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SUMMARY 

The shared buffer memory switch (SBMS) architecture was originally proposed as an effective approach 
to implement ATM switch fabrics. However, in this paper we find that if an error occurs in the address 
chain memory of one linked list which stores the address of the next cell in the shared buffer memory, 
the erroneous situation will spread over all linked lists in the SBMS in a short time. In order to 
prevent the fault spread phenomenon, we propose two doubly linked list based architectures to combat 
address chain failure; these are referred to as the Flush and In-Seq schemes. The first scheme flushes 
the remaining cells in the faulty queue but collect their addresses for later usage. The second scheme 
outputs the remaining cells in their correct sequence. From our simulation, if the error injection rate 
is low, the performance of the In-Seq scheme experiences slight degradation compared with the error- 
free situation. 

KEY WORDS: ATM; broadband ISDN; fault tolerance; shared buffer switch 

1. INTRODUCTION 

The telecommunication networks today are experi- 
encing a rapid evolution. In the early eighties, the 
first field trials of ISDN took place, with commercial 
introduction in the late eighties. The volume deploy- 
ment of ISDN has not yet been achieved, probably 
because of the lack of new attractive services and 
terminals. This lack of attractive services can poss- 
ibly be filled by a broadband network. This network 
can transport many new telecommunication ser- 
vices, and each of these services will generate other 
requirements for the Broadband ZSDN (BISDN). 
The large span of service requirements such as digi- 
tal TV, digital HDTV, high quality videophony, 
high-speed data transfer, video on demand, etc. 
introduces the need for one universal network which 
is flexible enough to provide all of these services in 
the same way. Two other parameters are influencing 
the directions taken by the BISDN. These are fast 
evolution of VLSI and optical technology, and the 
evolution in system concepts such as the shift of 
superfluous transport functions to the edge of the 
network. These system concepts are made possible 
by the technological progress to put more functions 
on a chip operating at a higher speed and higher 
quality transmission systems. Owing to these rapid 
advances in technology, solutions not feasible some 
years ago will become economically available in the 
near future. 

Both the need for a flexible network and the 
progress in technology and system concepts led to 
the definition of the asynchronous transfer mode 
(ATM) principle. This ATM concept is now 
accepted as the ultimate solution for the BISDN by 
CCIlT (International Consultative Committee for 

Telecommunications and Telegraphy). The major 
characteristics of the ATM protocol include (1) no 
error protection or flow control on a link-by-link 
basis, (2) a connection-oriented operation and (3) a 
relatively small information field length. In ATM 
networks no dynamic actions are defined against 
packet loss. Only preventive actions are provided 
by ATM, by allocating resources during connection 
set-up and checking whether enough resources are 
available. Therefore, loss of cells due to queuing 
overflow is a typical problem. However, this 
momentary cell loss is controlled and limited to 
very small values because of the connection-oriented 
mode. Typical values which are considered in ATM 
systems range between lops and for the prob- 
ability of losing a cell. In order to reduce the internal 
buffers in the switching nodes, and to limit the 
queuing delays in those buffers, the payload is kept 
relatively small to guarantee a small delay value and 
delay jitter as required by real-time services. 

The shared buffer memory switch (SBMS) is one 
of the most attractive alternatives for the ATM 
switch design for BISDN telecommunications. l s 2  

The switch described in this paper uses a common 
buffer to dynamically allocate a memory location to 
each output port. Favourable results have been 
shown under various homogeneous and hetero- 
geneous traffic conditions3 in terms of memory util- 
ization efficiency. For example, the required mem- 
ory space in an SBMS is only 14 per cent of the 
separated output buffers to achieve the same cell 
loss rate under bursty traffic. As illustrated in Figure 
1, memory sharing in SBMS is made possible by 
using single-link lists for output queues. An architec- 
ture of the SBMS was proposed in Reference 4, 
and this is shown in Figure 2. 
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Figure 1. A11 cells are shared in a buffer memory by using single- 
link list to indicate each port. A pair of RA and WA is used to 

indicate the header and tail of the single-link list 

In Figure 2, RA and WA indicate the beginning 
and the end of the address chain of one output port. 
When a cell is input into the switch, the write 
address is obtained from WA. An idle address is 
simultaneously read out from the idle address FIFO 
to overwrite WA and the next address field corre- 
sponding to the incoming cell. When a cell is read 
out from the switch, the reading address is obtained 
from RA and consequently pushed into the idle 
address FIFO after the reading. At the same time 
RA is replaced by the next address field correspond- 
ing to the read out cell. 

From the viewpoint of hardware utilization, the 
above storage structure is quite simple and efficient. 
However, this storage structure is not robust 
because the SBMS could result in catastrophic dam- 
age if the address used to indicate the next cell is 
wrong. In this situation, it will read out cells which 
do not belong to the proper port, and the cells 
which are destined to the port will never be read 
out because of the broken link. More seriously, such 
an error may cause errors on other ports in the 
same switch. In other words, the SBMS with a single 
link error will propagate the errors to all other links! 
We refer to this phenomenon as fault spread and 
will discuss it in more detail in Section 3. 

From the software point of view, a doubly linked 
list is more robust than a singly linked list (or linked 
list) because there are three fields storing the same 
address. For any location p in the doubly linked 
list, p = p.rlink.Nink = p.1link.rlink. On the other 
hand, a linked list uses only one field to store the 

address. An algorithm has been proposed6,’ to cor- 
rect an erroneous field in a doubly linked list. This 
algorithm is not directly applicable in hardware 
because it requires multiple memory references dur- 
ing correction. In this paper, we propose two modi- 
fied versions of the algorithm, called the Flush and 
the Zn-Seq schemes, which are suitable for hardware 
implementation of SBMS switches. Although the 
first scheme may incur an increased cell loss rate 
and the second an increased queuing delay, they are 
effective in preventing the SBMS from catastrophic 
situations if there is no more than one error per 
port during repairment. Simulation results will be 
presented to compare the two schemes. From these 
results, we contend that the Zn-Seq scheme is prefer- 
able because the performance degradation is negli- 
gible, compared with the singly linked based SBMS 
without link failure. 

2. DOUBLY LINKED LIST 
ARCHITECTURES 

2.1. In-Seq and Flush schemes 

In the architecture proposed in Reference 4, two 
registers, RA and WA, were used to indicate the 
beginning and the end of the queue. If we want to 
implement a doubly linked list with the capacity of 
fault-tolerance, we have to use four registers RA1, 
RA2, WA1 and WA2, where RA1 and RA2 store 
the addresses of the first and the second cells in the 
shared memory, WA2 stores the address of the 
last cell and WA1 stores the address of the newly 
incoming cell, respectively. Each incoming cell is 
appended with two addresses. They are referred to 
as dink and llink, and store the addresses of the 
next and the preceding cell, respectively. 

The algorithm proposed in Reference 6 can be 
used to correct one error and detect two errors of 
double-link list data structures. The procedure scans 
the list in the forward direction until an identifier 
field error or forward/back pointer mismatch is 
detected. When this occurs, a reverse scan is 
initiated until an error is encountered, at which 
point repair is attempted. When an error is detected, 
the algorithm proposed in Reference 6 tries to go 
around the list in the reverse direction to repair 
the error. This is infeasible in hardware realization 
because it requires multiple memory references 
when traversing the list in the reverse direction. 
In the following we describe our solution to this 
problem. 

We use the following equation to decide whether 
the SBMS is in normal or erroneous mode. Strictly 
speaking, some ports in the SBMS may be in normal 
and some in the erroneous mode simultaneously. 
Here for simplicity we assume only one erroneous 
port. 

(1) RAl = RA2.llink 

The above equation is checked when we are reading 
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Figure 2. Architecture of the shared buffer memory switch proposed by Hitachi. Although the architecture is simple and easy for 
memory sharing and hardware implementation, it is not robust at all if the address for reading out is wrong 

out cells from BFM via RA1. If (1) is true, the 
SBMS is in normal mode; otherwise, SBMS is in 
the erroneous mode. 

In Figure 3, for example, the test of (1) is not 
true. After this error detection we cannot use read- 
ing address pointers RA1 or RA2 because we do 
not know which of the two is correct. In Figure 3 
we show that the error is at the RA1.rlink field 
which causes RA2 to point to another queue. On 
the other hand if the error is at the RA2.llink field, 
although the contents in RA1 and RA2 are correct, 
the test of (1) is still not true. 

Our technique is to use WA2 and WA1 (which 
are the only known correct addresses of the port) 
as the starting point to traverse the list in the reverse 
direction until reaching the faulty location. Owing 
to the memory speed limitation, we can only back 
traverse one location during one cell reading time. 

Figure 3. One error scenario in which KAI.rlink is wrong 

During back traversing, we cannot read out cells at 
the same time because the read out cells will be out 
of sequence. It is obvious that we cannot afford 
to have another link error during back traversing, 
because in that situation we can never reach the 
original faulty location if the two errors are injected 
at the dink and llink fields, respectively. This obser- 
vation indicates that our technique can be effective 
only when there is no more than one error in each 
queue. 

In Figure 3, the back traversing will stop when 
WA2 reaches RA1. In this case, the content of 
WA1 (which constantly follows WA2 during back 
traversing) can be used to correct RA2. On the 
other hand, if the error is at the RA2.lfink field, 
then the back traversing will stop when WA1 
reaches RA2. In this case, the content of RA1 can 
be used to correct the RA2.lfink. After the error is 
corrected, we can now read out cells from RA2. 

In this paper, we refer to the above method as 
the Zn-Seq scheme, because it can guarantee that 
all cells in the faulty queue be read out in sequence. 
Note that, however, there is a latency for the back 
traversing, and hence the performance of average 
queueing delay may be degraded. In fact, the cell 
loss rate may also be degraded in the erroneous 
situation because the shared buffer memory is more 
likely to be full. 

An alternative to the Zn-Seq scheme is not to 
output cells after fixing the faulty queue. In Figure 
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3, this scheme is to give up all cells between RA1, 
RA2 and WA2, WA1 (in the dashed box). We 
therefore refer to this method as the Flush scheme. 
In this scheme, a new queue is created right after 
error detection, and cells entering this new queue 
can be output normally. 

Note that back traversing is performed in the 
Flush scheme when there is no cell output. Back 
traversing is still important because (1) the error 
location needs to be fixed (2) the address of the 
flushed cells needs to be reclaimed to the idle 
address FIFO. Intuitively the Flush scheme should 
enjoy a short delay because it makes use of the free 
time to perform back traversing, and a worse cell 
loss rate due to the flushed cells. In Section 3, we 
will present simulation results for both schemes. 

2.2. Algorithms 

In the following BFM is the buffer memory, AVL 
is the idle FIFO, r-old-cell is the first cell to read 
out, w-new-cell is the new cell to be written in, 
wpl is the auxiliary register used in error detection 
for WA1, wp2 is the auxiliary register used in error 
detection for WA2 and rpl is the auxiliary register 
used in error detection for RAI. 

Write (In-Seq) 
BFM c w-new-cell(address = W A l )  
llink(w-new-cell) t WA2 
WA2 c WAl 
WAl c AVL 
rlink(w-new-cell) t AVL 

Read-Normal ( In-Seq) 
if (RAl = RA2.llink) then 

r-old-cell c BFM(address 
AVL t RAl 
RA1 t RA2 
RA2 t RAl.rlink 
mode t normal 

else 

wpl t WAl 
wp2 t WA2 
mode c erroneous 

Read-Erroneous (In-Seq) 
if (wp2 = rpl)  or (wpl =-rp2) then 

mode t normal 

else 

wpl t wp2 
wp2 t wp2.llink 
mode t erroneous 

Write (Flush) 
BFM t w-new-cell(address = W A l )  
llink( w-new-cell) t WA2 
WA2 t WAl 

WAl t AVL 
rlink(w-new-cell) t AVL 

Read-Normal (Flush) 
if (RAl = RA2.llink) then 

r-old-cell t BFM(address = RAl)  
AVL t RAl 
RAl t R A 2  
RA2 t RAl.rlink 
mode t normal 

else 

wp2 t WA2 
rpl t RAl 
rp2 t RA2 
mode + erroneous 

Read-Erroneous (Flush) 

if (wp2 = rp2) AVL t rp2 
mode t normal 

if (wp2 = rpl)  or (wp2 = rp2) then 

else 

AVL t wp2 
wp2 + wp2.llink 
mode t erroneous 

2.3. Examples 

In Figure 4 we illustrate how the In-Seq scheme 
is used. When reading out the cell from the port, 
we check if the condition RAl = RA2.llink is true. 
In the above example, the error is at the rlink field 
and the checking condition is false because RA2 
has pointed to the cell not belonging to the original 
port. If no action is taken, the port will read out 
the cell not belonging to the port. 

At the same time, we load the values WA2 and 
WA1 into wp2 and wpl ,  respectively, because those 
cells incoming into the faulty port after error detec- 
tion will be updating the content of WA2 and WA1. 
In Figure 5 we use wp2 and wpl for back traversing 
by using left link until RA1 = wp2 or wpl = RA2. 
The condition is used when the error is at the llink 
field. Therefore it is not shown in Figure 5. When 
back traversing is finished, in the example we 
overwrite RA2 with wpl.  Now we can use RA1 and 
RA2 for cell reading because the value in RA2 has 
been corrected. Note that while we perform back 
traversing we cannot afford another error in the left 
link. Otherwise we never reach the faulty location. 

Consider now the another Flush scheme shown 
in Figure 6. When reading out the cell from the 
port, we check if the condition RAl = RA2.llink is 
true. In the above example, the condition is false 
because RA2 has pointed to the cell not belonging 
to the original port. At the same time, we copy the 
values in RA1, RA2 and WA2 into auxiliary regis- 
ters because the original registers RA1, RA2 and 
WA2 will be needed to record the addresses of 
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Figure 4. Normal mode enters erroneous mode in the In-Seq scheme 

located at 7 located at 16 located at 12 

located at 6 located at 20 located at 10 

Figure 5. Hack traversing in the erroneous mode in the In-Seq scheme 

newly arrived cells during erroneous mode. Figure 
6 shows the operation of erroneous port link 
repairment. We back traverse to the header of faulty 
port by using the register wp2. During traversing 
we collect the addresses of flushed cells for later 
use. If there are newly arrived cells, we output them 
at once. If there is no newly cell arrived, the queue 
performs back traversing. It stops traversing by 

checking if rpl = wp2 is true and the port is 
returned to normal mode by using RA1 and RA2 
for reading cells out. 

2.4. Architectures 

The architecture of In-Seq is shown in Figure 7. 
The detailed operations of Zn-Seq are described in 
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Figure 7. Architecture of the fault-tolerant shared buffer memory switch using the In-Seq remedy is shown. In the Figure we only 

show one port equipped with the capacity of fault tolerance for read and write under only one faulty link field 
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the following. Two auxiliary registers, wpl and wp2 
are required to store the contents of WA1 and WA2 
at the time when an error is detected, through the 
link repairment circuitry. The functions in the link 
repairment circuitry include register transfer control 
(for example wpl t WA1) and link repairment (for 
example RA2 c wpl in Figure 5 ) .  When the port 
is requested to output cells during erroneom mode, 
the back traversing circuitry performs one back trav- 
ersing per reading cell time until wp2 = RA1 or 
wpl = RA2. When the link error is repaired, we 
return to normal reading. The switch (denoted as 
SW) is used to select the content of RA1 (normal 
mode) and wpl (erroneous mode). 

In the Flmh scheme three auxiliary registers, wp2, 
rpl,  rp2 are required to store the contents of WA2, 
RA1 and RA2 at the time when an error is detected, 
as shown in Figure 8. The function of gateway is to 
dump register values and form an isolation between 
the new created queue and the faulty queue. After 
error detection a new queue is created by using 
WA1, WA2, RA2 and RA1 to store new incoming 
cells. During this mode when the port is not 
requested to output cells, the output decoder 
through SW performs back traversing by the recov- 
ery and read circuitry until wp2 = rp2 or wpl = rp l .  
At the same time the addresses of flushed cells 
are pushed back to the idle address FIFO through 
recovery and read circuitry. The port can use RA1 
and RA2 to read cells out before and after the link 
repairment . 

There are two drawbacks in our techniques: 
(1) cells read out from the faulty port had longer 
delay or increased cell loss rate, (2) no more errors 
are allowed during reverse traversing and reading 
(one fault per port at any time). However, in the 
next section, we will show by computer simulations 
that the performance (delay and cell loss rate) 
degradation is quite small. The hardware overhead 
for fault tolerant design includes some multiplexers, 
comparators, registers and an extra address chain 
memory. In comparison to the catastrophic conse- 
quences of address chain faults, we consider such 
hardware investment to be worthwhile. 

3. SIMULATION RESULTS 

3.1. Traffic model and simulation set-up 
To model switch performance quantitatively, we 

consider the uniform geometrically bursty traffic 
model5 in which an input alternates between active 
and idle periods of geometrically distributed dur- 
ation. Cells destined for the same output port arrive 
continuously during an active period. The duration 
of the active period is characterized by a parameter 
p .  The probability that the burst lasts for a duration 
of i time slots (consists of i cells) is then 

P(i )  =p(1 - ~ ) ~ - l  

Note that we assume that there is at least one cell 
in a burst. The mean burst length is given by 

Shared Buffer Memory 

I address chain include rllnkandllink 

I I I  

I I 

Figure 8. Architecture of the fault-tolerant shared buffer memory switch using Flush remedy is shown. In the Figure we only show 
one port equipped with the capacity of fault tolerance for read and write under only one faulty link field 
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The idle period is geometrically distributed with 
parameter q. The probability that an idle period 
lasts for j time slots is 

Unlike the duration of an active period, the duration 
of an idle period can be 0. The mean idle period is 
given by 

Given p and q, the offered load p can be found by 

We assume that there is no correlation between 
different bursts, and that the destination of each 
burst is uniformly distributed among the outputs. 
Note that the uniform random traffic model is a 
special case with p = 1 and q = p. 

Our simulation experiments measure the queuing 
delay and cell loss rate of an 8 X 8 shared buffer 
memory switch. Queuing delay is measured as the 
duration between when the cell is written into the 
SBMS and when it is read out. Cell loss rate is 
measured by the ratio of the number of lost (due 
to flushing or buffer overflow) cells to the number 
of total cells. Simulated cells that arrive at the SBMS 
will be discarded or lost when there is no available 
address in the idle address FIFO. The statistics of 
about lo7 cells are collected (over all queues in the 
switch) for each simulation. Thus, a loss probability 
smaller than lo-' cannot be measured and a loss 
probability below could contain only a few 
errors. If needed, however, loss probabilities below 
lop5 can be extrapolated based on our results. Aver- 
age burst lengths of 1 (the uniform random traffic) 
and 8 are considered. If the offered load and buffer 
size must be fixed, the load is 0.9 under uniform and 
bursty traffic and the buffer size is 256, respectively. 
Error injection probabilities are lo-" and and 
the faults are only injected into the address chain 
memory, not the registers in the queuing manage- 
men t circuits . 

3.2. Simulation results and interpretations 

Figure 9 shows the fault spread duration versus 
load. In single-link based SBMS, we choose one 
port randomly and inject an error into the next 
address of one cell in this queue. Normally each 
address in BFM is either in the idle address FIFO 
or in the address chain memory of some queue. If 
there were two addresses in the address chain mem- 

ory with the same content due to a fault, the queue 
management of the SBMS will later produce two 
copies of the same address in the FIFO. When these 
two copies are used in some other two address 
chains, this will generate a new fault and the 
phenomenon will spread all over the SBMS. Finally 
it results in a catastrophic situation because every 
port will output the cells that do not belong to the 
proper port. The duration from the first erroneous 
port to the last erroneous port is simulated and 
shown in Figure 9. From Figure 9 the duration will 
decrease as the load is increased and we see that 
after about 100 cell slot times, all eight ports will 
be in erroneous situations. 

When errors are injected under bursty traffic, 
Figure 10 shows the queuing delay versus load of 
these two schemes. At a higher error injection rate 
of the Flush scheme experiences less queuing 
delay compared with the In-Seq scheme as load 
increases. At a lower error injection rate, the 
difference is negligible among the Flush, In-Seq and 
no error cases. 

When errors are injected under bursty traffic, 
Figure 11 shows the cell loss rate versus load for 
these two schemes. At the higher error injection 
rate of the Flush scheme experienced higher 
cell loss rate compared with the In-Seq scheme as 
load increased. At the lower error injection rate of 

the difference is negligible among the Flush, 
In-Seq and no error cases for loads ranged from 0.8 
to 0.99. Notice that cell loss rate of the In-Seq 
scheme is almost the same under error injection 
rates and lo-". 

When errors are injected under uniform traffic, 
Figure 12 shows the queuing delay versus load of 
these two schemes. At the higher error injection 
rate of the In-Seq scheme experiences a 
slightly higher queuing delay compared with the In- 
Seq scheme with load ranging from 0.9 to 0.97. 
The other four curves almost collapse together even 
though different remedies are attempted with differ- 
ent error rate. 

When errors are injected under uniform traffic, 
Figure 13 shows the cell loss rate versus load for 
these two schemes. Under uniform traffic with 
buffer size 256, there is almost no cell loss when 
the load is below 0.97 for the no error case and the 
In-Seq scheme. On the other hand, the Flush scheme 
has experienced some cell loss. 

For short-term performance degradation which is 
of concern for transmission impact on a particular 
connection, it is desirable for our schemes to intro- 
duce little fluctuation at delay or cell loss in order 
to maintain quality of service (QoS). In Figures 14 
and 15, we show the delay and cell loss performance 
of the two schemes within a small window (100 or 
lo00 time slots) after error injection. It can be 
seen that the In-Seq scheme is faster to leave the 
fluctuating situation than the Flush scheme. 

In summary, we have investigated the perform- 
ance measures when distinct remedies are used 
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Figure 9. The fault spread duration versus load at uniform traffic 
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Figure 11. Cell loss rate versus load at bursty traffic 
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Figure 13. Cell loss rate versus load at bursty traffic 
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Figure 14. Queuing delay versus load at bursty traffic by changing window size 
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Figure 15. Cell loss rate versus load at bursty traffic by changing window size 

under different error injection rates. We observed 
that under random uniform traffic we cannot easily 
tell the difference between these two schemes. The 
difference is enlarged under bursty traffic. If the 
error injection rate is small, we prefer the Zn-Seq 
scheme which has a negligible delay penalty, better 
cell loss rate performance and endures shorter time 
to converge to the error free situation. 

4. CONCLUSION 

Rapid evolution in the field of telecommunications 
has led to the emergence of new switching techno- 
logies to support a variety of communication services 
with a wide range of transmission rates in a common, 
unified integrated services network. At the same 
time, the progress in the field of VLSI technology 
has brought up new design principles of high-per- 
formance, high-capacity switching fabrics to be used 
in the integrated networks of the future. Among 
most proposals for switching architecture, the shared 
buffer memory switch (SBMS) is one of the best 
alternatives for implementation specially based on 
its reduced usage of buffer size at bursty traffic. 

However, if the address chain memory in an 
SBMS is wrong, it will cause the port reading out 
cells not belonging to the proper port, and all cells 
destined to the port will never be read out again. 
More seriously, fuuh spread can occur, which ren- 
ders all other ports in the same switch to be faulty 
in a short time. The phenomenon is mainly due to 

the central control processing rather than distributed 
control in the multistage switches. 

Although there are some papers discussing the 
architecture of fault-tolerant switches, by and large, 
they were based on the Batcher-banyan switch. In 
the paper we have surveyed the methods for fault- 
tolerant SBMS architectures. Two schemes, Flush 
and In-Seq of fault tolerance have been proposed 
and comparisons have been made by computer 
simulation. The Flush scheme flushes all cells in the 
port after faulty location, and collects the addresses 
of the flushed cells for later usage. Therefore intuit- 
ively this scheme will increase the cell loss rate. On 
the other hand, the Zn-Seq scheme tries to output 
the cells after faulty location rather than flushing, 
and preserves the original cell sequence. However, 
this will introduce extra queuing delay for fixing the 
queue. From simulation we found that under lower 
error injection rate the In-Seq scheme suffers only 
a slight degradation in queuing delay compared with 
that of no error injected, and is faster to leave 
fluctuating situation after error injection. Therefore, 
we feel that the Zn-Seq scheme is preferred for its 
superior cell loss rate performance. 
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