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The earth coverage area for a satellite in an Earth synchronous 
orbit with a non-zero inclination angle is a function of the time 

of day. Locating the area where an Earth terminal can establish 
a link with a geosynchronous satellite at a certain period of the 

day is of great concern to system designers. A special case of much 

interest is when the time period of satellite coverage is 24 h. ' h o  
simple and rapid algorithlls for locating 24 h satellite coverage 
areas are presented. One of the proposed algorithns can also be 

applied to determine other airborne antenna coverage problem. 
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Because of lunar and solar gravitational attraction, 
geosynchronous satellite orbits do not remain perfectly 
circular. They can also be intentionally inclined to 
provide greater coverage to higher altitudes, even 
as high as the north and south poles [l]. Of special 
concern to communication engineers is not only 
whether a ground terminal has a direct view of the 
desired satellite, or the other way around, but also 
whether the communication link can be established, 
i.e., whether the link power budget renders enough 
signal power margin at the receiver site. A ground 
terminal is said to be covered by a geosynchronous 
satellite if both conditions are met. In the case of 
inclined orbits, this status of coverage, given the 
terminal location, is a function of the time of day 
because the terminal elevation angle, the atmospheric 
conditions, and the terminal to satellite distance all 
vary with time. 

A 24 h or all-day coverage area (ADCA) is 
defined as the area within which it is possible, at 
any time and under specified weather conditions and 
a fixed terminal altitude, to establish a link with a 
given geosynchronous satellite. For convenience, we 
assume that the reference altitude is sea level. The 
assumptions of a fixed altitude and uniform climate 
and atmospheric conditions in the ADCA definition 
are necessary to eliminate the time variation, although 
a coverage area is very likely to cross different climatic 
regions and will definitely have altitude variations. 
Such an ADCA can thus be regarded as the best 
case (maximum coverage area) or the worst case 
(minimum coverage area) result, depending on the 
specific atmospheric parameters and link availability 
requirement used in the calculation. 

Two efficient algorithms for locating ADCAs in 
the latitude-longitude (L - L) plane are presented. 
In the next section a relationship between the link 
budget computation and the satellite coverage is 
established through a single parameter. The problem 
of coverage status checking is then simplified to 
examine an inequality. A few useful properties of 
ADCAs are derived and then applied to develop an 
efficient algorithm in Section 111. Another algorithm 
and numerical examples are presented in the following 
section. This second algorithm uses an observation 
derived from a simple geometric viewpoint. It can also 
be extended to evaluate the coverage area in any given 
time period and for any circular satellite orbit. Section 
V gives a brief summary of our results and suggests 
possible extensions. 

II. LINK BUDGET AND EARTH COVERAGE AREA 

The received carrier-to-noise power ratio (GIN),, 
for a one-way ground terminal to satellite link is given 
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by [2, ch. 41 

where 

EIRP transmitter effective isotropic radiated 

x carrier wavelength, 
d 
L, atmospheric and weather loss, 
L, rain attenuation, 
k Boltzmann constant, 
B 
G/T receiver antenna gain-to-noise temperature 

power, 

slant range from satellite to Earth terminal, 

noise bandwidth of satellite channel (Hz), 

ratio. 

The atmospheric and rain losses depend on the link 
availability requirement, the height of the terminal, 
the carrier frequency, the weather conditions, e.g., 
rain rate, height of 0' C isotherm, mean local surface 
absolute humidity, mean local surface temperature (see 
[3] for details), and $, the terminal elevation angle. For 
fixed altitude, frequency and weather conditions, the 
total propagation path loss is then a function of the 
elevation angle only. For example, if 4 is greater than 
6O, then the atmospheric loss can be approximated by 
[3, Fig. 6.2-31 

where K depends on carrier frequency, ground 
altitude, mean surface relative humidity, and 
mean local surface temperature. Under the same 
assumptions, the rain attenuation statistics is also a 
function of the elevation angle only; see [3, Fig. 6.3.-11 
for an analytic estimation procedure for L,. An 
implicit assumption of (1) is that the terminal antenna 
boresite always points to the satellite antenna boresite. 
This and the constant terminal altitude assumption 
imply that there is a one-to-one correspondence 
between $ and 8, the angle between the Earth 
terminal and the satellite, both viewed from the 
center of the Earth.' Therefore the product L,L, 
will be denoted by L(8) henceforth. Note that the 
carrier-to-noise power ratio calculated by (1) should be 
interpreted statistically, i.e., on the average, the actual 
(C/N)rcc will be less than the value so obtained for 
at most p% of the year, where p is the designed link 
outage used in estimating L,. 

If a perfect symmetric satellite antenna pattern 
is assumed then it can be shown that the received 
carrier-to-noise ratio of the satellite should satisfy the 
inequality 

L,(4) = Krsq4) (2)  

'This angle is often referred to as the central angle [Z]. 

where (GIN),, is the required C / N ,  Re is the radius 
of the Earth, h is the height of the satellite above the 
Earth, R,  is the distance between the satellite and the 
Earth center, and ko = G / T F I R P / ( ~ T A ) ~ ] ( ~ / ~ B ) .  
Therefore if the maximum angle 6JC which satisfies (3) 
is known, the condition under which an Earth terminal 
located at (Q,$) can close a link (for at least p% of 
the year) with a satellite whose subsatellite point at 
time t is (\Ef, $ f )  can be expressed as 

cos $ cos Q cos y!+ cos \Et + sin $ cos \E sin ?,bl cos \El 

+ sinQsinQf > cosOc. (4) 

In other words, equating both sides of (3) and solving 
the associated equation using established atmospheric 
loss and rain attenuation models, we then obtain the 
maximum angle 8, that accounts for the combined 
effect of all the linkage parameters, the required link 
availability, bit error probability, the assumed weather 
conditions and terminal altitude on the coverage 
problem under investigation. For Earth terminal 
locations with a 8 less than e,, the associated path loss 
will be smaller than that for locations whose 8 is equal 
to 8,, and hence the requirement (3) will be satisfied. 
The angle 8, is henceforth referred to as the coverage 
angle and the corresponding spherical circle radius 
R as the coverage radius; see Fig. 1. For a perfect 
geostationary satellite at (\Ef, q f )  = (0,O) for all t, (4)  
becomes 

cos+ cos q > case,. (5) 

It is well known that an inclination of the geostationary 
orbit will cause the subsatellite point to move in a 
figure 8 pattern [ l ,  21. To decide whether a given (+,$) 
belongs to the ADCA, it is necessary to check whether 
(4) is satisfied for all subsatellite points 
figure 8 pattern. 

on the 

111. PROPERTIES OF FIGURE 8 PATTERNS AND THE 
A D C A  

The equations governing relative latitude and 
longitude behavior of the figure 8 pattern for an 
inclination angle i are given by2 

- 
A = sin-'(sin i sin@) (6) 
- a = tan-'(cosisina,cosa) - a (7) 

where = 2 ~ t / T ,  T = 24 h, t = the normalized time 
of the day, and the function tan-'(x,y) is a modified 
version of the conventional arctangent defined by 

tan-'(x,y) = 8 

2A similar set of equations was given in [l, (6-4)], but its second 
equation indicates an incorrect moving direction. We thus rederive 
the figure 8 equations in Appendix A .  
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Fig. 1. Inclined geosynchronous satellite with coverage angle 0 and coverage radius R. 

if and only if 

sine = 2 case = X JW’ J“ 
x2 + y2  # 0. 

For convenience, it is often assumed that at t = 0, the 
subsatellite point is at @ = 0, X = 0 (see Appendix B). 
This normalization is used throughout the subsequent 
discussion. From the above equations, we can easily 
derive some useful properties of the figure 8 pattern. 
These properties are summarized below. 

PROPERTY 1 
respect to both latitude and longitude axes. 

PROPERTY 2 
equator for the figure 8 pattern is equal to i. 

PROPEW~V 3 
5(@)=ta11-’(cositan@)--@~ i f O < t < G  i > O .  The 
maximum longitude deviation from the ascending node 
is therefore given by 

The figure 8 pattern is symmetric with 

The maximum latitude deviation from the 

The figure 8 equation can be rewritten as 

A brute-force approach to locating the 24 h 
coverage area would be to check every points in the 
L - L plane whether the condition (4) is met for 
all t E [0,24). Looking for possible reductions in the 
number of points to be checked, we first observe that 
Property 1 and (3)  lead to the following property. 

PROPERTY 4 The ADCA is symmetric with respect to 
both latitude and longitude axes. 
Therefore, we need only to search the ADCA in the 
first quadrant. The second reduction comes from 
Property 5. 
PROPERTY 5 A n  upper bound for the intersection of 
an ADCA with the altitude axis is &(e - i)J with the 
longitude axis intersection * cos-’ (cosO/ cos i). 
Note that if i > 8, then the subsatellite point of the 
ascending node ( A  in Fig. 2)  can be covered either 
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f 
I s  

Fig. 2. Subsatellite points of inclined synchronous satellite orbit. 

at t = 6 or at t = 18 only. Its ADCA is thus equal to 
zero. The third reduction can be accomplished by 
noting that the coverage area for a fixed satellite (or 
subsatellite) position is a spherical circular area which 
is a convex set and that the intersection of convex sets 
on a sphere is still a convex set. Therefore, we have the 
following. 

PROPERTY 6 
the Earth. 

The area of an ADCA is a convex set on 

In other words, for each longitude (or latitude) circle 
we need only two points to determine the portion 
of the ADCA that belongs to that circle. Another 
reduction can be derived from the following. 

PROPERTY 7 The latitude of an ADCA boundary in 
the first quadrant is a decreasing function of longitude. 

The proofs of the above properties are 
straightforward and are omitted. Taking these 
properties into account, we can eliminate a large 
portion of the L - L plane from the search domain 
and thus an efficient search algorithm for the ADCA 
such as that described in Fig. 3 can be obtained. 
However, we still have to deal with the problem of 
checking the condition imposed by (4) for all t in 
a certain time period. In other words, the ADCA 
evaluated by the above algorithm is only a close 
approximation since we have “quantized” the search 
domain (see Fig. 3). In the next section, we develop a 
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satisfies the R-condition. This test can be done 
analytically or by checking whether the points A + j A ,  
j = 1,. . . ,n ,  A = APl/n, along the arc AP 1 are all 
within the intersection of Q(A; R) and Q(B; R). If 
AP1 passes the test, we then choose another point 
P2 between PI and B on L and perform the test 
on P1P2. If it doesn't, we replace PI by a point Ql 

between A and PI and check whether AQl satisfies 
the R-condition. This process can be repeated until 
we reach end point B. To reduce the number of 
subarcs that satisfy the R-condition, we can replace the 
R-condition by the R'-condition, where R' is slightly 
larger than R. For example, if R = 6378 km (the 
radius of the Earth), we can replace R by R(1+ E),  
E = 0.0001. The error introduced by such a substitution 
is negligible, but the number of subarcs reduced may 
be significant. 

Our second ADCA algorithm is based on the 
following theorem. 

THEOREM. Let L be a curve joiningpoints A and 
B on a sphere S. Suppose L lies within the area 
G(C,  D;  R) Then G(A,  B; R), the area on S enclosed 
by Q(A; R) and Q(B; R), is equal to the area G(L; R) 
enclosed by all spherical circles Q@; R), where p E L. 

h 

h 

h 

h 

Fig. 4. Subsatellite point trajectory and coverage area. Note if L 
is subauplane curve of airplane with constant altitude and antenna 

coverage radius R, then region Q(A; R )  n Q(B; R) is always 
covered by airplane during period when its subairplane point 

The proof of this theorem is given in Appendix 
B. As a consequence of this theorem we immediately 
Obtain the 

travels through L. 

fast algorithm which allows us to check only a finite set 
of points on the figure 8 pattern. 

IV. FAST ALGORITHM FOR LOCATING COVERAGE 
AREAS 

DEFINITION 1 
Q(A; R) denotes the spherical circle centered at A with 
spherical radius R on S .  

Let A be a point on a sphere S. Then 

DEFINITION 2 A curve L joining points A and B 
S is said to satisfy the R-condition if and only if L 
enclosed by Q(C; R) and Q(D;  R), where C and D 
points of intersection of Q(A; R) and Q(B; R). 

on 
is 
are 

If a curve L (such as a figure 8 pattern) does not 
satisfy the R-condition, then we can decompose L into 
a number of subarcs that do satisfy the R-condition. As 
is seen later, the number of subarcs in a decomposition 
is proportional to the complexity of the given coverage 
problem. On the other hand, the decomposition of a 
given curve is quite straightforward, as the following 
algorithm demonstrates (Fig. 4). 

Let us consider the decomposition of curve AB. 
We can start with the initial point A ,  select a nearby 
point PI on L ,  and then check whether the arc A P I  

h 

h 

COROLLARY. Let L be the curve of all the subsatellite 
points of a satellite in an inclined circular synchronous 
orbit having a coverage radius R Suppose L has a 
decomposition POPI U . . . U P,, -1 P,, such that each 
subarc satisfies the R-condition. Then an Earth terminal 
can establish a communication link with the satellite 
all the time if and only if the terminal is covered by all 
Q(P,,P), 0 < j < n + 1. 

All the points PO,. . . , P,, can be precalculated and 
therefore the satellite coverage problem is reduced to 
the task of checking only a finite number of points in 
a figure 8 pattern. To demonstrate the utility of the 
fast algorithm, let us consider the case where the angle 
of inclination i is 5 deg and d,, the coverage angles, 
are 61.8', 52.5', 25.7', and 12.8' (their corresponding 
terminal antenna elevation angles are 20', 30', 60°, 
and 75O, respectively). The number of points on the 
figure 8 pattern that need to be checked for each 
ADCA is listed in Table I. Here we assume that 
A = 0.05 h = 3 min and E = 
resulting Earth ADCA contours are illustrated in Fig. 
5. As mentioned before, we need to search only the 
first quadrant; therefore, for the case 8, = 61.8' only 
11 points on the figure 8 pattern (Table I) have to be 
checked. The ratio of the reduction in the number of 
points checked is at least (24/A)/ll = 44.6. Evidently, 
this improvement is an increasing function of the 
required resolution A in the fast algorithm. 

(see Section 111). The 
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V. CONCLUSION 

100 120 140 160 180 200 220 240 260 
Degrees Longitude 

Fig. 5. ADCAs €or synchronous satellite with inclined angle 5 " .  

TABLE I 

In this paper we have derived a general condition 
for determining the coverage area of a satellite. Two 
algorithms for determining the continuous coverage 
area of an inclined circular geosynchronous satellite 
have been presented. Although we have restricted our 
discussion to one way (up link) coverage problems 
only, extensions to simplex or duplex Earth station 
links are straightforward. 

The second algorithm can also be applied to similar 
airborne coverage problems if 1 )  the coverage area is a 
spherical circle, i.e., the antenna pattern is symmetric 
with respect to its boresite and 2)  the aircraft is 
moving with constant height above the Earth. There 
is no need to restrict the time period to 24 h, as the 
first algorithm does. With only minor modifications, it 
may also be used to predict the coverage area where 
an Earth station can simultaneously establish links with 
several satellites in the same orbit. Another application 
example is illustrated in Fig. 3. Suppose an airplane 
with coverage radius R wants to monitor the region 
Q(A; R)  n Q(B; R). Then the airplane could choose any 
path as long as its subairplane path is within the region 
Q(C;R) n Q(D; R). 

e, 61.8 52.5 25.7 12.8 
No. of points 11 15 19 23 

can be obtained from P by rotating the x-axis through 
the angle of the inclination of the satellite i .  If the 
x-axis is rotated through the angle i, the coordinate 
of S is 

0 0 cos@ cos @ 

[% ;os; [si;@] = [;;;;;;:I * (9) 

Let @ and X be the relative longitude and altitude of S 
with respect to P; then 

cos@ = cosXcos(@ + 5) (10) 

cosisin@ = cosXsin(@ + 5) ( 1 1 )  

sinisin@ = sinX (12) 

x = sin-'(sinisin@) (13) 

ip = tan-'(cosisin@,cos~)- ip (14) 

and therefore 
- 

- 

APPENDIX A. 
POINTS 

FIGURE 8 PATTERN OF SUBSATELLITE 

APPENDIX B. PROOF OF THE MAIN THEOREM 
Let T be the period of a satellite orbit and point 

A be the subsatellite point on the equator; see Fig. 
2. Suppose the subsatellite point passes A at time 
zero. After t hours, the subsatellite point is at point 
S and A is rotated along the equator to a point P 
whose coordinate is given by ( x , y , z )  = (cos@,sin@,O), 
where @ = LAOP = LAOS = 2wt/T and t is the 
normalized time of day. The coordinates of point S 

CHI & SU: ON A SATELLITE COVERAGE PROBLEM 

Let E and F be two points on a sphere S .  Then 
EF denotes the (great circle) arc joining E and F and 
lEFl is the length. 

LEMMA. Let Q(A; R) and Q(B;  R)  be two spherical 
circles on a sphere S. Suppose Q(A; R) and Q(B; R)  
intersect at points C and D on S. Let G(A ,  B;  R)  be 

h 
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the area on S enclosed by Q(A;  R )  and Q(B;  R )  and 
G(C,  D; R )  be the area on S enclosed by Q(C; R )  
and Q(D; R). Then the spherical distance between an 
arbitrary point in G(A ,  B ;  R )  and an arbitrary point in 
G(C,  D; R )  is less than or equal to R 

PROOF. Let E be an arbitrary point in G(A,  B ;  R )  
and F be an arbitrary point in G(C, D;  R). Suppose 
EF or its extension intersects the convex set Q(Z; R )  at 
a point V ,  where I = C or D ,  in the order of A - V - 
B on Q(Z; R) and EF or its extension intersects the 
convex set Q(J; R)  at a point U ,  where J = A or B ,  in 
the order of C - U - D on Q ( J ;  R )  (see Fig. 3, where 
we assume that J = A and I = C). It is clear that JU 

always intersects IV  and hence JU is always between 

JV and JI. We now assume that V # J and U # I ,  
otherwise, IEFJ 5 1UVI = R and the Lemma is proved. 

Notice that in the spherical triangle AJZV, (ZV I = 
J Z J / ,  thus L J V Z  = L V J Z  and 

- 
- 

h 

h ,--. 

h ,--. 

LVJU = L V J Z  - LUJI 

5 LVJI + LIVU 

= LJVI + LIVU 

(15) 

(16) 

(17) 

= LJVU. (18) 

Similarly, we observe that in the spherical triangle 
AUJV,  LVJU 5 LJVU. Therefore, JU 5 UV and 

h h  

JEFJ 5 J U V J  5 J J U J  = R ,  and the Lemma is proved. 

With this Lemma we now give the proof of the 
main theorem as follows. 

PROOF. 
1) G(A,  B;  R )  c G(L;  R). 
Let E be an arbitrary point in G(A,B  : R )  and p 

be an arbitrary point on the curve L. L is enclosed 
by G(C, D;  R) and thus P E G(C, D; R). The above 
Lemma implies that the spherical distance between 
P and E is equal to or less than R and E is inside 
Q(P; R). Therefore, E E G(L,  R )  and G(A,B;  R )  C 
G(L;  R). 

2)  G(L;  R )  c G(A,B; R). 
Let E be an arbitrary point in G(L;  R). Then E is 

enclosed by all the spherical circles Q(P; R), where 
P E L. In particular, E is enclosed by Q(A;  R)  and 
Q(B;  R). Hence, G(L;  R)  C G(A,B;R).  

COROLLARY. Let L be a curve joiningpoints A and 
B on a sphere S. Suppose L sati@es the R-condition. 
Then a point T is enclosed by all Q(P; R), P E L, if and 
on& if T is enclosed by G(A ,  B;  R). 
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