives for implementation specially based on
its reduced usage of buffer size at bursty traffic.

However, if the address chain memory in an
SBMS is wrong, it will cause the port reading out
cells not belonging to the proper port, and all cells
destined to the port will never be read out again.
More seriously, fuuh spread can occur, which ren-
ders all other ports in the same switch to be faulty
in a short time. The phenomenon is mainly due to

the central control processing rather than distributed
control in the multistage switches.

Although there are some papers discussing the
architecture of fault-tolerant switches, by and large,
they were based on the Batcher-banyan switch. In
the paper we have surveyed the methods for fault-
tolerant SBMS architectures. Two schemes, Flush
and In-Seq of fault tolerance have been proposed
and comparisons have been made by computer
simulation. The Flush scheme flushes all cells in the
port after faulty location, and collects the addresses
of the flushed cells for later usage. Therefore intuit-
ively this scheme will increase the cell loss rate. On
the other hand, the Zn-Seq scheme tries to output
the cells after faulty location rather than flushing,
and preserves the original cell sequence. However,
this will introduce extra queuing delay for fixing the
queue. From simulation we found that under lower
error injection rate the In-Seq scheme suffers only
a slight degradation in queuing delay compared with
that of no error injected, and is faster to leave
fluctuating situation after error injection. Therefore,
we feel that the Zn-Seq scheme is preferred for its
superior cell loss rate performance.

ACKNOWLEDGEMENT

This work was sponsored by the Telecommunication
Laboratories (TL Y83015) and the National Science
Council of Taiwan (NSC 81-0404-E009-135).

SHARE BUFFER ATM SWITCH 265

REFERENCES

1. F. Tobagi, ‘Fast packet switch architectures for broadband
integrated services digital networks’, Proc. ZEEE, January

2. T. Kozaki, N. Endo, Y. Matsubara, M. Mizukami and K.
Asano, ‘32 x 32 shared buffer type ATM switch VLSI’s for
B-ISDN’, ZEEE J. Selected Area in Communications, 9, (6),

3. N. Endo, T. Kazaki, T. Ohuchi, H. Kuwahara and S. Gohara,
‘Shared buffer memory switch for an ATM exchange’, ZEEE
Trans. Communications, 41, (l) , 237-245 (1993).

4. H. Kuwahara, N. Endo, M. Ogino, T. Kozaki, Y. Sakurai
and S. Gohara, ‘A shared buffer memory switch for an ATM
exchange’, Proc. ICC, 1989, pp. 118-122.

5. S. Liew, ‘Performance of input-buffered and output-buffered
ATM switches under bursty traffic: simulation study’, Proc.
Global Telecommunications Conference, 1990, pp. 1919-1925.

6. D. Taylor et al., ‘Redundancy in data structures: improving
software fault tolerance’, ZEEE Trans. Software Engineering,

7. D. Taylor et al. ‘Redundancy in data structures: some theoreti-
cal results’, ZEEE Trans. Software Engineering, 6 , (6),

1990, pp. 133-167.

1239-1247 (1991).

6, (6), 585-594 (1980).

595-607 (1980).

Authors’ biographies:

Yeong-Fong Lin was born in Chia-
Yi, Taiwan, ROC on 10 June, 1969.
He recieved the B.S. in Electrical
Engineering from National Tsing
Hua University, Hsinchu, Taiwan,
ROC, in June 1992, and the M.S.
in Electronics Engineering from the
Institute of Electronics, National
Chiao Tung University, Hsinchu,
Taiwan, ROC, in 1994. He was
involved in the research on ATM

switch architectures. His M.S. thesis is entitled ‘The fault-

tolerant architectures of shared buffer memory switch.
Currently he is serving in the ROTC program in Taipei,
Taiwan.

C. Bernard Shung received his B.S.
in Electrical Engineering from
National Taiwan University in 1981,
and M.S. and Ph.D. in Electrical
Engineering and Computer Science
from University of California,
Berkeley, in 1985 and 1988, respect-
ively. He is currently an Associate
Professor in the Department of Elec-
tronics Engineering, National Chiao
Tung University in Hsinchu, Tai-

wan, ROC, where he joined the faculty in 1990.
He was a Visiting Scientist at the IBM Research

Division, Almaden Research Center in San Jose, Califor-
nia, in 1988-1990. During the academic year of
1994-1995, he visited Qualcomm Inc. in San Diego, Cali-
fornia. He was involved in architecture and circuit designs
of communications and signal processing applications,
including storage channel, pattern recognition, and wire-
less communications.

Dr. Shung’s research interests include architecture and
integrated circuit design for communications, signal pro-
cessing, and ATM switches, and computer-aided design
for integrated circuits and field programmable gate arrays.
He has published more than 30 technical papers in related
areas.

