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INTRODUCTION

The payoff of an Asian option depends on the arithmetic or geometric price
average of the underlying asset during the life of the option. Its value is path
dependent, normally without the closed-form solution, and therefore more dif-
ficult to calculate than that of a standard option. However, the hedging effect
of an Asian option, which is specifically widely used in the foreign exchange
market, is better than that of a standard option and offers convenience and
lower cost (Hu & Yu, 2000). Nielsen and Sandmann (2003) reported that the
open interest of Asian options is in the range of 5–10 billion U.S. dollars on
the over-the-counter market.

Many researchers have applied various methods to analyze Asian options:
Haykov (1993), Boyle (1977), Grant, Vora, and Weeks (1997), and Kemna and
Vorst (1990) have employed Monte Carlo (MC) simulations with variance
reduction techniques; Hull and White (1993), Neave and Ye (2003), Chalasani,
Jha, and Varikooty (1998), Chalasani, Jha, Egriboyun, and Varikooty (1999),
and Reynaerts, Vanmaele, Dhaene, and Deelstra (2006) developed binomial
trees, or lattices, with different efficiency enhancements; Dewynne and Wilmott
(1995), Rogers and Shi (1995), and Alziary Decamps, and Koehl (1997) applied
the partial differential equation approaches; Curran (1994) and Nielsen and
Sandmann (1996, 2002, 2003) used general numerical methods; Geman
and Yor (1993), Kramkov and Mordecky (1994), and Chacko and Das (1997)
applied pseudo-analytic characterizations; and Turnbull and Wakeman (1991)
(TW), Levy (1992), Vorst (1992), and Bouaziz, Briys, and Crouhy (1994) all
have employed analytic approximations that produce closed-form expressions.

Most of the valuation methods for Asian options assume that the return
distribution of the underlying asset is lognormal. However, practitioners and
academics are well aware that the finite sum of the correlated lognormal ran-
dom variables is not lognormal. It is for this reason that some researchers have
tried to investigate other alternatives by considering the number of moments.

TW and Levy (1992) had applied the first two moments to price the aver-
age rate currency options and obtained reasonable approximations under low-
volatility conditions. They had suggested using higher moments when volatility
is high. Milevsky and Posner (1998) had used the fundamental method to
derive the probability density function of the infinite sum of the correlated
lognormal random variables and proved that it is a reciprocal gamma distribu-
tion under certain parameter restrictions. Fusai and Tagliani (2002) had also
used moments to evaluate fixed exercise Asian options and showed that the
density of the logarithm of the arithmetic average was uniquely determined.
They had verified that entropy decreases significantly when the fourth moments
are used, and their approximation is good at low-volatility levels. However, error
increases for higher volatility and more moments may be required.



As return distributions in the currency market are usually not normal
(Kearns & Pagan, 1997; Tucker & Pond, 1988), incorporating higher moments
in the valuation of an Asian currency option should provide better results. In
this study, the model developed by Chalasani et al. (1998) is extended for the
valuation of European Asian options while considering the higher moments of
the underlying asset return distribution. The Edgeworth binomial lattice
(Rubinstein, 1998) is applied and the lower and upper bounds of the option
value are calculated. The approach is used to price the average rate currency
option with different skewness and kurtosis.

When the first two moments are used, the authors’ model obtains a better
value for an Asian option with low volatility than those of Levy (1992), Rogers
and Shi (1995), and Chalasani et al. (1998). If four moments are used, the
authors’ model can provide satisfactory estimates for high-volatility Asian
options comparing the results from the discrete Wilkinson approximation, the
four-moment approximation, and the MC method.

DEFINITIONS AND THE BASIC BINOMIAL MODEL

An underlying variable, S(t), of an option at time t is generally assumed to sat-
isfy the stochastic differential equation in a risk-neutral world:

where the drift m and volatility s are constant, and {B(t)} denotes a Brownian
motion process. Assume that the risk-free interest rate r is a constant, and that
the option expires at time T.

A binomial tree (Cox, Ross, & Rubinstein, 1979) can approximate the
continuous-time function S(t), where one divides the life of the option into n
time steps of length �t � T/n. In each time step, the underlying asset may
move up by a factor u with probability pc, or down by a factor d � u�1 with
probability qc � 1 � pc, with 0 � d � 1 � u. Firstly, the one-period case is con-
sidered, i.e. time step k � 1. The stock price at the end of the period will have
two possible values, either up to a value S(0)u with probability pc or down to a
value S(0)u�1 with probability 1 � pc. These price movements can be repre-
sented in the following diagram:

S(0)

S(0)u�1. 

S(0)u,

dS(t) � mS(t)dt � sS(t)dB(t)
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Now consider a call option with two periods (k � 2) before its expiry date.
The price process of the stock will show three possible values after two periods:

This price process of the stock can be extended to n time steps.
The stochastic differential equation describing this price process, i.e.

dS(t) � mS(t)ldt � sS(t)ldB(t), has the following solution:

where � is a standardized normal random variable.
For a binomial random walk to have the correct drift over a time period of

�t, the following is needed:

namely, pcu � (1 � pc)d � em�t. Rearranging this equation the following can be
obtained:

with 
Here, let �n be a sample space of an experiment including all possible

sequences of n upticks and downticks. A typical element of �n is presented as
v � v1, v2 . . . vn, where vi denotes the ith uptick or downtick. Let {Hk(v)} be
an associated family of random variables, where Hk(v) denotes the number of
upticks at time k and H0(v) � 0 for all v. A symmetric random walk Xk can be
defined, such that for each k � 1, Xk � Hk � (k � Hk) � 2Hk � k, which rep-
resents the number of upticks minus the number of downticks up to time k. It
is used to define the nodes in a binomial lattice corresponding to the possible
positions of the underlying random walk at different times. Specifically, a tree
path v is displayed to pass through or reach node (k, h) if and only if Hk(v) � h

u � es2¢t.

pc �
em¢t � d
u � d

pcSu � (1 � pc)Sd � SE[e(m�(1�2)s2)¢t�s£2¢t] � Sem¢t

S(t) � S(0)e(m�(1�2)s2)t�s£2t

S(0) S(0),

S(0)u�1

S(0)u

S(0)u2,

S(0)u�2.
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for times k � 0,1, . . . ,n and the number of possible upticks h � 0,1, . . . ,k.
Consequently, the underlying asset price at time k is Sk (k � 0,1,. . .,n), where

For example, S3 � S0u
(2�2�3) � S0u at node (3, 2) in the lattice diagram of

Figure 1. The underlying asset price at node (k, h) is given by S0u
2h�k, whose

average at time k is defined as Ak � (S0 � S1 � c � Sk)/(k � 1), k � 0.
Therefore, the payoff of an Asian call with strike price L at time n is Vn

� �

(An � L)� � max{An � L, 0}. The price of this option is the expected present
value discounted to time 0, C � E[Vn

�]/(1 � r)n. Note that E[Vn
�] is a probabil-

ity-weighted average given by �kPk(Ak � L)�, where Pk denotes the risk-neutral
probability associated with Ak at the expiration date.

EDGEWORTH BINOMIAL MODEL FOR 
ASIAN OPTION VALUATION

To consider the higher moments, the Edgeworth binomial tree model is first
applied (Rubinstein, 1998). Assume that the tree has n time steps and n � 1
nodes (h � 0,1, . . . , n) at step n. At each node h, there is a random variable yh

� [2h � n]/n1/2 with a standardized binomial density b(yh) � [n!/h!(n � h)!](1/2)n.
Giving predetermined skewness and kurtosis, the binomial density is transformed
by the Edgeworth expansion up to the fourth moment. The result is

� c1 �
1
6

 g1(g3
h � 3yh) �

1
24

(g2 � 3)(y4
h � 6y2

h � 3)

 F(yh) � f(yh) � b(yh)

Sk � S0u
Xk � S0u

2Hk�k.
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FIGURE 1
A binomial tree. Node (3, 2) means there are two upticks in any path reaching this node at time 3.
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S0u
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S0u
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S0u
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(1,1)

(2,0)
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(2,2)
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(3,0)



(1)

with f(yh) � [1 � (1/6)g1(yh
3 � 3yh) � (1/24)(g2 � 3)(yh

4 � 6yh
2 � 3) �

(1/72)g1(yh
6 � 15yh

4 � 45yh
2 � 15)], where g1 � EQ[yh

3] is the skewness and g2

� EQ[yh
4] is the kurtosis of the underlying distribution under risk-neutral meas-

ure. Although the sum of F(yh) is not one, F(yh) is normalized by F(yh)/�jF(yj)
and denoted as Ph.

The variable yh, which has probability Ph, can be standardized as xh � (yh �

M)/V with M � �hPhyh and V2 � �hPh(yh � M)2. The variable xh is used later in
Equation (2) to obtain the asset price and the corresponding risk-neutral prob-
ability, Ph, for a path to node h.

Consider a tree model of n steps. The asset price at the hth node (h � 0,
1, . . . ,n) during the final step, , is

(2)

with where S0 is the initial asset price, r is the
continuously compounded annual risk-free rate, T is the time for expiration of
the option (in years), s is the annualized volatility rate for the cumulative asset
return, and xh is a random variable from probability distribution Ph with mean 0
and variance 1. Ph is determined by modifying the binomial distribution using
the Edgeworth expansion up to the fourth moment of . Finally, m is
used to ensure that the expected risk-neutral asset return equals r. Solving
backward recursively from the end of the tree, the nodal value, Sn�1,h, is

(3)

with pe � pn,h�1/(pn,h�1 � pn,h) and qe � (1 � pe), where pn,h is Ph/[n!/h!(n � h)!].
The path dependence of Asian options is analyzed using the approach by

Chalasani et al. (1999). To represent the refined binomial lattice, a new ran-
dom variable Wk,h denoting an area at time k is assigned. Its initial value W0 is
zero. For any node (k,h) in the tree, a lowest path reaching (k, h) is defined as
the path with k � h downticks followed by h upticks, and a highest path reach-
ing (k, h) means the one with h upticks followed by k � h downticks. The area
Wk,h(v) of a path v reaching (k, h) can be defined as the number of diamond-
shaped boxes enclosed between this path v and the lowest path reaching this
node. For example, the node (5, 2) means that the paths reaching it have two
upticks at time 5. As demonstrated in Figure 2, a path passing through (5, 2)
and reaching node (6, 2) is shown by the thick line segments. The area W6,2(v)

Sn�1, h � [pe Ŝn,h�1 � qe Ŝn,h]exp a� 
rT
n
b

ln(Ŝn,h�S0)

m � r �(1�T)lngn
h�0 Phes2Txh,

Ŝn,h � S0e
mT�s2Txh

Ŝn,h

� a1
2
bn c n!

h!(n � h)!
d�

1
72

 g1(y6
h � 15y4

h � 45y2
h � 15)d
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of this path is the number of diamond-shaped boxes, contained between this
path and the lowest path reaching node (6, 2), as shown by the shaded area in
the graph. The maximum area of any path reaching (k, h) is the number of
boxes between the highest and the lowest paths reaching (k, h), that is, h(k � h).
The minimum area of any path reaching (k, h) is zero. The set of possible areas
of paths reaching node (k, h) is therefore {0,1, . . . ,h(k � h)}. Each node of the
binomial lattice can be partitioned into “nodelets” based on the areas of
the paths reaching this node. Therefore, any path reaching a given nodelet (k, h,
a) has an area Wk,h(v) � a with h upticks at time k. For instance, Figure 3 shows
the nodelets in the nodes (5, 2), (6, 3), and (6, 2). As noted in Chalasani et al.
(1999), there is a one–one correspondence between the possible areas and the
possible geometric averages of underlying asset prices for paths reaching (k, h).
Therefore, (k, h, a) represents all the paths in the binomial tree that reach node
(k, h) and has the same geometric average asset price from time 0 to k.

Suppose the area of a path A reaching (k, h) is Wk,h(A) � a. If A has an
uptick after this point, it reaches node (k � 1, h � 1) at the next time step.
The path A and the lowest path B reaching (k � 1, h � 1) share the same
edge linking (k, h) and (k � 1, h � 1) in the lattice. Hence, the number of
boxes between A and B at time k � 1 is the same as the number at time k. In
this way the path A reaches nodelet (k � 1, h � 1, a). On the other hand, if
A has a downtick after time k, it will reach node (k � 1, h). In this case, the
number of boxes at time k � 1 between A and the lowest path reaching (k �

1, h) will be increased by h to get a � h. The path A then reaches nodelet
(k � 1, h, a � h).
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FIGURE 2
A binomial lattice. An example of diamond-shaped boxes for node (6, 2) is shown as the

shaded area.

(6,3)

(5,2) (6,2)
W6,2(?)�5



How the arithmetic average of underlying asset prices over all paths reach-
ing (k, h, a) is computed is shown and denoted by ¯Ā (k, h, a) � E[Ak�Hk � h,
Wk,h(v) � a], k � 0,1,. . .,n, h � k. It is simply the average of Ak over these
paths. So the arithmetic average of stock prices over all paths reaching nodelet
(k, h, a) can be expressed as

(4)

where , , with k � 0,1,. . .,
n, h � 0,1,. . .,k, a � 0,1,. . .,h(k � h), m � 1,2,. . .,M(k, h, a), and M(k, h, a)
is the number of paths reaching (k, h, a) with M(0,0,0) � 1. Here, S	(k, h, a) is
the sum of S�m (k, h, a) over all paths passing through (k, h, a) with S	(0, 0, 0)

S
m(k, h, a) � gK
i�0Si,hS–(k, h, a) � gM

m�1S
m(k, h, a)

A(k, h, a) �
S–(k, h, a)

(k � 1)M(k, h, a)
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FIGURE 3
Nodelets in the nodes (5, 2), (6, 3), and (6, 2) as circled in Figure 2. This figure exhibits the
number of paths M(k, h, a) reaching each nodelet (k, h, a). An example is shown for nodelet

(5, 2, 2), which is updated as in the nodelets (6, 3, 2) and (6, 2, 4).

Node (k, h) � (5,2) 

Area a M(k, h, a)

0 1

1 1

2 2

3 2

4 2

5 1

6 1

Node(k�1, h�1) � (6,3) 

Area a M(k�1, h�1, a)
0 1

1 1

2 2

3 3

4 3

5 3

6 3

7 2

8 1

9 1

Node (k�1, h) � (6,2) 

Area a M(k�1, h, a�h) 

0 1

1 1

2 2

3 2

4 3

5 2

6 2

7 1



� S0, whereas S�m (k, h, a) is the sum of the asset prices along any possible path
passing through (k, h, a) from time 0 to k.

Any path passing through nodelet (k, h, a) and having an uptick will get to
nodelet (k � 1, h � 1, a) at time k � 1. Thus, the number of paths reaching
nodelet (k � 1, h � 1, a), namely, M(k � 1, h � 1, a), should include M(k, h,
a) paths through (k, h, a). The sum of the prices from all the paths reaching
(k � 1, h � 1, a), namely, S	(k � 1, h � 1, a), would be S	(k, h, a) � M(k, h,
a)Sk�1,h�1 for paths passing through (k, h, a). Likewise, all paths passing
through nodelet (k, h, a) with a downtick will reach nodelet (k � 1, h, a � h) at
time k � 1. Similarly, M(k � 1, h, a � h) should also include M(k, h, a) and
S	(k � 1, h, a � h) would be S	(k, h, a) � M(k, h, a)Sk�1,h in the forward induc-
tion process.

Next, the authors present how the value of an Asian option after obtaining
the arithmetic average of the stock prices from Equation (4) is estimated. The
approach used by Rogers and Shi (1995) is applied, where the lower bound and
the error bound are calculated for the price of an Asian option. This lower
bound on the price of an Asian call option with strike L can be expressed as

(5)

where Z � (Wn,h, Sn,h) in which the random variable Wn,h denotes the area at
node (n, h), and Sn,h represents the stock price reaching (n, h). The composi-
tion in the lower bound, E[An�Wn,h, Sn,h], can be expressed as ¯Ā (n, h, a), as in
Equation (4). ¯Ā (n, h, a) is the expectation of the average stock price An at node
(n, h), where An � (S0 � S1,h � c � Sn,h)/(n � 1) on a tree path passing through
(n, h, a). All paths through this nodelet have the same probability P(Wn,h, Sn,h),
which is M(n, h, a)pe

hqe
n�h. Thus, the lower bound can be calculated as

As a result, the error bound is

(6)�
1
2

 E[[var(An � L 0Wn,h, Sn,h)]1�2]

� E[E[(An � L)� 0Wn,h, Sn,h] � E[(An � L) 0Wn,h, Sn,h]
�]

E[E[(An � L)� 0Wn,h, Sn,h]] � E[E[(An � L) 0Wn,h, Sn,h]
�]

� a
n

h�0
a

h(n�h)

a�0
M(n, h, a)ph

eq
n�h
e [A(n, h, a) � L]�.

Cd
0 � E[[E(An 0Wn,h, Sn,h) � L]�] � a

n

h�0
a

h(n�h)

a�0
P(Wn,h, Sn,h)[A(n, h, a) � L]�

� E[E[(An 0Z) � L]�]

E[(An � L)]� � E[E[(An � L)� 0Z]] � E[E[An � L 0Z]�]
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assuming Vn
min(Z) � 0 and Vn

max(Z) � 0, where Vn � An � L.1 Note that var(An

� L) � varlAn � EA2
n � (EAn)

2 and ¯Ā2(n, h, a) � E[A2
n �Wn,h, Sn,h]. Let Amin(k,

h, a) denote the minimal value of Ak and Amax(k, h, a) its maximum over all
paths passing through the nodelet (k, h, a). Thus, the error bound by Equation
(6) equals

(7)

The ¯Ā (n, h, a) can be derived from Equation (4). Meanwhile, Amin(k, h, a)
� Smin(k, h, a)/(k � 1) and Amax(k, h, a) � Smax(k, h, a)/(k � 1), where Smin(k, h, a)
and Smax(k, h, a) are, respectively, the minimum value and maximum value of
Sk,h over these paths reaching (k, h, a). ¯Ā2(n, h, a) can also be calculated from
the following:

where w(k, h, a) is the sum of and c(k, h, a) is the sum of
2 With the lower bound and the error bound, the upper bound

can be obtained.
Suppose one upward probability pe, denoting the probability of the stock

price moving up for the next step in the Edgeworth binomial tree, is lower than
the other upward probability pc, the probability of the stock price moving up
in the binomial tree of Chalasani et al. (1999). The average stock price in a
path with upward drift causes higher probability of Amin(k, h, a) � L, i.e. higher
probability of zero variance. So the total variance of the average stock price will

g0� i� j�k Si,hSij,h.
gk

i�0 Si,h
2

A2(k, h, a) �
w(k, h, a) � 2c(k, h, a)

(k � 1)2M(k, h, a)

M(n, h, a)ph
eq

n�h
e (A2(n, h, a) � A(n, h, a)2)1�2.�

1
2a

n

h�0
a

h(n�h)

a�0
Amin(n,h,a)�L,Amax(n,h,a)�L

P(Wn,h, Sn,h)(A2(n, h, a) � A(n, h, a)2)1�21
2a

n

h�0
a

h(n�h)

a�0
Amin(n,h,a)�L,Amax(n,h,a)�L
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1The minimum and maximum values of Vn over paths v with Z(v) � z is set to be Vn
max(z) �

maxv��{Vn(v)�Z(v) � z} and Vn
min(z) � minv��{Vn(v)�Z(v) � z}. If Vn

max(zi) � 0, then for all paths v with
Z(v) � zi, Vn

�(v) � 0 can be deduced, which implies E(Vn
��zi) � 0, and also E(Vn�zi) � 0, which implies

E(Vn�zi)
� � 0. Hence, the error bound is zero. Similarly, if Vn

min(zi) � 0, then for all paths v with Z(v) � zi,
Vn

�(v) � Vn(v) can be deduced, which implies E(Vn
��zi) � E(Vn�zi), and also E(Vn�zi) � 0, which implies

E(Vn�zi)
� � E(Vn�zi). Therefore, the error bound is again zero.

2To show how is derived, can be writ-

ten. Because all paths reaching (k, h, a) have the same probability, ¯Ā2(k, h, a) is the average of

over these paths.A2
k � aak

i�0
S2

i,h � 2a0� i� j�k
Si,hSj,hb � (k � 1)2

(k � 1)2A2
k � aak

i�0
Si,hb

2

� a
k

i�0
S2

i,h � 2a0� i� j�k
Si,hSj,hA2(k, h, a)



be smaller. According to Equation (7), the error bound of the option price with
upward probability pe will be smaller than the error bound with probability pc.
It can be shown in the following proposition that this can lead to tighter
bounds on the error from approximating E[Vn

�] if its upward probability is
lower. The details are explained in the Appendix.

Proposition: The error bound in pricing a European Asian option from the
modified Edgeworth binomial model is tighter than the error bound from
the model by Chalasani et al. (1999).

NUMERICAL RESULTS

Valuation of European Asian Options Under 
Normal Skewness and Kurtosis

Microsoft Visual C�� is used to program the authors’ algorithm. Considering
first the normal skewness and kurtosis, the results are tested and compared
with those in the literature. The call option to be valued has the initial stock
price S0 � 100, the maturity T � 1 year, and the strike prices L � 95, 100, 105,
and 110, respectively. The underlying distribution has volatility s� 0.05, 0.1, and
0.3, respectively, with normal skewness g1 � 0 and kurtosis g2 � 3. The risk-
free rate r is set to be 0.05, 0.09, or 0.15. The time step N equals 30, and the
computing time and memory space needed in the authors’ algorithm are similar
to those of Chalasani et al. (1998). The authors’ simulation results are presented
in Tables I and II.

In Table I, the authors’ results are compared with those of Rogers and Shi
(1995) and of Chalasani et al. (1998). When the call is in the money, the
authors’ valuation in general is smaller than those of Chalasani et al. (1998).
However, the range of the authors’ lower and upper bounds is narrower than
theirs. For at-the-money and out-of-the-money calls, the authors’ estimates are
greater than theirs and closer to those of Rogers and Shi’s, but the distance
between the authors’ lower and upper bounds is almost the same as that of
Chalasani et al. The difference between the authors’ calculations and those
of Rogers and Shi’s is owing to the authors’ numerical approximation compar-
ing with their continuous-time integrals.

In Table II, the authors’ results are compared with those of MC simula-
tions from Levy and Turnbull (1992) (LT). Because Chalasani et al. (1998)
claim that their results are closer to MC estimations than those of Roger and
Shi (1995), the authors also list their bounds. As depicted in the table, the
authors’ estimates are much closer to the results of MC simulations; hence,
the authors’ algorithm in pricing Asian options performs better than that of
Chalasani et al. (1998).
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TABLE I

Model Comparisons for Asian Options Valuations Under Normal Skewness and Kurtosis

Strike L Vol. s r E-LB E-UB RS-LB RS-UB C-LB C-UB

95 0.05 0.05 7.177 7.177 7.178 7.183 7.178 7.178
100 0.05 0.05 2.712 2.712 2.716 2.722 2.708 2.708
105 0.05 0.05 0.332 0.332 0.337 0.343 0.309 0.309
95 0.05 0.09 8.811 8.811 8.809 8.821 8.811 8.811

100 0.05 0.09 4.306 4.306 4.308 4.318 4.301 4.301
105 0.05 0.09 0.957 0.957 0.958 0.968 0.892 0.892
95 0.05 0.15 11.100 11.100 11.094 11.114 11.100 11.100

100 0.05 0.15 6.799 6.799 6.794 6.810 6.798 6.798
105 0.05 0.15 2.745 2.745 2.744 2.761 2.667 2.667
90 0.10 0.05 11.947 11.947 11.951 11.973 11.949 11.949

100 0.10 0.05 3.635 3.635 3.641 3.663 3.632 3.632
110 0.10 0.05 0.319 0.320 0.331 0.353 0.306 0.306
90 0.10 0.09 13.385 13.385 13.385 13.410 13.386 13.386

100 0.10 0.09 4.909 4.909 4.915 4.942 4.902 4.902
110 0.10 0.09 0.621 0.621 0.630 0.657 0.582 0.583
90 0.10 0.15 15.404 15.404 15.399 15.445 15.404 15.404

100 0.10 0.15 7.024 7.024 7.028 7.066 7.015 7.015
110 0.10 0.15 1.411 1.412 1.413 1.451 1.316 1.317
90 0.30 0.05 13.928 13.936 13.952 14.161 13.929 13.938

100 0.30 0.05 7.924 7.932 7.944 8.153 7.924 7.932
110 0.30 0.05 4.041 4.051 4.070 4.279 4.040 4.049
90 0.30 0.09 14.961 14.968 14.983 15.194 14.964 14.972

100 0.30 0.09 8.811 8.818 8.827 9.039 8.807 8.815
110 0.30 0.09 4.672 4.682 4.695 4.906 4.661 4.671
90 0.30 0.15 16.494 16.500 16.512 16.732 16.499 16.506

100 0.30 0.15 10.197 10.205 10.208 10.429 10.187 10.195
110 0.30 0.15 5.715 5.725 5.728 5.948 5.685 5.696

Note. The European Asian option to be valued has initial stock price S0 � 100 dollars and option life T � 1.0 year. Using time steps
N � 30, the lower and upper bounds from the authors’ algorithm are indicated by E-LB and E-UB, respectively, whereas those from
Rogers and Shi (1995) are indicated by RS-LB and RS-UB, and those from Chalasani et al. (1998) by C-LB and C-UB. The authors
used normal skewness g1 � 0 and kurtosis g2 � 3 in their algorithm.

TABLE II

Comparisons with Monte Carlo Simulations Under Normal Skewness and Kurtosis

Strike L Vol. s r Monte Carlo E-LB E-UB C-LB C-UB

95 0.10 0.09 8.91 8.91 8.91 8.91 8.91
100 0.10 0.09 4.91 4.91 4.91 4.90 4.90
105 0.10 0.09 2.06 2.07 2.07 2.03 2.03
90 0.30 0.09 14.96 14.96 14.97 14.96 14.97

100 0.30 0.09 8.81 8.81 8.82 8.81 8.82
110 0.30 0.09 4.68 4.67 4.68 4.66 4.67
90 0.50 0.09 18.14 18.14 18.18 18.15 18.19

100 0.50 0.09 12.98 12.98 13.02 12.99 13.03
110 0.50 0.09 9.10 9.07 9.11 9.08 9.12

Note. The European Asian option to be valued has initial stock price S0 � 100 dollars and option life T � 1.0 year. Using time steps
N � 30, the lower and upper bounds from the authors’ algorithm are indicated by E-LB and E-UB, respectively, whereas Monte Carlo
estimates from Levy and Turnbull (1992) are indicated by Monte Carlo, and those from Chalasani et al. (1998) are indicated by C-LB
and C-UB. The authors used normal skewness g1 � 0 and kurtosis g2 � 3 in their algorithm.



Tables I and II demonstrate the performance of the authors’ algorithm
under normal skewness and kurtosis. In the next section, the Asian options
under various non-normal skewness and kurtosis are priced and the results are
compared with those in the literature.

Valuation of European Asian Options Under Various
Skewness and Kurtosis

The valuation performance of the European Asian option in Table III is based
on the initial stock price S0 � 100, the risk-free rate r � 0.09, and the maturity
T � 1 year with varying skewness and kurtosis. The results of the numerical
analysis are compared with those of the Edgeworth expansion model by TW,
the modified Edgeworth expansion method by LT, and the four-moment
approximation model by Posner and Milevsky (1998) (PM). All these models
are considered up to the fourth moments in their valuations.

For low-volatility cases (s � 0.05 and 0.1) in Table III, the authors’ results
from in-the-money or at-the-money calls are very close to MC estimates, which
is the benchmark used by LT under lognormal distribution. This is similar to
those of LT and TW. For out-of-the-money calls, the authors’ outcomes are the
same as theirs under right-skewed conditions. For high-volatility cases (s� 0.3
and 0.5), the authors’ outcomes for at-the-money or deep-in-the-money calls
approach the results from MC simulation with positive skewness and a slight
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TABLE III

Model Comparisons for Asian Option Valuations Under Various Skewness and Kurtosis

Strike L Vol. s g1 g2 MC E-LB E-UB LT TW PM

95 0.05 0 3 8.81 (0.00) 8.81 8.81 8.81 8.81 NAN
100 0.05 0 3 4.31 (0.00) 4.31 4.31 4.31 4.31 NAN
105 0.05 0.03 3 0.95 (0.00) 0.95 0.95 0.95 0.95 NAN
95 0.1 0 3 8.91 (0.00) 8.91 8.91 8.91 8.91 NAN

100 0.1 0 3 4.91 (0.00) 4.91 4.91 4.91 4.91 NAN
105 0.1 0.02 3 2.06 (0.00) 2.06 2.06 2.06 2.06 NAN
90 0.3 0 3 14.96 (0.01) 14.97 14.98 15.00 14.91 14.96

100 0.3 0.01 3 8.81 (0.01) 8.80 8.82 8.84 8.78 8.80
110 0.3 0 3 4.68 (0.01) 4.68 4.70 4.69 4.69 4.67
90 0.5 0.01 3 18.14 (0.03) 18.14 18.21 18.13 17.66 18.14

100 0.5 0 3.02 12.98 (0.03) 12.97 13.03 13.00 12.86 12.97
110 0.5 0 3 9.10 (0.03) 9.09 9.16 9.12 9.22 9.07

Note. E-LB and E-UB indicate the lower and the upper bounds from the authors’ model with various skewness (g1) and kurtosis (g2).
The approximations of Levy and Turnbull (1992) are represented by LT, and of Turnbull and Wakeman (1991) by TW; MC represents
the Monte Carlo estimates in the Levy and Turnbull (1992), and PM represents the four-moment approximation by Posner
and Milevsky (1998).The simulations assume the option life T � 1 year, the domestic interest rate r � 0.09, the time steps N � 52, and
the initial spot price S0 � 100.
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TABLE IV

Model Comparisons for Asian Currency Option Valuations Under Various 
Skewness and Kurtosis

Strike L Vol. s N g1 g2 MC E-LB E-UB Levy PM

1.8 0.3 4 0.15 3 0.0235 (0.00017) 0.0235 0.0235 0.0231 0.0234
1.65 0.3 4 0.15 3.04 0.0517 (0.00017) 0.0517 0.0517 0.0515 0.0516
1.5 0.3 4 0.10 3.01 0.1034 (0.00017) 0.1034 0.1034 0.1038 0.1034
1.35 0.3 4 0.02 3.02 0.1858 (0.00017) 0.1858 0.1858 0.1864 0.1858
1.2 0.3 4 �0.03 3.08 0.2958 (0.00017) 0.2958 0.2958 0.2961 0.2958
1.8 0.3 12 0.03 3 0.0249 (0.00014) 0.0249 0.0250 0.0243 0.0249
1.65 0.3 12 0.03 3.03 0.0540 (0.00014) 0.0540 0.0540 0.0537 0.0538
1.5 0.3 12 0.04 3.01 0.1061 (0.00014) 0.1061 0.1061 0.1067 0.1061
1.35 0.3 12 0.01 3 0.1882 (0.00014) 0.1881 0.1882 0.1890 0.1880
1.2 0.3 12 0 3 0.2966 (0.00014) 0.2965 0.2965 0.2974 0.2967

Note. E-LB and E-UB indicate the lower and the upper bounds from the modified Edgeworth binomial model with various time steps
(N), skewness (g1), and kurtosis (g2). Levy represents the discrete Wilkinson approximation. MC represents the Monte Carlo esti-
mates. In addition, PM represents the four-moment approximation by Posner and Milevsky. The simulations assume the option life 
T � 1 year, the domestic interest rate rd � 0.15, the foreign interest rate rf � 0.1, and the initial spot price S0 � 1.5 as units of domes-
tic currency per unit of foreign currency.

leptokurtic. Under lognormal distribution, when the call is deep out of money,
the authors’ lower bounds are more accurate than the estimates from all the
other methods. The results from MC method are consistent with the authors’
lower and upper bounds. Overall, the authors’ outcomes are better than those
of LT and TW, and similar to PM.

The authors’ modified model can be used to price European average rate
currency options when r � rd � rf substitutes for r in Equations (2) and (3).
Valuation results are compared with those of Levy (1992), which applies the
discrete Wilkinson approximation (Levy) and the MC method, and with those
of the four-moment approximation by PM. The impact of the higher moments
on the value of the option is explored. Based on Equations (2) and (3), the
authors’ simulations are constructed with maturity T � 1 year, the domestic
interest rate rd � 0.15, the foreign interest rate rf � 0.1, and the initial spot
price S0 � 1.5, which is in domestic currency per unit of foreign currency.
Various skewness and kurtosis are expressed in Table IV.

Using MC estimates as the authors’ benchmark, it is found in Table IV
that for quarterly averaged options, the authors’ valuation results are almost the
same under right-skewed and leptokurtic conditions, except in the case of L �

1.2.3 The authors’ performance is similar to that of the four-moment method,
but superior to the discrete Wilkinson approximation. Meanwhile, for monthly

3MC estimates were calculated by averaging 10,000 replications of lnlM(t). Under the null hypotheses of
zero skewness, the asymptotic standard error of skewness with 10,000 replications was 0.0245. See Levy
(1992, p. 484).



average Asian options, the authors’ results are also similar to those from MC,
just as in the quarterly average cases. However, the difference from Levy is
rather huge. Thus, the authors’ valuation method is more accurate than the dis-
crete Wilkinson approximation. The pricing model of Asian options should
emphasize the higher moments when underlying assets have higher volatility.

CONCLUSION

The modified Edgeworth binomial model to price European-style Asian options
with higher moments in the underlying return distribution was developed.
Specifically, the values of average rate currency options are simulated under
various skewness and kurtosis. Combining the Edgeworth approximation and
the averaging algorithm by Chalasani et al. (1998), the authors’ method is
faster and more accurate in the sense that the estimates have a smaller error
bound. The numerical results show that this approach can effectively deal with
the higher moments of the underlying distribution and provide better option
value estimates than those found in various studies in the literature.

APPENDIX A: ANALYTICAL EXPLANATION FOR
THE PROPOSITION

That the error bound in approximating E[Vn
�] from a modified Edgeworth

binomial tree model and that from a binomial tree model employed by
Chalasani et al. (1999) are proportional to their upward probabilities, respec-
tively, in the binomial paths is first shown. For this, a discrete approximation
method similar to the lattice approach is used. Let T be the time for expiration
of the option. At time T, let Ye(T) denote the variance of the arithmetic average of
the stock prices in the authors’ modified Edgeworth binomial tree with upward
probabilities pe, and Yc(T) denote the variance of the average price in a binomi-
al tree from Chalasani et al. with upward probability pc. From Equation (2), the
asset price in the Edgeworth model is affected by the drift with upward trend,
resulting in higher average than the case in Chalasani et al. From Equation (7),
higher average price increases the probability of Amin(k, h, a) � L, i.e. higher
probability of zero variance based on explanations in footnote 1. Thus Yc(T) �
Ye(T) is obtained.

Assume for the moment that pe is less than pc. At time t � T/3, the condi-
tional expectations of the variances with upward probabilities pe and pc are
given by E3t[Ye(T)] and E3t[Yc(T)], respectively. It can be seen (ignoring the dis-
count factors) that

E3t[Yc(T)]1�2 � E3t[Ye(T)]1�2
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because

Similarly, at time t � T/4,

because

Therefore, as long as the above inequality continuously holds for all time 
t � T/5, the error bound for a tree model with upward probability pe will be
tighter than that for a tree with upward probability pc, given that pe is less than pc.

Next, that the upward probability pe in an Edgeworth binomial model is
indeed less than the upward probability pc in the model employed by Chalasani
et al. (1998) is shown.

As noted in Equation (3), pn,h � Ph/[n!/h!(n � h)!] and pn,h�1 � Ph�1/[n!/
(h � 1)!(n � (h � 1))!], where Ph � F(yh)/�jF(yj) and the Edgeworth-corrected
probability F(yh) � f(yh) � b(yh), as discussed in Equation (1). The upward prob-
ability pe and the downward probability qe are defined as follows:

where f(xh) denotes an Edgeworth expansion function, and xh represents the
normalized random variable from yh, i.e. xh equals (yh � M)/V with M � �hPhyh,
V2 � �hPh(yh � M)2, and Ph is the probability distribution. On the basis of pe

and qe as defined above, two possible cases can be obtained:

qe � 1 � pe

pe �
pn,h�1

pn,h�1 � pn,h
�

1
1 � (pn,h�pn,h�1)

�
1

1 � ( f(xh)�f(xh�1))

M(4, h, a)ph
e (1 � pe)

4�h(var(A4 0 a, S4,h))1�2.� a
4

h�0
a
4

a�0
Amax�L, Amin�L

M(4, h, a)ph
c (1 � pc)

4�h(var(A4 0 a, S4,h))1�2
a
4

h�0
a
4

a�0
Amax�L, Amin �L

E4t[Yc(T)]1�2 � E4t[Ye(T)]1�2

M(3, h, a)ph
e (1 � pe)

3�h(var(A3 0 a, S3,h) )1�2.� a
3

h�0
a
2

a�0
Amax�L, Amin�L

M(3, h, a)ph
c (1 � pc)

3�h(var(A3 0 a, S3,h))1�2
a
3

h�0
a
2

a�0
Amax�L, Amin �L
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(1) If f(xh) � f(xh�1), then 0 � pe � 0.5, and 0.5 � qe � 1.

(2) If f(xh) � f(xh�1), then 0.5 � pe � 1, and 0 � qe � 0.5.

In case (1), Ph � Ph�1 can be inferred because f(xh) � f(xh�1). Like the argu-
ment discussed in the first paragraph in this Appendix, the drift with upward
trend in an Edgeworth model will affect the average price of the underlying
asset. From the error bound in Equation (7), higher average price increases the
probability for Amin(k, h, a) � L, i.e. higher probability of zero variance.

If f(xh) � f(xh�1) as in case (2), Ph � Ph�1 is obtained. The underlying asset
price in an Edgeworth model is affected by the drift with downward trend. All
average stock prices with non-lognormal distributions are smaller than those
with lognormal distributions in an Edgeworth model, but higher than those in a
binomial tree from Chalasani et al. when the drifts are greater than zero in
Equation (2). So the higher average prices still increase the probability of
Amin(k, h, a) � L and also the probability of zero variance.

In both cases, if the upward probabilities in an Edgeworth model are lower
than or equal to those in a binomial tree from Chalasani et al., then, according to
Equation (7), the error bound of an Edgewroth model will be tighter than that of
a binomial tree from Chalasani et al.

When the underlying asset return exhibits a lognormal distribution, f(xh) �
f(xh�1) is obtained. The upward probability in the Edgeworth model is then equal
to 0.5 (pe � qe � 0.5). Meanwhile, the corresponding upward probability, pc, in
the binomial tree model described by Chalasani et al. (1999) is more than 0.5
under s � (2r)0.5. Therefore, pe � pc is obtained. If s � (2r)0.5, then the upward
probability in the binomial model by Chalasani et al. is less than 0.5. The higher
the volatility of the stock price, the greater the total variance of the average stock
price. The error bounds of the binomial model by Chalasani et al. become larger
when the upward probability is less than 0.5. Similar to the above cases (1) and
(2), an upward probability in the Edgeworth model less than or equal to that of
Chalasani et al can be set. The drifts with upward trend then will affect the aver-
age stock prices in the Edgeworth model; hence, its error bound is smaller.

As a result, the upward probability in the authors’ Edgeworth binomial
model is smaller than that in the model employed by Chalasani et al. Hence,
the error bound in pricing an Asian option from the authors’ modified
Edgeworth binomial model should be smaller than that in Chalasani et al.
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