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Short-term prediction of dynamic traffic states remains critical in the field of
advanced traffic management systems and related areas. In this article, a novel
real-time recurrent learning (RTRL) algorithm is proposed to address the above
issue. We dabble in comparing pair predictability of linear method versus RTRL
algorithms and simple non-linear method versus RTRL algorithms individually
using a first-order autoregressive time-series AR(1) and a deterministic function.
A field study tested with flow, speed and occupancy series data collected directly
from dual-loop detectors on a freeway is conducted. The numerical results reveal
that the performance of RTRL algorithms in predicting short-term traffic
dynamics is satisfactorily accepted. Furthermore, it is found that the dynamics of
short-term traffic states characterised in different time intervals, collected in
diverse time lags and times of day may have significant effects on the prediction
accuracy of the proposed algorithms.

Keywords: real-time recurrent learning; traffic dynamics; stochastic; deterministic

1. Introduction

Accurately characterising and predicting the traffic dynamics or travel time, especially
measured in short-time intervals, has become a prerequisite in the development of
advanced traffic management/transport information systems (ATMSs/ATISs) (Lam et al.
2005). Here, traffic dynamics (or termed as traffic time series) are regarded as temporal
evolution of traffic states, such as flow, speed and occupancy, measured in a sequential
(chronological) order with identical time intervals. Numerous adaptive intelligent signal
control mechanisms, for instance, are established on the basis of instantaneous or
predicted 5-min or shorter flow data. Smart incident detection may require 1-min or
shorter traffic states as inputs. Lam et al. (2002) pointed out that the short-term traffic
forecasting results can be used for validation of the regional and territory-wide transport
models required in various transport studies, such as the freight transport study and
parking demand study, and the development of traffic flow simulator to provide the off-
line short-term travel time and traffic flow forecasting database. Due to the complex
nature of traffic time series with considerable fluctuations and noises, accurately capturing
and predicting short-term traffic dynamics is more challenging than the long-term (e.g.
hourly or daily traffic) dynamics wherein conspicuous fluctuations have essentially been
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smoothed out. Lan et al. (2008a) revealed that different non-linear traffic patterns could
emerge depending on observed time scale, history data and time-of-day. In view of traffic
dynamics measured in different ways would provide more informative insights into its
complex nature, developing the prediction models to better elucidate its evolution,
measured in different time intervals, periods, lags and times of day, deserves in-depth
exploration. And this motivates our study.

Techniques for predicting time series can be generally divided into two categories:
linear and non-linear. Linear techniques, such as autoregressive integrated moving average
(ARIMA) methods, aim to characterise homogeneous time-series data, either stationary,
or non-stationary but can be further transformed into a stationary series (Kalman 1960,
Granger and Newbold 1976, Oller 1985). Additional comparisons between linear
technique (ARIMA) and other predicting methods, for instance Kalman filtering,
neural network (NN), non-parametric regression (NPR) and Gaussian maximum
likelihood (GML) are also conducted for extensive applications (Smith et al. 2002, Tam
et al. 2004, Lam et al. 2006, Lee et al. 2006). In contrast, linear models may not be
applicable in characterising inhomogeneous data due to their weakness in transforming the
non-stationarity of traffic states into stationarity.

The non-linear techniques for predicting the inhomogeneous time series are in effect
strongly based on the underlying postulation that different time series with equal states
may have equal futures and similar states will also evolve similarly, at least in the short
run. According to such postulation, Iokibe et al. (1995) proposed a fuzzy local
reconstruction method, which was satisfactory in prediction of some experimental
non-linear time series cases. Sakawa et al. (1998) proposed a fuzzy neighbourhood
method, which proved effective in some deterministic non-linear predictions. Lan and Lin
(2001) proposed a phase-space local approximation method for satisfactorily predicting
short-interval flow dynamics. Afterward, Lan et al. (2004) presented a confined space
fuzzy proportion model originating from the improved phase-space local approximation
method. However, in the prediction literature, most successful modelling for non-linear
time series data have been generated in laboratory experiments and rarely found outside
the laboratory due to the complex fluctuations with noises of most real-time traffic series
data. This has stimulated some attempts to combine non-linearity and stochasticity in
modelling and making predictions (Gardiner 1997, Ragwitz and Kantz 2000, 2002).

Considerable literature has elaborated on the predicting approaches from NNs (Clark
et al. 1993, Dochy et al. 1996, Dougherty and Cobbett 1997, Smith and Demetsky 1997,
Kirby et al. 1997) to wavelet analysis (He and Ma 2002) and to hybrid method (Li 2002,
Soltani 2002). Tam and Lam (2008) also presented a real-time solution algorithm to estimate
the current travel time by integrating both the on-line travel time data and off-line travel
time estimates. One of the neural network based approaches, real-time recurrent learning
(RTRL), is noteworthy because it is not only able to manipulate the mapping of
single input–output, i.e. static process, but also capable of incorporating time sequential
order into operating the non-stationary process, in which the chronological order is a very
important factor to accurately predict traffic dynamics (Haykin 1999, Chang et al. 2002).
Because of the recurrent feedback loops, a recurrent neural network (RNN) is able to
process temporal patterns and time-vary systems (Chang andMak 1999). Wherein, the real-
time recurrent learning algorithm applied to train RNN developed by Williams and Zipser
(1989) is one of the successful learning algorithms. In particular, it is suitable for on-line
training of RNN (Mak et al. 1999). Afterward, Mak et al. (1999), Chang and Mak (1999)
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and Goh and Mandic (2003) proposed modified learning algorithms as well as an adaptive
gradient computation to improve the convergence capability of the RTRL algorithms,
which have made RTRL algorithms more useful and practical in prediction. Despite the
improvement in computation of algorithms, most previous literature employing the RTRL
algorithms may either lack empirical analysis of the characteristics of traffic dynamics
before prediction, or hastily train a network without considering the effects that influence
the prediction accuracy from diverse perspectives.

Accordingly, the main purpose of this study is to propose RTRL-based algorithms to
know whether or not the dynamics of short-term traffic states characterised in different
time intervals, collected in diverse time lags and times of day have a significant influence
on the performance of the proposed model relative to the published forecasting methods.
In addition to assessing the relative performance of the proposed RTRL algorithms, we
further compare the pair predictability of linear method versus RTRL algorithms and
simple non-linear method versus RTRL algorithms individually using a first-order
autoregressive time series AR(1) and a deterministic function to elucidate the significance
that the characteristics of traffic dynamics affect the accuracy of prediction. After a
well-trained network is built and various techniques are compared, the accurate
understanding for traffic dynamics and reliable prediction would be anticipated.

The remaining parts of this article are organised as follows: Section 2 introduces the
rationales for linear, simple non-linear algorithms, RTRL and radial basis function neural
network (RBFNN) methodologies. Section 3 presents a preliminary test to compare the
pair predictability between linear, simple non-linear algorithms and the proposed RTRL
algorithms. Section 4 further progresses in a sensitivity analysis with various time intervals,
time lags and times of day. Finally, extensive discussions are elucidated in Section 5, and
concluding remarks are addressed in Section 6.

2. Methodology

This section mainly describes the methods of this study, including linear, simple non-linear
algorithms, RBFNN and RTRL models. In addition, according to the comments from
Tsekeris (2006) and the responses from Lin et al. (2006), therein the benefits and
limitations of approaches are also presented in this section.

2.1. Linear and simple non-linear algorithms

Now, let us start out from the fundamentals of linear and non-linear algorithms. Let x(t)
denote the studied traffic series describing the time evolution in state space. Then it can be
further expressed in a mapping form given by xnþ1 ¼ fðxnÞ, n 2 Z, in discrete time t ¼ n�t,
where x is a state vector that is finite dimensional x 2 Rn, and f is referred to as vector
fields explicitly depending on n and t. Thus, a traffic series can be considered as a sequence
of observations fSt ¼ sðxnÞg performed with some measurement functions sð�Þ, inferring
that a one-dimensional series can be embedded into multiple-dimensional spaces denoted
by St ¼ ð�t�ðm�1Þ� , �t�ðm�2Þ� , . . . �t�� , �tÞ, t ¼ 1, 2, . . . ,N, where the parameter � is the time
lag and the integer m is the dimension (Lan et al. 2008a).

Given a sequence of observations St, t¼ 1, . . . ,N, we intend to predict the outcome of
the following measurements, Stþ1. One often wants to find the prediction Ŝtþ1, which
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minimises the expectation value of the squared prediction error hðŜtþ1 � Stþ1Þ
2
i. When we

assume the time series is stationary, we can estimate this expectation value by its average

over the available measured values. If we further restrict the minimisation to linear time-

series models, which incorporate the k last measurements, we can express this by

Ŝtþ1 ¼
Xk
j¼1

ajSt�kþj ð1Þ

and minimise

XN�1
t¼k

Ŝtþ1 � Stþ1

� �2
ð2Þ

with respect to the parameters aj, j¼ 1, . . . , k. Here, we have assumed that the mean of the

time series has already been subtracted from the measurements. By requiring that the

derivatives with respect to all the ajs to be zero, we obtain the solution by solving the linear

set of equations

Xk
j¼1

Cijaj ¼
XN�1
t¼k

Stþ1St�kþi, i ¼ 1, . . . , k ð3Þ

Here, Cij is the k � k auto-covariance matrix

Cij ¼
XN�1
t¼k

St�kþiSt�kþj ð4Þ

Note that the linear relation, Equation (1), is justified for harmonic as well as for linear

stochastic processes. The most popular stochastic models for linear time series,

autoregressive (AR) models and moving average (MA) models, either consisted of linear

filters acting on a series of independent noise inputs as expressed in Equation (5) or on past

values of the signal itself as expressed in Equation (6), while Equation (7) represents the

ARMA model (Chatfield 1996)

xn ¼
XMMA

j¼0

bj�n�j ð5Þ

xn ¼
XMAR

j¼1

ajxn�j þ �n ð6Þ

xn ¼ a0 þ
XMAR

i¼1

aixn�i þ
XMMA

j¼0

bj�n�j ð7Þ

where xn is a Gaussian random variable, aj, bj are parameters. MMA, MAR are the order of

MA model and AR model and �n is white Gaussian noise.
Nevertheless, most time series of traffic dynamics exhibited in the real world are non-

linear and more complex than the time series formulated by linear models. A local linear
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method in multi-dimensional spaces was employed to predict non-linear time series if the

database was large and the noise level was small (Kantz and Schreiber 2004). The original

concept relevant to non-linear prediction was used in tests for determinism by Kennel and

Isabelle (1992). The resulting method is very simple. Recall the time-series expression in

multi-dimensional spaces: St ¼ ð�t�ðm�1Þ�, �t�ðm�2Þ�, . . . , �t��, �tÞ, t¼ 1, . . . ,N, and for all

measurements S1, . . . ,St, the corresponding delay vectors ð�1�ðm�1Þ� , . . . , �1Þ,
. . . , ð�t�ðm�1Þ� , . . . , �tÞ in multi-dimensional spaces can be found. In order to predict a

future measurement StþT, one can find the embedding vector �t0 closest to �t and use �t0þT
as a predictor. However, owing to multiple dimensions, we have to choose the parameter "
of the order of the resolution of the measurements and form a neighbourhood �"ð�tÞ of
radius " around the point �t. For all points �t0 2 �"ð�tÞ, i.e. all points closer than " to �t,
look up the individual predictors �t0þT. The prediction is then the average of all these

individual predictors.

ŜtþT ¼
1

�"ð�tÞ
�� �� X

�t02�"ð�tÞ

�t0þT ð8Þ

Here, �"ð�tÞ
�� �� denotes the number of elements of the neighbourhood �"ð�tÞ. If no

neighbours closer than " can be found, one might just increase the value of " until some

neighbours are found. The calculation of average of individual predictors can be adjusted

to raise the accuracy of prediction by adopting the nearest-neighbour algorithms (Smith

et al. 2002).
The concept of multi-dimensional spaces and simple non-linear prediction for any

traffic series is demonstrated in Figure 1. In the left panel (a), the red, blue and black

circles respectively represent the values of the series at time t, tþ � and tþ 2�; in contrast,

in the middle panel (b), one can find their corresponding trajectories in the multi-

dimensional spaces through reconstruction. If the time delay � is different, the portrait in
multi-dimensional spaces will change immediately. For small �, st and stþ� are very close to

each other. For large values of �, st and stþ� can be completely independent of each other,

and any connection between them is random. When a proper time delay is determined, we

can map the traffic series from one dimension into three-dimensional spaces. On the other

hand, in the right panel (c), if we choose one small section part of the state trajectories in

the multi-dimensional spaces and enlarge it to observe the trajectory motions, it indicates
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Figure 1. The concept of prediction for traffic series in multi-dimensional spaces.
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that the trajectories within radius ", i.e. in the black circle, move towards the same
direction and one can predict the red circle at time (tþT) by averaging the four closed
points marked start at time (tþT). That is, in this case we assume that the underlying
relationship between the current observation and its nearest neighbours remains stationary
with short-term time evolution; the points marked, their values already known, are the
neighbours of the current observation (the red circle at time t) and then a prediction (the
red circle at time tþT ) can be made by using the relationship and tracking the movements
of the nearest neighbours.

2.2. Real-time recurrent learning algorithms

Apart from the linear and simple non-linear techniques, several learning algorithms using
NN theory, such as Hebbian learning (Hebb 1949), back propagation network (BPN)
(Rumelhart and McClelland 1986, Werbos 1994), self-organising neural network (SOM)
(Kohonen 1995) and RBFNN (Haykin 1999), have also been developed to improve the
accuracy of prediction. For instance, BPN and RBFNN are two typical examples, which
learn of the static non-linear relationship by mapping input–output pairs. Therein, the
BPN learning begins with the feed-forward recall phase, i.e. as a single pattern vector is
submitted at the input, the output of the layers is compared to the known-good output and
a mean-squared error signal is calculated. The error value is then propagated backwards
through the network, and small changes are made to the weights in each layer. The weight
changes are calculated to reduce the error signal for the case in question. The whole
process is repeated for each of the example cases, then back to the first case again, and so
on. The cycle is repeated until the overall error value drops below some pre-determined
threshold.

In contrast, RBFNN uses a multi-dimensional traffic series Ut as the input to the
network, and outputs the corresponding output series Yt. Theoretically, formulation of the
network output response to an input multi-dimensional time series is postulated as a linear
combination through the hidden layer responses, and thus can be expressed as follows:

yt ¼ w0 þ
XM
j

wj � �j Ut � cj
�� ��� �

, j ¼ 1, 2, . . . ,M ð9Þ

where �ð�Þ is a radial basis function representing a response of the j-th hidden neuron to an
input multi-dimensional time series Ut; wj is a weight factor of the j-th hidden neuron for
defining the contribution of the hidden neuron to a particular output; and w0 is a bias
term. The RBF hidden neuron responses zj are given by

zj ¼ �j Ut � cj
�� ��� �

¼ exp �
Ut � cj
�� ��

2�2j

 !
, j ¼ 1, 2, . . . ,M ð10Þ

where cj is the centre of the j-th Gaussian function and �j is the width of the Gaussian.
As input traffic series are presented to the RBFNN, the network iteratively creates new

centre neurons to reduce its performance error (i.e. Euclidean distance). Allocation of the
new hidden neurons is determined by orthogonal least squares (OLS), which employs a
Gram–Schmidt algorithm and Cholesky decomposition (Chang and Chang 2005) to create
new centre neurons under a given threshold. In other words, the widths and centre
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locations of the existing hidden neurons can be adjusted during the learning process. As to
the method of adjusting the weights wj, Broomhead and Lowe (1988) proposed a recursive
least mean squares (LMS) algorithm to obtain an acceptable error as follows: if d(p) is the
p-th desired value, then y(p) is the p-th network output. The e(p) is the p-th difference
between the desired value and the network output. When e(p) equals zero, the p-th
network output is thereby able to fit the p-th desired value entirely. As such, the total value
of all e(p) in the network can be a minimum:

E ¼
XN
p¼1

eðpÞ½ �
2
¼
XN
p¼1

dðpÞ � yðpÞð Þ
2

ð11Þ

When E has a minimum value, then the gradient vector @E(p)/@wj is equal to zero.
Substituting @E(p)/@wj¼ 0 into Equation (11) will obtain W ¼ ð�T�Þ�1�TdðpÞ. The
parameters wj are iteratively updated until the learning process stably converges.

In contrast to the static learning algorithms, the real-time recurrent neural network
(RTRNN) can be considered as a BPN with feedback loops connecting to every hidden
node, which exhibits dynamical learning algorithms. The main difference compared with
BPN is that the outputs are used as part of the next sequentially timed input, i.e. the
output at time (tþ 1) is based upon the current input and previous outputs. Furthermore,
the RTRNN consists of three layers: a concatenated input–output layer with (mþ n)
nodes, a processing (hidden) layer with n nodes and an output layer with k outputs. Let
y(t) denote the n-tuple of outputs of the n-processing neurons at time t and x(t) the m-tuple
of external inputs to the network at time t. We concatenate y(t) and x(t) to form the
(mþ n)-tuple u(t), with B denoting the set of indices for the processing neurons and A the
set of indices for the external inputs, so that

uiðtÞ ¼
xiðtÞ if i 2 A
yiðtÞ if i 2 B

�
ð12Þ

By adopting the indexing convention just described, a hidden network netj at time t is
obtained by summing up the weighted inputs with a weight matrix w. After the network is
transferred by an activation function f( ), the output yj(t) is used as a feedback input in the
next time step and summing up the weighted feedback inputs with a weight matrix v is
repeated. Likewise, after the transformation, the network output, zk(t), is passed to an
output layer. The above said procedure can be expressed as the following equations:

netjðtÞ ¼
X
j2A[B

wjiðt� 1Þuiðt� 1Þ ð13Þ

yjðtÞ ¼ f ðnetjðtÞ
�

ð14Þ

netkðtÞ ¼
X

vkjðtÞyjðtÞ ð15Þ

zkðtÞ ¼ f ðnetkðtÞÞ ð16Þ

With regard to the algorithms for computing the weight matrix w, v and the error
function, we denote dk(t) as the desired value of the k-th neuron at time t and define ek(t) to
be the difference between the desired value and the network output at time t, i.e.

ekðtÞ ¼ dkðtÞ � zkðtÞ ð17Þ
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Then we define the error function, E(t):

EðtÞ ¼
1

2

XK
k¼1

e2kðtÞ ð18Þ

Here, the error function defined as half of the sum of the square errors is only for easy
calculation on the weight adjustments. According to the steepest descent method, the
amount of adjusted weight for vkj(t) and for wmnðtÞ:

�vkjðtÞ ¼ ��1
@EðtÞ

@vkjðtÞ
ð19Þ

�wmnðt� 1Þ ¼ ��2
@EðtÞ

@wmnðt� 1Þ
ð20Þ

where �1, �2 are the learning rates.
In general, a high or low learning rate would disadvantage the training process because

a higher learning rate referring to an internet with larger modified weights could quickly
achieve the goal of minimising the error function, yet in contrast, the higher learning rates
could lead to an over-weighted adjustment and cause an error-oscillation phenomenon.
Hence, according to empirical experiments, it was decided that a higher learning rate be set
up in the beginning and decreasingly adjust the values by multiplying by a constant less
than 1 (e.g. 0.95) in order to take into account both the converging rate and to avoid an
oscillatory situation.

And

@EðtÞ

@vkjðtÞ
¼ �ekðtÞf

0 netkðtÞð ÞyjðtÞ ð21Þ

@EðtÞ

@wmnðt� 1Þ
¼

XK
k¼1

�ekðtÞf
0 netkðtÞð ÞvkjðtÞ

" #
@yjðtÞ

@wmnðt� 1Þ
ð22Þ

According to error back propagation algorithms (Chang and Chang 2005), a new variable
with three dimension can be defined as �jmnðtÞ, which is called a dynamic variable

�jmnðtÞ ¼
@yjðtÞ

@wmnðtÞ
for all j 2 B, m 2 B, n 2 A [ B ð23Þ

Accordingly

�wmnðt� 1Þ ¼ �2
X

ekðtÞf
0 netkðtÞð ÞvkjðtÞ

h i
�jmnðtÞ ð24Þ

In brief, the steps involved in RTRL algorithms can be summarised as follows and
depicted in Figure 2:

Step 1: Randomly initialise the weight wmn(0) and vkj(0).

Step 2: Input the xi(t) into the RTRL network and compute the yj(t), zk(t), then use
yjðtþ �Þ as feedback to the concatenated input–output layer together with xjðtþ �Þ as new
inputs.
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Step 3: Compute the difference between desired value dk(t) and network output zk(t).

Step 4: Update �vkjðtÞ according to Equation (19).

Step 5: Update �wmnðt� 1Þ according to Equation (20).

Step 6: Increment t by 1 and go to step 2.

Note that, according to Yeh (2004), a feasible analysis encompassing several steps were
suggested before one employed NN algorithms to solve problems. First, ask whether some
kind of relationship exists between input and corresponding output data or not; second,
consider whether or not plenty of data examples can be afforded to train the network;
third, review if conventional tools cannot come up with the current requirement; and
fourth, examine if similar case studies using NNs had been done successfully. Only after
the above circumstances are taken into detailed account, the NN tools are recommended
to solve problems and accurate prediction can be anticipated.

3. Preliminary testing

This section describes the main procedures and analytical results of the preliminary tests.
Therein, we generated two time-series data categories including linear stochastic time series
and non-linear deterministic time series in advance of prediction. The stochastic time series
derived from a linear equation was adopted to compare the predictability between the
linear autoregressive method and RTRL algorithms while the non-linear time series
derived from a first-order differential-delay equation was used to compare the

Figure 2. A typical RTRL network and traffic dynamics from loop detectors.
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predictability between the simple non-linear method and RTRL algorithms. Details about
the preliminary test procedures are described as follows:

First, an AR(1) time series, ðxtþ1 � 0:4Þ ¼ 0:75ðxt � 0:4Þ þ et with et �
i:i:d

Nð0, 1Þ was

used to compare the predictability between the linear model and the RTRL algorithms. In
the AR(1) linear time series, 200 independent points et, which conformed to Gausian
distribution, were created and an initial xt was picked to iterate 200 times together with et.
Then, we set the order of the above model to be equal to one to compute the average

prediction error and residuals for each time step. After computation, we learned that the
root-mean-square error (RMSE) was equal to 1.03. Employing the same time series xt as
an input as well as xtþ1 as output, we adopted the RTRL algorithms to train a network

and calculated the RMSE, which equaled 0.979 for one trained data set and 0.93 for
another test data set. In order to train the AR(1) model, in the RTRL NN, six nodes were
used to process the recurrent feedbacks and the learning rate was set to 0.1. The goal of the
RTRL network we set was either that the RMSE equals 0.01 or the training times reached

700 times, whereupon the training iterations would stop. In Figure 3, panel (a) represents
the difference between the outputs of the AR(1) model and desired values; while panel (d)
represents the difference between the outputs of the RTRL network and desired values. It
is obvious to indicate that for a stochastic time series, the accuracy of prediction by

adopting RTRL algorithms is superior to adopting linear prediction both from observing
the difference in figure and comparing the values of RMSE.

Second, a first-order differential-delay equation, which is the famous Mackey–Glass
equation: dxðtÞ=dt ¼ 0:2xðt� �Þ=1þ x10ðt� �Þ

	 

� 0:1xðtÞ, was used to compare the

predictability between the simple non-linear method and the RTRL algorithms. This

equation represents a physiological responsive system, which can be used as an index to
examine the features of a non-linear time series (Mackey and Glass 1977). For instance,
the series displays periodic motions when � is a relatively small value, whereas for � larger
than 17, it displays a chaotic phenomenon. We employed an average mutual information
(AMI) approach (Fraser and Swinney 1986) and a false nearest neighbour (FNN)
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Figure 3. The difference between model output and desired values by adopting linear method,
simple non-linear method and RTRL algorithms.

68 J.-B. Sheu et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

7:
04

 2
5 

A
pr

il 
20

14
 



algorithm (Kennel et al. 1992) to search for the proper time delay and to determine the
minimal sufficient embedding dimension. Once the appropriate time delay and the
sufficient dimension were determined, we were able to map the one-dimensional
differential equation into multi-dimensional spaces and make use of the neighbouring
measurements in multi-dimensional spaces to predict future points. In accordance with this
approach, a time series derived from Mackey–Glass equation with a time lag � ¼ 6, which
contained 500 data points, was reconstructed into multi-dimensional spaces and was
forward predicted 500 time steps. Panel (b) in Figure 3 represents the predicting results
showing the difference between output of the simple non-linear technique and desired
values. The RMSE was equal to 0.1268. Similarly, we adopted the RTRL algorithms to
train a network, in which the input and output are the same as the above time series, to
predict the first-order differential-delay equation. In the RTRL network, 12 nodes were
used to process the recurrent feedbacks and the learning rate was set to 0.1. The goal of the
RTRL network we set was either that the RMSE equals 0.07 or the training times reached
2000 times, whereupon the training iterations would stop. Panel (e) in Figure 3 represents
the prediction results, showing the difference between output of RTRL algorithms and
desired values. The RMSE was equal to 0.07. From Figure 3 and RMSE, again we learned
that for a deterministic equation, the accuracy of prediction by adopting RTRL
algorithms is superior to adopting the simple non-linear technique.

Note that if further observing the top panel in Figure 3(b), we will find that the errors
of prediction by using the simple non-linear technique are not the same as time evolves,
but rather the differences are getting larger, i.e. the accuracy of prediction is getting low as
time evolves. By contrast, the errors of prediction by using the RTRL algorithms do not
exhibit such a situation, but show large differences during the first steps. The right panels
of Figure 3 display the difference between the model output and desired values by
adopting the simple non-linear technique (panel (c)) and adopting the RTRL network
(panel (d)) in the first 20 time steps. It can be clearly seen that in panel (c), the curve
depicting the simple non-linear technique and the curve depicting the desired values match
quite closely. The RMSE of short time steps (e.g. 20 steps) is equal to 0.0035, which is
greatly superior to the average RMSE of whole steps (e.g. the average RMSE of 500 time
steps is equal to 0.1268). In other words, if one would like to forward predict a non-linear
time series resulting from a deterministic function in short steps, then the simple non-linear
technique is quite a good method to adopt. By contrast, in panel (f), the curve depicting
RTRL algorithms and the curve depicting the desired values do not match well in the
beginning but converge gradually. It indicates that the RTRL algorithms is suitable to
train a network to predict, and eventually the average predictability compared with other
techniques is satisfied; however, training time of the NN is comparably long and is a factor
that should be taken into account in practice. Consequentially, in accordance with the
different purposes to be achieved, the predicting techniques with their traits serve various
functions. In terms of the purpose of improving the accuracy of prediction in this case
study, the RTRL network is a suitable technique because the training and testing results
have revealed that the method can not only successfully simulate a linear time series with
stochastic characteristics, but also can capture the non-linear dynamic trajectories
resulting from a deterministic function.

A further description regarding how the numbers of hidden nodes used to process the
recurrent feedbacks were determined. Similar to the learning rates, the number of hidden
nodes was determined by a trial and error method or from empirical experiments.
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Normally, the higher the number of hidden nodes used to process the recurrent feedbacks,
the slower the speed a network converges. In other words, an appropriate number of nodes
used to process the recurrent feedbacks helped reduce the value of the error function,
whereas a large number of nodes did not benefit the process but rather disadvantaged the
convergence of a network. From the above we can infer that, when training a network, an
insufficient number of hidden nodes results in the relationship between input elements and
observed data not being successfully constructed, which consequently leads to a large error
gap. In contrast to using an insufficient number of hidden nodes, too many nodes could
cause a network with high freedom to over-fit the training sets, and, sometimes, too many
nodes, involving over description with regard to noise existing in data sets, would not only
delay the convergent time but also fail to train the network. However, according to
Dawson and Wilby (2001), the methods for deciding on the appropriate number of hidden
nodes for a network can be divided into two types: pruning algorithms (Abrahart et al.
1998) and constructive algorithms (Kwork and Yeung 1997). The pruning algorithms set
up a loose number of hidden nodes to train a network and then the number of nodes are
gradually reduced until an adequate number of nodes are found, whereas the constructive
algorithms predetermine a small number of nodes and then the number of nodes are
increased one by one until a threshold error value is obtained. In addition, Yeh (2004)
suggested that around 6–8 hidden nodes were adequate to process networks in case of
normal problems while 12–16 hidden nodes were recommended to train networks provided
that complex problems were appropriately tackled. Hence, in this article, we adopted
constructive algorithms to determine the number of nodes and eventually concluded that
six nodes be used in the RTRL NN for training the AR(1) model and that 12 nodes be
used for training the first-order differential equation.

4. Sensitivity analysis

After explaining the rationales for various prediction models and comparing the
predictability of different techniques, we would like to further learn what kind of factors
affect the accuracy of prediction. The following is the sensitivity analysis, where we adopt
the proposed RTRL algorithms and RBFNN to train and to compare the networks by
inputting real traffic-series measurements with various time intervals, time lags and times
of day to explore the factors affecting the predictability. Note that the reason we
implemented the sensitivity analysis using RTRL and RBFNN models is to support the
fact that the accuracy of prediction will be influenced by some factors, wherein the
influences are not only justified by the proposed RTRL but also RBFNN, rather than
comparing the predictability between RBFNN and RTRL algorithms.

4.1. Data

In this section, the real traffic time-series data was directly extracted from two nearby
dual-loop detectors, station 433 and station N27.9, both inbound to Taipei City, on the
mainline of the Sun Yat-Sen Freeway of Taiwan. In order to investigate the training results
of traffic dynamics under different situations, the raw data was divided into two groups.
Raw data in the first group contains lane-base traffic series from five selected workdays,
including flow, time-mean-speed and percent occupancy, which were reported once for
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every 20 s by the median-lane detector at station 433. For analysis purpose, we

accumulated the 20-s traffic series into 1- and 3-min lane-base series via the following

calculations: flows were directly summed up from 20-s flow; speeds were the weighted

average of 20-s time-mean-speed multiplied by its corresponding flow; and occupancies

were the arithmetic mean of 20-s occupancy. Figure 4 demonstrates the 1-min flow, speed

and occupancy series. Note that very similar traffic patterns emerge on different workdays,

but they never exactly repeat.
Raw data in the second group contains approach-base flow, time-mean-speed and

percent occupancy from 10 selected workdays, which were reported once for every 5min at

station N27.9. This 5-min approach-base raw data, together with a conversion into 15-min

approach-base time series data, was used for analysis. The conversion of the 5-min

approach-base flow, speed and occupancy series to 15-min ones follows the same

calculation as that at station 433.
Apart from the above traffic time series extracted from station 433 and station N27.9,

there are some noteworthy invariant features. According to Lan et al. (2008a) who also

analysed the traffic features at the same stations, the results have indicated that the degrees

of variation of traffic series depend on times of day, the early hours (00:00 am–03:00 am)

having the largest coefficient of variation (CV) while the evening peak hours (18:00 pm–

21:00 pm) having the smallest CV. The degrees of variation will decline with the length of

measured time interval. Traffic series measured at 20-s intervals have the largest CV,

followed by 1- and 3-min intervals. Furthermore, traffic time-series data at station 433 and

station N27.9 have revealed different non-linear features in multi-dimensional spaces,

including fixed point, periodic-like, deterministic-like, stochastic and random features.

Specifically, the flow and occupancy state trajectories can shrink gradually to fixed points

in the early hours. If measured at shorter intervals, such as one-minute interval at station

433, the state trajectories in multi-dimensional spaces will repel randomly like a ‘random

walk’. If measured in longer intervals, such as 15-min intervals at station N27.9,

Figure 4. An illustration of 1min traffic series for five workdays (station 433).
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deterministic-like features are likely to emerge. Apart from the above non-linear features,
stochastic features of these traffic series prevail.

Since the criterion of RMSE is influenced on the value of data and the flow, speed and
occupancy time series carry different units and cover a diverse range in this article, it is
necessary to process the original data with various units before comparison of
predictability. For comparison purposes, therefore, all the traffic data studied were
standardised using Equation (25).

~xi ¼
xi � xmin

xmax � xmin
, i ¼ 1, 2, . . . ,N ð25Þ

where xi is the i-th observed data point; xmin is the minimum in observed points; xmax is the
maximum in observed points; ~xi is the i-th standardised data point. The prediction results
for flow, speed and occupancy series measured in different time intervals, time lags and
times of day, are detailed as follows.

4.2. Prediction accuracy with various intervals

Before a network is trained, it is necessary to clarify the input and output of the NN.
For RBFNN, according to Lan et al. (2007) the traffic series measured with time lag
(¼1) in three-dimensional state spaces provides a satisfying training effect. Namely, the
input vector is ~xðt� 3Þ, ~xðt� 2Þ, ~xðt� 1Þ½ �; output vector is ~xðtÞ, where ~xðtÞ represents
the standardised traffic data at time t. For RTRLNN, the input vector is ~xðt� 1Þ and
the output vector is ~xðtÞ, wherein the network output at time t consists of the current
input vector ~xðt� 1Þ and network outputs of the previous layer. At station 433, the
number of lane-base data points to be analysed were 1440 and 480 respectively, for
1- and 3-min traffic series, thus a 24-h workday (2004.02.04) data set was selected for
training and another 24-h workday (2004.02.12) data set for testing. At station N27.9,
we also used 1440 and 480 approach-base data points for 5- and 15-min traffic series,
respectively, thus a consecutive five-workday (2004.02.09–2004.02.13) data set was
selected for training and another consecutive five-workday (2004.02.16–2004.02.20) data
set for testing.

The results of prediction are summarised in Tables 1 and 2. From the tables, all of the
RMSEs are sufficiently small to show that both the RTRL and RBFNN model are highly

Table 1. Prediction results of traffic series measured in different time intervals (station 433).

Time
interval

Traffic
variable

Time lag
�

RTRL-RMSE RBF-RMSE

Train
(2004.02.04)

Test
(2004.02.12)

Train
(2004.02.04)

Test
(2004.02.12)

1min Flow 1 0.0943 0.1049 0.0851 0.0907
Speed 1 0.0510 0.0600 0.0556 0.0678
Occupancy 1 0.0566 0.0600 0.0433 0.0477

3min Flow 1 0.0787 0.0800 0.0593 0.0734
Speed 1 0.0500 0.0600 0.0547 0.0555
Occupancy 1 0.0510 0.0557 0.0392 0.0458
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satisfactory in predicting the real-world short-term traffic series. Figures 5 and 6 depict the

difference between network outputs and observed values by adopting RTRL algorithms,

in which a portion of the data points are picked deliberately to clearly depict the

differences in the lower panel. However, it is noted that in Figure 7 the curve of difference

using the RTRL model oscillates up and down more significantly than the curve of

difference using the RBF model for the first 15 steps or even longer period. Such

oscillations are similar to our case study demonstrated in the above section. In addition,

Table 2. Prediction results of traffic series measured in different time intervals (station N27.9).

Time
interval

Traffic
variable

Time
lag
�

RTRL-RMSE RBF-RMSE

Train
(2004.02.09–
2004.02.13)

Test
(2004.02.16–
2004.02.20)

Train
(2004.02.09–
2004.02.13)

Test
(2004.02.16–
2004.02.20)

5min Flow 1 0.0671 0.0686 0.0819 0.0623
Speed 1 0.0574 0.0640 0.0624 0.0587
Occupancy 1 0.0806 0.0500 0.0494 0.0549

15min Flow 1 0.0663 0.0648 0.0620 0.0602
Speed 1 0.0449 0.0574 0.0590 0.0575
Occupancy 1 0.0755 0.0475 0.0428 0.0513
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Figure 5. The RTRL network outputs and observed values of flows measured in different time
intervals (station 433).
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Figure 6. The RTRL network outputs and observed values of flows measured in different time
intervals (station N27.9).
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Figure 7. The RTRL and RBF network outputs and observed values of flows measured in 3min
intervals for the first 15 steps.
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due to the convergent ability of the RTRL network, the average predictability for RTRL

networks and for RBFNN is about the same. Further comparing the RMSEs in more

detail, we find that for both RTRL networks and RBF networks, the RMSEs(3min) are

smaller than the RMSEs(1min); similarly, the RMSEs(15min) are smaller than the

RMSEs(5min). The findings suggest that the predictive accuracy for traffic dynamics

measured in longer time intervals is better than those measured in shorter intervals.

4.3. Prediction accuracy with various lags

As mentioned previously, it is important to determine a proper time lag � when analysing

time series, especially when the time series in one dimension is mapped into multi-

dimensional spaces. For the RTRL algorithms and RBFNN, it is postulated that the

training process is a sequential learning scheme and that the traffic time series at time t and

at time (tþ 1) have relevant dependence, i.e. the time series is a first-order process or

Markov process. Therefore, in this study, when considering the vector

xðt� ðq� 1Þ�Þ, . . . , xðt� �Þ½ � as inputs and using the input vector to predict the desired

value, x(t), we set � ¼ 1. Nevertheless, would the accuracy of prediction be better if we

used other time lags? For instance, for a deterministic function, using the Mackey–Glass

equation with a time lag � ¼ 6 would produce the best accuracy of prediction compared to

adopting other time lags.
Accordingly, Table 3 shows the prediction results for various time lags. For traffic

data sets with 1- and 3-min intervals, we find that the prediction accuracy declines

with increasing time lags for both RTRL algorithms and RBFNN, i.e.

RMSE(�=1)5RMSE(�=2)5RMSE(�=3). Likewise, for traffic data sets with 5- and

15-min intervals, the prediction accuracy also declines with increasing time lags, i.e.

RMSE(�=1)5RMSE(�=1/2 time delay)5RMSE(�=time delay)
1, except for one RBF case marked

in gray (RMSE_flow_15min (�=time delay)5RMSE_flow_15min (�¼1=2time delay)).

Table 3. Prediction results of traffic dynamics for various time lags using RTRL and RBF.

Time interval
Traffic
variable

Time
lag

RMSE
Time
lag

RMSE
Time
lag

RMSE

RTRL RBF RTRL RBF RTRL RBF

1min (one
workday,
station 433)

Flow 1 0.0943 0.0851 2 0.0968 0.0960 3 0.0979 0.1074
Speed 1 0.0510 0.0556 2 0.0632 0.0606 3 0.0669 0.0655
Occupancy 1 0.0566 0.0433 2 0.0612 0.0458 3 0.0677 0.0466

3min (one
workday,
station 433)

Flow 1 0.0787 0.0593 2 0.0790 0.0659 3 0.0792 0.0679
Speed 1 0.0500 0.0547 2 0.0547 0.0666 3 0.0727 0.0754
Occupancy 1 0.0510 0.0392 2 0.0599 0.0471 3 0.0662 0.0576

5min (five
workdays,
station N27.9)

Flow 1 0.0686 0.0623 30 0.1897 0.0911 60 0.1947 0.1023
Speed 1 0.0640 0.0587 42 0.0984 0.1484 84 0.0998 0.1718
Occupancy 1 0.0500 0.0549 30 0.0870 0.0951 60 0.0895 0.1009

15min (five
workdays,
station N27.9)

Flow 1 0.0648 0.0602 10 0.2011 0.093 20 0.2829 0.0898
Speed 1 0.0574 0.0575 13 0.1024 0.0903 27 0.1062 0.1266
Occupancy 1 0.0557 0.0513 10 0.1171 0.0748 20 0.1384 0.0763

Transportmetrica 75

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

7:
04

 2
5 

A
pr

il 
20

14
 



Compared with the findings of Lan et al. (2008a), the above results seem again to

indicate that the characteristics of short-interval traffic dynamics extracted from real world

detectors measured within 15-min intervals and involving noises are more stochastic than

deterministic; therefore, in the prediction of non-linear short-interval traffic dynamics,

stochastic characteristics can be stronger than deterministic characteristics similar to the

famous Mackey–Glass equation. Nevertheless, the only one exception for RBF model in

Table 3 reveals that the 15-min flows have shown a slight tendency towards deterministic

characteristics, so a better accuracy of prediction for 15-min flows using a proper time lag

(i.e. time delay) occurs, compared to using half time delay. However, with regard to RTRL,

owing to its real-time recurrent algorithms, the prediction accuracy significantly declines

with increasing time lags. Figure 8 presents the differences between RTRL network outputs

and observed values of flows for various time lags. In this figure, the same training data as

Section 4.2 was employed; but only a portion of the data points are picked deliberately to

clearly depict the differences.

4.4. Prediction accuracy with various times of day

In this scenario, we mainly aim at the time-of-day effect on the system performance.

Therein, we attempt to identify the most critical time-of-day for prediction and how to

improve the prediction accuracy. Accordingly, we tested the proposed algorithms using

different data sets collected in times of day. Table 4 provides the corresponding

prediction results. Observed from this table, we find that the values of RMSE in four

time periods are different. In terms of 1-min flow, for RBFNN, the results are

RMSE(18:00–21:00)4RMSE(06:00–09:00)4RMSE(12:00–15:00)4RMSE(00:00–03:00). Likewise,

other 3-min traffic variables, speed and occupancy, also have different RMSE values,

depending on various time periods. Corresponding results for an RTRL network are

RMSE(18:00–21:00)4RMSE(06:00–09:00)4RMSE(00:00–03:00)4RMSE(12:00–15:00), which com-

pared to the values of RMSE, it is noted that the order of RMSE(00:00–03:00) and
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Figure 8. The RTRL network outputs and observed values of flows for various time lags.
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RMSE(12:00–15:00) are reversed. This is because an oscillation often occurs during the
beginning steps whenever one adopts the RTRL algorithms to train a network,
hence the RMSE(00:00–03:00)4RMSE(12:00–15:00). Such results may reveal that in general
the morning and evening peak-hour periods remain the most critical for accurate
prediction compared to other periods because serious jams are constantly incurred

during such periods. Figure 9 illustrates the difference between RTRL outputs and
observed values of flows during various periods of time in a workday (2004.02.04) at
station 433.

To improve the accuracy of prediction during peak hours, a feasible method is to train
a network that only consists of historical data for a specific time period, e.g. 06:00–09:00 or
18:00–21:00, in other words, to predict traffic dynamics at the same time period

rather than to train a whole-day network to predict a specific time period of traffic
dynamics. Table 5 illustrates the improved prediction results using this feasible method. It
indicates that the prediction performance obtained from the network of historical data at
specific time periods is better than that obtained from a whole-day network, that is

RMSE(8 days_1-min_06:00–09:00)5RMSE(1 day_1-min 00:00–24:00) and RMSE(8 days_3-min_06:00–09:00)5
RMSE(1 day_3-min 00:00–24:00).

5. Discussions

In this study, various techniques, including a linear method, simple non-linear prediction
and RTRL algorithms were employed to compare their predictability. Wherein, a first-
order AR model and a first-order differential-delay equation were used to test the

predictability between the linear method, simple non-linear prediction and RTRL
algorithms. After validating the prediction power of RTRL algorithms, we further
implemented the sensitivity analysis by employing the short-term (within 15min) traffic
series, including flow, speed and occupancy measured with various time intervals, time lags

Table 4. Prediction results of traffic dynamics during different time periods
(station 433).

Time period
Traffic
variable

Time
lag

RMSE(1min) RMSE(3min)

RTRL RBF RTRL RBF

00:00–03:00 Flow 1 0.0653 0.0322 0.0548 0.0213
Speed 1 0.0510 0.0479 0.0493 0.0395
occupancy 1 0.0411 0.0101 0.0338 0.0082

06:00–09:00 Flow 1 0.1187 0.0954 0.1022 0.0755
Speed 1 0.0533 0.0673 0.069 0.0603
Occupancy 1 0.0864 0.0538 0.0851 0.0499

12:00–15:00 Flow 1 0.0693 0.0941 0.0532 0.0582
Speed 1 0.0405 0.0391 0.0286 0.0305
Occupancy 1 0.0401 0.0414 0.0315 0.0298

18:00–21:00 Flow 1 0.1258 0.1142 0.1059 0.0812
Speed 1 0.0638 0.059 0.0558 0.0586
Occupancy 1 0.0732 0.0647 0.0647 0.0527
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and times of day. In accordance with the above investigation, we present the advantages
and limitations of proposed RTRL model and summarise some important findings, and
explain their nature here.

Except for the merits we portrayed in the above sections, the main reason for choosing
RTRL algorithms in this article to train a non-linear traffic dynamics is that RTRL
algorithms can iteratively modify performance errors and update its weighted parameters
to meet the characteristics of traffic dynamics, which are neither deterministic nor
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Figure 9. The difference between RTRL network outputs and observed values of flows during
various time periods (3min, station 433).

Table 5. Prediction results based only on peak-hours traffic data for network training.

Time
period

Traffic
variable

Time
lag

RMSE
(1 day, 1min)

RMSE
(1 day, 3min)

RMSE
(8 days, 1min)

RMSE
(8 days, 3min)

RTRL RBF RTRL RBF RTRL RBF RTRL RBF

06:00–09:00 Flow 1 0.1187 0.0954 0.1022 0.0755 0.0908 0.0742 0.0845 0.0645
Speed 1 0.0533 0.0673 0.0690 0.0603 0.0501 0.0667 0.0461 0.0568
Occupancy 1 0.0864 0.0538 0.0851 0.0499 0.0694 0.0531 0.0674 0.0414

18:00–21:00 Flow 1 0.1258 0.1142 0.1059 0.0812 0.1006 0.0812 0.0882 0.0711
Speed 1 0.0638 0.0590 0.0558 0.0586 0.0594 0.0511 0.0501 0.0485
Occupancy 1 0.0732 0.0647 0.0647 0.0527 0.0562 0.0366 0.0510 0.0334
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completely random series but instead exhibit various features with times of day.
In addition, in this study, the results have indicated that the RTRL algorithms have
efficiently captured the trend and variation of non-linear traffic series after several training
circles because the RTRL algorithms can be considered as BPN with feedback loops
connecting to every hidden node, which exhibits dynamical learning algorithms.
Nevertheless, one shortcoming of RTRL algorithms is that an oscillation often occurs
during the initial training, and at the present time, the problems of deciding on the proper
hidden neurons, hidden layers and training time can only be solved by a trial and error
method. For instance, a high or low learning rate disadvantaged the training process
because a higher learning rate referring to a network with larger modified weights could
quickly achieve the goal of minimising the error function, yet in contrast, the higher
learning rates could lead to an over-weighted adjustment and cause an error-oscillation
phenomenon. Furthermore, if the number of hidden nodes are not sufficient, the
relationship between input elements and observed data cannot be successfully constructed,
which consequently leads to a large error gap. In contrast, too many nodes could cause a
network with high freedom to over-fit the training sets, and, sometimes, too many nodes
involving over description regarding noise existing in data sets would not only delay the
convergent time but also fail to train the network.

In addition, from the comparison between different techniques, we have learned
that it is very important to take into account the characteristics of traffic series before
prediction. Without the prerequisite analysis, it is hasty to claim or determine which
technique is the best to predict or is able to precisely predict a non-linear time series
because different characteristics of the time series could greatly affect the accuracy of
prediction. Moreover, different methods of prediction may only provide a certain
function for a specific purpose rather than being capable of error-free predicting
including all aspects. For instance, the simple non-linear technique can immediately
learn the intrinsic rules of the dynamics to precisely catch the trajectories in multi-
dimensional spaces within a few time steps. However, the requirement is that the
underlying dynamics be deterministic or a time series with slight noises. Likewise, we
successfully predict the short-term non-linear traffic dynamics extracted from the dual-
loop detectors by employing RTRL algorithms as well as RBFNN. Nevertheless, as
mentioned above, the problems of how to decide the proper hidden neurons, hidden
layers and training time still remain crucial consideration prior to manipulating their
algorithms. Consequently, in terms of prediction, characteristic analysis of a time series
is important and is a prerequisite for prediction. Furthermore, what we would like to
do is to select a technique that permits predicting the short-term traffic dynamics to
meet the requirements of ATMS rather than arbitrarily searching for a method for
perfect prediction without any errors.

Apart from the above findings, the traffic time series measured in different time
intervals (1, 3, 5 and 15min), with different time lags (time lag¼ 1, one-half time delay,
1-time delay) and during different times of day (00:00–03:00, 06:00–09:00, 12:00–15:00,
18:00–21:00) have been trained to predict traffic dynamics. According to our field study,
several findings have been illustrated to support the accuracy of prediction when
influenced by various time intervals, time lags and time periods. We have found that the
accuracy of predicting traffic dynamics for longer intervals (15min) is better than for
shorter intervals (5min); likewise, 3min is better than 1min. The findings may shed light
on criteria that traffic dynamics with longer intervals (e.g. over 15min) can be deemed as a
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simple problem, and around 6–8 hidden nodes are suggested to process the network while
traffic dynamics with shorter intervals (e.g. less than 5min) can be regarded as a complex
problem and around 12–16 hidden nodes are recommended to tackle the network. Such
criteria may be useful in practice to decide the appropriate number of hidden nodes, since
determining the number of hidden nodes by using trial and error methods is sometimes
time consuming. If a prediction model is slow to respond to changing parameters, then
practicability of the model is extremely limited, and this point is one of the contributions of
this article.

Moreover, a deterministic model with a proper time delay can precisely predict the
dynamic state, for instance, � ¼ 6 is a good time delay for the Mackey–Glass equation. In
contrast, a stochastic time series for short time lag (e.g. � ¼ 1) will produce a better
prediction than adopting other time lags. Short-interval traffic dynamics extracted from
detectors are very likely close to stochastic patterns, thus the training results of adopting
time lag being equal to one produce optimum prediction compared to adopting other time
lags. The findings that good prediction originates from a proper time delay seems to imply
that searching for an appropriate time lag is not only very important for mapping a time
series from one dimension to multi-dimensions, but is also a preliminary testing if one
would like to select a NN as a tool to predict a time series, which does not originate from a
given equation. Namely, pre-searching for the time delay of a time series helps one
correctly determine input data and corresponding output data for training a network, with
which fast and high prediction accuracy can be anticipated. The above findings can be
regarded as the second distinguishing contribution of this article compared to previous
studies.

On the other hand, we have also found that traffic dynamics in the morning and
evening peak hours are the most difficult to predict compared to other time periods, but
this situation can be improved by training a historical network using the traffic data
composed of only the same time periods, i.e. gathering several historical data at the same
time periods will produce a better training network to predict traffic dynamics.
Nevertheless, it is noticed that one has to carefully select proper historical data when
adopting the above approach to train a NN, wherein the ‘proper historical data’ means to
pick similar historical data that emulates the trend and variance as the future traffic
dynamics. Improper historical data (e.g. that involving serious incidents, bad weather, etc.)
may contribute to unexpected inaccuracy in prediction. Such findings provide encourage-
ment to tackle field problems like recurrent congestions that exist ubiquitously in transport
systems rather than spend a vast amount of money to predict the slight fluctuations in the
early hours. Theoretically, for recurrent congestions, we can alter the service process to
more closely match the arrival patterns; making the arrival process more closely match the
service capacity; or impose proper service disciplines to cut down the overall delay costs or
the size of delays. The main challenge is to determine the proper times and intensity for
actuating the control mechanism. Lan et al. (2008b) devoted a study to traffic dynamics
and presented some tactics to deal with recurrent congestions. In this article, we adopted
an improved method by training a historical network using the traffic data drawn from the
same time periods to increase the prediction accuracy, which helped precisely capture the
trend and fluctuation of traffic series in the morning and evening peak hours, and this will
greatly benefit traffic system managers to determine the proper times and intensity for
actuating the control mechanism. This is the third more meaningful and practical
contribution of this article.
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6. Concluding remarks

In this article, various techniques were conducted to predict traffic dynamics and the
results bring to a conclusion that before selecting a proper technique to predict
the diversity of dynamical systems, we should deliberately consider the characteristics of
the dynamics and the purpose we would like to accomplish. The RTRL algorithms have
also been configured to train non-linear traffic dynamics measured in different aspects.
According to our results, the accuracy of prediction is influenced by time intervals, time
lags and time periods. In addition, it is a prerequisite to discriminate from various features
of traffic dynamics because the accuracy of prediction is also influenced by the
characteristics of traffic dynamics. In brief, this study will be most valuable not only in
presenting a feasible approach to predict the short-term traffic dynamics, but also in
emphasising the significance that the characteristics of traffic dynamics affect the accuracy
of prediction. Finally, our results have provided supportive evidence showing the value of
training a NN in various aspects so as to provide more useful information for advanced
traffic control and management practices.
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Note

1. According to the calculation of nonlinear autocorrelation function, using average mutual
information �ij, one can find a time delay to represent the proper time lag.
�ij ¼ �

P
i, j pijð�Þ lnðpijð�Þ=pipj Þ, where pi is the probability to find a time series value in the i-

th interval, and pij(�) is the joint probability that an observation falls into the i-th interval and
the observation time � later falls into the j-th interval.
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