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Abstract—This paper compares measurement error models for computer vision inspection systems based
on the statistical regression method and a neural network-based method. Experimental results demonstrate
that both of the models can effectively correct the dimensional measurements of geometric features on
a part profile. It also shows that the statistical regression method can perform excellent tasks when the
functions for models are carefully selected through statistical testing procedures. On the other hand,
varieties of neural network architectures all have good performance when training data are collected
carefully. The explicit nonlinear relationship in neural network architectures is very effective in building
a general mapping model without specifying the functional forms in advance. While statistical regression
methods will continue to play important roles in mode! building tasks, the neural network-based method
will be a very powerful alternative for precision measurement using computer vision systems.

INTRODUCTION

Computer vision systems are ideal non-contact measurement and inspection systems for parts with
a compound geometric profile. However, when a part is carried to such inspection systems by a
plain conveyor belt, a different part position will cause a different effect of measurement distortion.
This significant impact on the automated inspection system will lead to serious measurement errors.
Also, the errors which are inherent in the boundary representation method affect its measurement
accuracy. In order to get an accurate measurement of each geometric dimension on the part profile,
the results of the initial measurements must be corrected.

There is some research concerning the calibration of camera distortion [1-6]. In 1983, Wagner
[7] suggested that any resultant measurement value must contain an uncertainty of at least + 1 pixel
resolution value for each edge transition. Ho [8] found that the digitizing error of various geometric
features can be expressed in terms of the dimensionless perimeter of the object. Etesami and Uicker
[9] proposed a scheme using trigonometric functions based on Fourier series to model the machine
part boundary contour. Chang et al. [10] developed a method to find more precise break points
for boundary segmentation. They also explored the representation errors for the measurement of
straight line edges, circular arcs and angles. Later, Chang et al. [11] developed an effective procedure
to correct the error due to part orientation using the statistical regression method.

The artificial neural network is also a technology which has been successfully applied to the
industry. Udo [12] surveyed potential applications of neural networks in manufacturing processes.
Sasaki et al. [13] applied a neural network fed with optically generated features for the inspection
of integrated circuit boards. Javed and Sanders [14] used a multi-layer neural network to devise
a weld quality control monitor for zinc coated steel products. By using a back propagation neural
network, Neubauer [15] developed an optical inspection system to detect and classify the defects
on treated metal surfaces. Kroh et al. [16] developed a new neural network architecture for circular
features recognition from binary images. Masory [17] proposed a neural network model to find the
relationship between multi-sensor readings and actual tool wear measurements. Hou et al. [18]
proposed an automated inspection system using a Hough Transform and a back propagation
network for surface mount devices. Ker er al. [19] developed a neural network approach to check
radii of circular parts and differentiate between good and defective products. Hwarng and Hubele
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[20] presented a pattern recognition methodology for quality control charts based on the back
propagation algorithm. This algorithm can be used to identify six types of unnatural patterns on
X control charts, namely trends, cycles, stratification, systematic, mixtures and sudden shift. There
were also works studying the connection of statistical regression models and neural networks.
Wu [21] and Ball and Jurs [22] utilized a neural network method to estimate parameters of
regression models. Holcomb and Morari [23] adopted partial least squares and a principle
component analysis to improve performances in feedforward networks. By applying regression and
artificial neural network methods to the autoclave curing process of composites, Joseph et al. [24]
discussed the relative strengths and weakness for these two approaches.

When an industrial part is brought to the computer vision system, the profile of the part can
be scanned by a camera. After the image has been digitized, boundary extraction methods can be
applied to detect the edge points representing the part profile so that measurements can be made.
The process to decompose the digital boundary into linear lines or non-linear curves at certain
joints is boundary segmentation (also called break point detection). The break point detection
method used in this paper is the K-curvature thresholding method. By calculating the change of
the K-curvature of all edge points of the part profile, the break points of the profile can be detected
with a proper threshold. After the break points are identified, the profile can be decomposed into
several subsets of edge points. Then, each subset of edge points can be fitted by a proper geometric
function. When the circular curves are fitted by a circle-fitting method, the radius size and the center
of the circular arc can be found from function parameters directly. The length of a straight line
edge can be measured by the distance between two intersection points. When the slopes of two
intersecting straight lines are calculated by the line-fitting method, the angle between two
intersecting lines can be derived.

The premise of this research is that a part is delivered by a conveyor to the field of view of a
camera but without a fixed part location and orientation. The purpose of this paper is to compare
the statistical regression method and the neural network-based method in modeling dimensional
measurement errors in computer vision inspection systems. Other boundary representation
methods such as Hough Transform which tends to use tremendous amount of processing time for
every operational cycle and Fourier Transform which is dealing with transformed domains are not
included in the scope of this study [25, 26].

The basic profiles of an industrial part mainly consist of straight lines and circular arcs. The
geometric features to be measured generally include the radius of a circular arc, the length of a
straight line edge, and the angle formed by two straight lines. Two error correction procedures
which utilize the statistical regression method and the neural network-based method for dimen-
sional measurements are developed. These procedures are implemented in laboratory settings.
Finally, their performances on error correction and characteristics of the statistical regression
method and neural network-based method are compared.

ERROR CORRECTION PROCEDURES FOR DIMENSIONAL MEASUREMENTS BY COMPUTER VISIONS

Chang et al. [I1] demonstrated that orientation is the major influencing factor on the
measurement of the circular arc, length and angle after the image coordinate system is properly
calibrated. Moreover, errors estimated from analytical models are mostly underestimated for the
measurement of the radius, length and angle in laboratory experiments. There are errors due to
minute shadow of parts, lighting variation and other unknown causes that cannot be easily
approached analytically. In order to include all errors in the use of vision systems for error
correction purposes, the empirical approach is proposed to formulate measurement correction
models. This proposed framework is shown in Fig. 1. The stage of determining error correction
models is the “learning process,” while the stage in implementing the developed models in a
computer vision system is the “operational process”.

For measurement correction, the following relationship should be established in the learning
process:

¢.=/6,) (1)
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where ¢, is the ratio of the measured dimension to that of its corresponding true dimension of a
geometric feature, and 6, is the orientation of the part scanned. Then, the corrected estimate of
true dimension, #,, can be obtained in the operational process by:

_Tl
Px

a

ft, (2)
where = is the initial dimension of a geometric feature measured by a curve-fitting
method.

The statistical regression method and the neural network-based method are then used to
find the relationship between the geometric orientation and correction ratio. When these
methods are applied, a set of input/output patterns should be obtained before the learning
process. To collect an effective set of input/output data, one can position the rotary table
within the field of view and place the part to be measured close to the center of the rotary
table. By rotating the rotary table 6 degrees in a counterclockwise (or clockwise) direction, where
0 is a predetermined increment for the part orientation, one can scan the profile of the part at
different orientations. When the coordinates of the edge points for each scanned image are
obtained, the dimensions of the part can be computed. Thus, the observed dimension ratio can be
obtained by

7[I
(px, =— (3)

y

where =, is the true dimension and ¢, is the dimension ratio of ith observation with orientation
6.

i

(1) Modeling measurement errors by statistical regression

When the statistical regression method is applied to develop the required error correction models,
orientation is used as an independent variable. The developed regression model will generate the

Learning process
1. Determine the influencing factors for each geometric feature.

N2

2. Modeling measurement errors for each geometric feature based

on the standard part.

Operational process

1. Measure the raw dimension for each geometric feature.

N2

2. Identify the characteristics of the influencing factors for each
geometric feature.

3. Compute the correction factor based on the developed
measurement error models.

V

4. Obtain the corrected dimension.

Fig. 1. The proposed error correction framework for the measurement of the part profile in computer
vision inspection systems.
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required correction ratio which is used as ¢, in equation (2). The proposed error correction
procedure for dimension measurement of a part can be described as follows:

Procedure 1: Error correction by Statistical Regression Models

Learning process:

Step 1. Obtain a set of observed data, (¢,,, 0, ),i =1,2,...,n, where ¢, is the dimension
ratio of the geometric feature with the orientation of 6, degrees;

Step 2. Determine the specific functional form to be fitted based on the observed data;

Step 3. Find the regression models for observed dimension ratios and orientations for each
geometric feature by using the least squares method.

Operational process:

Step 1. Measure the raw dimension, =, for each geometric feature;

Step 2. Estimate the orientations of each geometric feature;

Step 3. Present the orientations of each geometric feature to the regression models and
compute the estimated correction ratio, ¢,;

Step 4. Obtain the corrected dimension, # = n/¢,, for each geometric feature.

Once the limits of the correction ratio are predicted, the prediction interval of the corrected
dimension can be estimated.

(2) Modeling measurement errors by neural network

The back propagation network is used to find the relationship between ¢, and 8,, where ¢, is
the dimension ratio and 6, is the orientation of the scanned feature n. In back propagation neural
network, the value of the target pattern should be between 0 and 1. In addition, if the value of
the input pattern is >3, the value of the sigmoid function will be close to 1, and if the value of
the input pattern is < —3, the value of the sigmoid function will be close to 0. Too many input
patterns which have values >3 or < —3 will block the weight changing of the back propagation
algorithm. In this study, when an architecture of neural network is defined, the orientations of each
geometric feature are fed to the input layer. The output layer has several nodes, each corresponding
to the dimension ratio of each geometric feature. However, the observation of the target pattern
is very close to 1 (approx. 0.950-1.120) and the observation of the input pattern is between 0 and
360. Therefore, based on the above guidelines, data sets should be scaled and shifted. In order to
obtain a set of suitable training patterns to speed network learning, the observed dimension ratio
is subtracted by 0.5 and its corresponding orientation is divided by 100 which would maintain the
input values around 0 to 3. Once a set of training patterns are obtained and the learning rate and
momentum coefficient are determined for a selected architecture, the required mapping function
can be estimated. The value of the total sum of squared error for all patterns (SSE) is used as an
index for the performance of the trained network. If SSE reaches a stable condition or is less than
some criterion, the network training can be terminated.

Based on the discussion above, the modeling procedure by the back propagation network can
be summarized as follows:

Procedure 2: Error correction by Neural Network Models

Learning process:

Step 1. Obtain a set of observed data, (¢,, 6, ),i =1,2,.. ., s, where ¢, is the dimension ratio
of the geometric feature with the orientation of 6, degrees;

Step 2. Transform the observed data sets into a set of training patterns (x;,t,),i =1,2,...,5,
where (x;, 1;) = (¢, /100,68, —0.5),

Step 3. Determine the learning rate and the momentum coefficient based on the training
patterns (x;,t,),i=1,2,...,s;

Step 4. Choose a set of network architectures. Train each network until the difference of the
SSE of two successive iterations is less than a predetermined tolerance;

Step 5. Choose a trained network with the smallest SSE.



Computer vision inspection systems 597
The averages of the
mechanical measuring resuits:

r=0.375"

L=09010"+£0.0002"

8, =123.59°% 0.03°

0, = 56.22°+0.03°

Fig. 2. A test part (material: aluminum, thickness: 0.0260” + 0.0005").

Operational process:

Step 1. Measure the raw dimension, =, for each geometric feature;

Step 2. Estimate the orientations of each geometric feature, 6,;

Step 3. Set 0. =4,/100;

Step 4. Present 0, to the trained network which is selected from Step $ in the learning process
and compute the output ¢,;

Step 5. Obtain the corrected dimension, #,==/p,, for each geometric feature, where
¢, =¢,+0.5.

IMPLEMENTATION AND VALIDATION

These two proposed procedures were implemented on the ITEX 100 Image Processing System
with a personal computer connected to a camera. These experiments were carried out in a
laboratory where the temperature is maintained at 20°C. To reduce the distortion in the ITEX 100
System, the image coordinates are calibrated first. Four features of a precision test part as shown
in Fig. 2 are measured. Because the error correction models are part-dependent, they are fitted in
the learning stage. Forty sets of observed data for the test part in different orientations are collected.
Using the proposed Procedures I and 2, the error correction models of the test part are presented
as follows:

(1) Stiatistical regression models

After several pilot studies, it is determined that cos 6 and sin 6 are to be used as the independent
variables, where 0 is the orientation of a geometric feature. By applying the least squares method,
error correction models for the test part are built as follows:

¢, =0.963856 + 0.017924 cos’ 6, 4)
@ = 0.9690754 + 0.005576 sin 6; + 0.024086 cos? 8, + 0.009085 sin 6, cos 6, (5)
@5 = 0.997877 + 0.001611 cos 6; + 0.006872 cos? 8, + 0.015025 sin 6, cos 6, (6)
@5, = 1.002895 — 0.005887 sin 6, — 0.014004 cos® 6, — 0.023232 sin 6, cos 8, (7

where ¢,, @1, @;, and @y, are the ratios of radius, length, angle 1 and angle 2, respectively. 6, is
the orientation of the circular arc and 6, is the orientation of the straight line edge, angle | and
angle 2. Note that a same orientation can be specified for all adjoining geometric features.

(2) Neural network -based models

These four geometric features on the sample part associate with one of the two orientation angles.
Therefore a neural network can be structured with two input patterns and four target patterns.
Thus (6,/100, 6, /100)' is used for the input layer and (¢, — 0.5, ¢, — 0.5, @3, — 0.5, @, — 0.5)" is used
for the output layer. The Parallel Distributed Processing Software (PDP) with a back propagation
learning algorithm is used for the network training [27].

Through several pilot runs, the learning rate and the momentum coefficient are set at 0.20 and
0.90 from a pilot study. Several different network’s architectures have been tried. Results of
network 2-3-3-4 as shown in Fig. 3 demonstrates the best performance. Accordingly, the model



598 C. Alec Chang and Chao-Ton Su

input output
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®,- 0.5
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Fig. 3. The architecture of network 2-3-3-4.

of network 2-3-3—4 is chosen to estimate the required correction ratios when a new input pattern
(6,/100, 6. /100)' of an incoming part is given.

The neural network-based correction models for the ratios of radius, length, angle 1 and angle
2 of the test part are summarized as follows:

@, =0.5+[1 +exp(—nety)] "' ®)
@L=0.5+[1 + exp(—nety)] "' 9
@3, = 0.5+ [1 + exp(—net,;,)] ™" (10)
@3, = 0.5+ [1 + exp(—net,,,)] ' (11)

where net, =X w;a,+b;; belongs to previous layer based on network 2-3-3-4 (Fig. 3),
ay = 0,/100 and a,, = 6, /100 for a, = (1 + exp(—net,))~' (i=2,3,...,11). , is the orientation
of the circular arc and 6, is the orientation of the straight line edge, angle 1 and angle 2. The weights

and biases of this network model, w;; and b,, are listed in Table 1.

(3) A comparison

To compare performances of these two error correction procedures, the test part is
scanned another 20 times so that an additional 20 sets of edge points are obtained in different
orientations. The orientations of these 20 scans are listed in Table 2. A statistical summary of the
implementation results from the error correction by using procedure 1 and procedure 2 is shown
in Table 3. Compared to their true dimensions, the absolute measurement errors are also listed
correspondingly.

Table 1. (a) The weights of network 2-3-3-4

J-i Wy J-i W,

0-2 —0.697784 4-7 —1.711437
0-3 —0.589492 58 —1.431301
04 3.979731 5-9 1.261130
1-2 4.863389 5-10 1.573830
1-3 —0.506309 5-11 —2.428989
14 —0.438711 6-8 1.009104
2-5 —0.850405 69 1.040810
2-6 0.718835 6-10 —0.277697
2-7 —1.436456 6-11 0.011072
3-5 —2.264152 7-8 1.369623
3-6 —1.819924 7-9 1.755147
3-7 0.740621 7-10 —0.264766
4-5 —0.957300 7-1 —0.253761
46 1.044890

Table 1. (b) The biases of network 2-3-3—4

i b, i b,
2 —1.481065 7 0.507747
3 1.456667 8 —0.383967
4 —2.849992 9 —1.338276
5 1.551175 10 ~0.333596
6 —0.671860 1 0.838023




Computer vision inspection systems 599

Table 2. Twenty different orientations of the test part

No. 8, 0, No. 6, N
1 16.7499 162.7700 1 186.4145  332.8866
2 46.7057 192.1600 12 211.9046  357.6542
3 51.7330 197.1156 13 226.9896 12.2848
4 56.6248  202.1813 14 236.9372 22.3381
5 66.3256  212.0437 15 256.6371 41.9351
6 86.1563  232.1433 16 261.8560 46.9985
7 121.0246  267.5440 17 316.1019 102.5291
8 136.0842  282.9632 18 326.1614 112.6399
9 141.0935  287.9212 19 336.2495 122.7072

10 1459828  292.6986 20 346.1750 1326138

Note: 8, is the orientation of the circular arc and 8, is the orientation
of the straight line edge, angle 1 and angle 2.

A statistical test is conducted to decide whether the absolute measurement errors from the neural
network-based method are different from those using the statistical regression method. This is to
test the hypothesis

Ho: oy, =g, me{r,L,$,9,}
against the alternative
H,: un, # ug,

where N, and R, denote the absolute measurement error using the neural network-based method
and the statistical regression method for each geometric feature, respectively. uy_and u,_are the
means of N, and R,, respectively. Since the distribution of absolute measurement errors passed
a normality test, the following ¢ distribution is applied

Xy, — X, (sk, + 5%,V

———— v ——
3 i r 7
Sy, +Sr, SN, t Sg,

n

where X, , X &> and s,i,‘, s%_ are simple means and variances, n is the sample size and v is the degree
of freedom for which a round-off integer is used.
For the radius measurement,

1*=

n—-1 (12)

pe o Q000700006 _ 115, v=3s,
0.0027% 4 0.0028
e
Although the error correction model for the radius measurement based on the statistical regression
method performs better, this result is not statistically significant with a =0.05 level
[2(0.975, 38) = 2.025]. Thus, the hypothesis of H, is injected, i.e. H, is not different from u,
statistically. Therefore, we conclude that the error correction results of radius for procedure 1
(statistical regression models) and procedure 2 (neural network-based models) are not significantly

Table 3. The statistical summary of corrected dimensional measurements

Before Procedure | Procedure 2
correction Statistical regression Neural network
Methods Absolute Absolute T Absolute.
M ed ement Corrected measurement Corrected measurement

Features dimension error dimension error dimension error
Radius X 0.3654" 0.0096 0.3756 0.0006 0.3757 0.0007

s 0.0029 0.0027 0.0028
Length X 0.88654" 0.01446 0.90306 0.00206 0.90324 0.00224

$ 0.00861 0.00445 0.00370
Angle 1 X 123-810 0.22 123.609 0.019 123.588 0.002

s 0.761 0.200 0.246
Angle 2 X 56.012 0.208 56.270 0.050 56.254 0.034

s 0.580 0.160 0.166

Note: X and s are the sample mean and standard deviation of 20 observations.
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Table 4. 1* values between absolute errors from the neural network-based method and the statistical regression method

Feature Radius Length Angle | Angle 2
[ 0.115 -0.139 —-0.240 —0.362
18 el 1(0.975, 38) = 2.025 1(0.025, 34) = —2.034 1(0.975, 37) = 2.027 1(0.975, 38) = 2.025

Note: ¢* values are used to test whether the absolute measurement errors of the neural network-based method are different
from those of the statistical regression method.

different. Calculated ¢* values to test the absolute measurement errors of the neural network based
models and the statistical regression based models for error correction are listed in Table 4. It is
also concluded that the measurement results of length and angle for procedures 1 and 2 are not
significantly different.

Dimensional measurements with respect to part orientation before and after error correction by
these two methods are shown in Fig. 4. Both error correction results using regression models and
neural network models demonstrate a very good performance for corrected dimensional measure-
ments using computer visions.

DISCUSSION

When the statistical regression method is used, the specific functional form must be specified in
advance. In this study, the sine and cosine transformations on 8 (orientation) are used for regression
relation between radius ratio, length ratio, angle ratio and orientations. In general, the form of the
fitting function should be chosen carefully when the statistical regression method is applied. For

038+ ... 0.92
0.375 Voo WA W 0.91
J ' 0.9
-E . --\‘l( \\j -‘\"/-\’.\, § 0.88
0.36 ¢ 0.87
0.355 + 0.86
0.35 4 0.85
—mwnweosmonn 2
No
(a) ®
125 57 -
124.5 56.5 4
124 56
—_ ™~ 3
123.5 -
S 123 % 55.5
s 55 -
122.5
122 54.5 4
121.5 54 -t
A L ANl B A -
No
© )
------------- before correction — - — — = corrected dimension by
statistical regression
true dimension =~ -------- corrected dimension by
neural network

Fig. 4. Measurement results for the test part.
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Table 5. Total sum of squared errors of six networks

Network epoch SSE
244 35,500 0.0016S
2-6-4 24,000 0.00151
2-8-4 38,500 0.00145

2-2-2-4 30,000 0.00360

2-3-34 30,000 0.00140

2-4-44 31,500 0.00176

Note: the back propagation procedure is said to be operated one
epoch when the forward and backward passes are swept through
the whole training patterns one time.

example, if one of the following simple models is selected for the radius measurement instead of
using equation (4):

o, = 0.973765 — 0.0001526, (13)
@, = 0.973321 + 0.000556 cos 6, — 0.000257 sin 6, (14)

where 6, is the orientation (measured in radians) based on the center, its performance to reduce
measurement errors is not satisfactory. Fortunately, a required testing process in the statistical
regression method will reject both models by a common criterion of a = 0.05 for F values. The
probability values of F (PROB > F) for equations (13) and (14) are 0.8207 and 0.9341, respectively.
This statistical testing and screening process usually leads to acceptable models with satisfactory
performances. As long as the form of the fitting function is determined properly, the statistical
regression method can effectively find the mapping coefficients. From Table 4, one can see that the
statistical regression models from equations (4) to (7) perform slightly better. This is due to a very
careful selection of these equation formats by observing error patterns from initial measurements.

A principal strength of the neural network approach over the statistical regression method is that
the neural network is explicitly nonlinear through hidden layers. It is a more general mapping
procedure that a specific function format is not required in model building. Moreover, the
performance is not sensitive to different network’s architectures in this study. The performances
of six different networks are listed in Table 5. Among them, network 2—-3-3—4 has the smallest SSE
and network 2-2-2-4 has the largest SSE. In this study, each of the six trained networks gives
improved measurement results. That is to say, the neural network-based method will give
satisfactory results for the error correction of dimensional measurements in general. But SSE
cannot be directly linked with performance of network models. There are no uniform screening
processes for network models before they are actually implemented. A performance checking is
required before a model can be adopted as the error correction model in inspection processes.

A possible drawback of the neural network approach is that is usually requires many training
data and tremendous numbers of iterations to complete learning. The building of the neural
network-based models in this study takes advantage of the factorial design concept. These data
are collected by rotating the sample part with a constant incremental angle. Although the use of
a factorial design concept for data collection is not necessary, the amount of training data required
for building good network models will be greatly reduced. Moreover, the influencing factors in this
study have been selected by the statistical method (ANOVA) for model fitting. Thus, the input
variables for neural network training have been reduced to one influencing factor [11]. Another
major difference is that the confidence intervals of estimated coefficients and responses from models
can be specified for the statistical regression method based on statistical variations. The neural
network-based method has to utilize a tedious sensitivity analysis for this task. The different
characteristics of the statistical regression method and the neural network-based method for
modeling measurement errors are summarized in Table 6.

CONCLUSION

With the advent of computer vision inspection, a proper error correction of dimensional
measurements is essential. Two error correction procedures using the statistical regression and the
neural network-based methods for dimensional measurements in computer vision systems are
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Table 6. Characteristics of statistical regression and neural network-based methods

Statistical regression method Neural network-based method
1. Performance is very sensitive to the 1. Performance is not sensitive 10 the
selection of functional forms for models. selection of network architecture.
The best regression model performs slightly All reasonable models in this research
better than neural network models. (It is not reduce measurement errors greatly
statistically significant in this research) and they perform better than most

regression models except the best ones

2.1t is harder to handle nonlincar relationships. 2. Tt is explicitly nonlincar. The users can
The users must have specified function handle varicties of nonlincar relationships
formats for models to be fitted thorugh hidden layers without specified
function formats
3. The model selection process is self-sustained 3. SSE is a common criterion for
through statistical testing procedures. selecting a best network architecture.
Improper models would be screened out by Its process does not have a self-sustained
statistical tests before checking actual screening criterion to identify low
performance of models quality models before checking actual
performance in error correction tasks
4. Data collection for model fitting can be 4. The excellent results of neural network
very effective through the factorial design models in this research are partially due
concept to the utilization of statistical experimental
design methods to collect learning data
5. A simple universal statistical criterion for 5. Tedious sensitivity analyses must be
prediction intervals can be specified utilized to specify prediction intervals
6. It can accommodate a limited data set for 6. In general, it requires a large number of
model fitting through larger prediction input/output patterns for training
7. It requires much less computing time for 7. Training time is long
model fitting
8. Industrial practitioners can easily grasp 8. Industrial practitioners may have difficulty
the practical meaning of models and grasping the practical meaning of weights

coeflicients and biases in networks

implemented and compared in this paper. Experimental results show that both of these two
procedures can be used for the purpose of correcting measurement errors. These two proposed
procedures for modeling measurement errors can assist quality control practitioners utilizing
computer vision systems for measurement and inspection tasks. Both of these procedures are
applicable to different geometric features, such as the correction of estimated vertex of the parabola,
foci of ellipse, and foci and vertices of hyperbola. They should be also applicable to correct the
estimation of coefficients for curves with higher degrees.

In order to adopt the regression method effectively, the form of the fitting function should be
defined in advance, i.e. the specific form of a correction function must be chosen first and then
a fitting is carried out according to the minimal sum of square errors. On the other hand, if the
form of the fitting function cannot be specified, then the neural network-based method is suggested.
When the learning rate, momentum coefficient and number of nodes in the hidden layers are
carefully chosen, the back propagation network does not require any a priori information and can
map the input patterns to the output patterns properly.
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