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a b s t r a c t

We prove that if a finite matrix A of the form

aI B
0 C


is such that its numerical rangeW (A)

is a circular disc centered at a, then a must be an eigenvalue of C . As consequences, we
obtain, for any finite matrix A, that (a) if ∂W (A) contains a circular arc, then the center of
this circle is an eigenvalue of Awith its geometricmultiplicity strictly less than its algebraic
multiplicity, and (b) if A is similar to a normal matrix, then ∂W (A) contains no circular arc.

© 2011 Elsevier Ltd. All rights reserved.

For an n-by-n complex matrix A, its numerical range W (A) is, by definition, the subset {⟨Ax, x⟩ : x ∈ Cn, ‖x‖ = 1} of the
plane, where ⟨·, ·⟩ and ‖ · ‖ denote the standard inner product and its associated norm in Cn, respectively. It is known that
W (A) is a nonempty compact convex subset of C. For its other properties, the reader may consult [1, Chapter 1].

A prominent result as regards the numerical range is the one obtained by Anderson in the early 1970s.

Anderson’s Theorem. If A is an n-by-n matrix with W (A) contained in a closed circular disc D such that ∂W (A)∩ ∂D has more
than n points, then W (A) = D and the center of D is an eigenvalue of A with algebraic multiplicity at least 2.

His proof, never published, is based on Kippenhahn’s result (W (A) is the convex hull of the real points (x, y) satisfying
q(x, y, 1) = 0, where q(x, y, z) = 0 is the dual, in the projective plane, of the curve det(x Re A + y Im A + zIn) = 0,
Re A = (A + A∗)/2 and Im A = (A − A∗)/(2i) being the real and imaginary parts of A) and Bézout’s theorem (if two
projective curves p(x, y, z) = 0 and q(x, y, z) = 0 of degrees m and n, respectively, intersect at more than mn points, then
p and q have a common factor). For other related results, see [2, Theorem], [3, Theorem 1], [4] and [5, Theorem 4.12 and
Corollary 4.4]. For the first assertion of Anderson’s theorem, the author discovered (in [6, Lemma 6]) another proof by using
the Riesz–Fejér theorem on nonnegative trigonometric polynomials and the fundamental theorem of algebra. The purpose
of this note is to utilize this approach to prove a generalization of Anderson’s theorem. The following is our main result.

Theorem 1. If A is an n-by-n matrix of the form[
aIm B
0 C

]
(0 ≤ m < n) such that W (A) is contained in the closed circular disc D centered at a and ∂W (A) ∩ ∂D has more than n − m
points, then W (A) = D and a is an eigenvalue of C.

To prove this theorem, we need the following lemma. Let D = {z ∈ C : |z| < 1} be the open unit disc.
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Lemma 2. Let A be an n-by-n matrix. Then the following hold:

(a) W (A) ⊆ D if and only if Re (eiθA) ≤ In for all real θ .
(b) Assume that W (A) ⊆ D and θ0 is some real number. Then eiθ0 is in W (A) if and only if 1 is an eigenvalue of Re (eiθ0A).

These assertions are easy consequences of the fact that the numerical range W (B) of a Hermitian matrix B is the closed
interval [a, b] of the real line, where a (resp., b) is the smallest (resp., largest) eigenvalue of B.

Proof of Theorem 1. Assume that D has radius r . Replacing A by (A − aIn)/r and D by (D − a)/r , we may assume, without
loss of generality, that a = 0 and D = D. Since W (A) ⊆ D, we have Re (eiθA) ≤ In for all real θ by Lemma 2(a) and thus
p(eiθ ) ≡ det (In − Re (eiθA)) ≥ 0 for all θ . On the other hand, that ∂W (A) ∩ ∂D contains more than n−m points implies, by
Lemma 2(b), the existence of distinct θ1, . . . , θn−m+1 in [0, 2π ) such that p(eiθj) = 0 for all j, 1 ≤ j ≤ n − m + 1. Note that

p(eiθ ) = det
[

Im −eiθB/2
−e−iθB∗/2 In−m − Re(eiθC)

]
= det


In−m − Re (eiθC) −

1
4
(−e−iθB∗)(−eiθB)


= det


In−m − Re (eiθC) −

1
4
B∗B


.

We may assume that C = [cjk]n−m
j,k=1 is upper triangular (cjk = 0 for j > k) and B∗B/4 = [bjk]n−m

j,k=1. Then In−m − Re (eiθC) −

(B∗B/4) = [djk]n−m
j,k=1, where

djk =


1 − Re(eiθ cjj) − bjj if j = k,
−(eiθ cjk/2) − bjk if j < k,

−(e−iθ ckj/2) − bjk if j > k.

Hence p(eiθ ) is a trigonometric polynomial of the form
∑n−m

l=−(n−m) uleilθ with un−m = (−1)n−mc11 · · · cn−m,n−m/2n−m and
u−l = ul for all l. Since p(eiθ ) ≥ 0 for all θ , the classical Riesz–Fejér theorem implies that p(eiθ ) = |q(eiθ )|2 for some
polynomial q of degree at most n−m (cf. [7, p. 77, Problem 40]). On the other hand, p(eiθ ) = 0 for θ = θj, 1 ≤ j ≤ n−m+1,
yields the same for q(eiθ ). Applying the fundamental theorem of algebra to q, we obtain that p(eiθ ) = |q(eiθ )|2 = 0 for all
θ . Thus 1 is an eigenvalue of Re (eiθA) for all θ and thereforeW (A) = D by Lemma 2(b). From p ≡ 0, we have un−m = 0 and
hence cjj = 0 for some j, 1 ≤ j ≤ n − m. This shows that 0 is an eigenvalue of C as asserted. �

Note that in the preceding theorem, the case m = 0 corresponds to Anderson’s theorem. Also note that if we assume
that D ⊆ W (A) instead of W (A) ⊆ D, then W (A) may not equal D even in the context of Anderson’s theorem. This is seen
from the n-by-n (n ≥ 3) matrix A = [1] ⊕ Jn−1, where Jn−1 is the (n − 1)-by-(n − 1) Jordan block

0 1

0
. . .

. . . 1
0

 ,

since in this caseW (A) equals the convex hull of the point 1 and the circular disc {z ∈ C : |z| ≤ cos (π/n)} (cf. [8, Proposition
1]). Using arguments analogous to those in the proof of the preceding theorembutwithout invoking theRiesz–Fejér theorem,
we can easily show the following corollary, whose proof we omit.

Corollary 3. Let A be an n-by-n matrix of the form[
aIm B
0 C

]
(0 ≤ m < n) and D be a closed circular disc centered at a. If ∂W (A) ∩ ∂D contains more than 2(n − m) points, then a is an
eigenvalue of C.

The next corollary gives spectral information on the center of a circular numerical range. It generalizes [5, Corollary 4.4].

Corollary 4. If A is an n-by-n matrix such that ∂W (A) contains more than 2n points of a circle centered at a, then a is an
eigenvalue of A with its geometric multiplicity strictly less than its algebraic multiplicity. In this case, the number 2n is sharp.
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Proof. That a is an eigenvalue of A follows from casem = 0 of Corollary 3. Let n1 (resp., n2) be the geometric (resp., algebraic)
multiplicity of a.We obviously have n1 ≤ n2. If n1 = n2 ≡ m, thenA is unitarily equivalent to amatrix of the form


aIm B
0 C


on

Cn
= ker (A− aIn) ⊕ (ker (A− aIn))⊥ with C − aIn−m one-to-one. However, Corollary 3 implies that a is an eigenvalue of C .

This is a contradiction. Thus n1 < n2 as asserted.
The sharpness of 2n is seen from the n-by-n diagonal matrix A = diag(1 + ϵ, ωn(1 + ϵ), ω2

n(1 + ϵ), . . . , ωn−1
n (1 + ϵ)),

where ωn = e2π i/n and ϵ > 0 is sufficiently small. In this case, W (A) is the regular n-gonal region with vertices ω
j
n(1 + ϵ),

0 ≤ j ≤ n − 1, and ∂W (A) ∩ ∂D containing exactly 2n points. �

For a matrix similar to a normal one, we can say slightly more of its numerical range.

Corollary 5. Let A be an n-by-n matrix which is similar to a normal one. Then the following hold:

(a) ∂W (A) contains no circular arc.
(b) If W (A) ⊆ D or D ⊆ W (A), where D is a closed circular disc, then ∂W (A) ∩ ∂D contains at most n points. In this case, the

number n is sharp.

Proof. (a) This follows from Corollary 4 since under our assumption the geometric and algebraic multiplicities of every
eigenvalue of A are equal to each other.
(b) If W (A) ⊆ D, then the assertion regarding ∂W (A) ∩ ∂D is a consequence of Theorem 1 (or Anderson’s theorem) and
(a). Next assume that D ⊆ W (A) and ∂W (A) ∩ ∂D has more than n points. If n = 2, then W (A) is an elliptic disc. Our
assumptions imply, via Anderson’s theorem, by interchanging the roles of W (A) and D, that W (A) and D coincide. Hence
both eigenvalues of A are a, the center of D. It follows that A is similar to the scalar matrix aI2 and, therefore, is equal to aI2
itself. Thus W (A) = {a}, which contradicts W (A) = D. On the other hand, if n ≥ 3, then [4, Theorem 2.5 (b)] implies that
∂W (A) contains an arc of ∂D. This contradicts (a). This shows that in any case ∂W (A) ∩ ∂D contains at most n points.

The sharpness of n is seen from the n-by-n diagonal matrix A = diag(1, ωn, ω
2
n, . . . , ω

n−1
n ), where ωn = e2π i/n, and

D = D (forW (A) ⊆ D) or D = {z ∈ C : |z| ≤ cos (π/(n + 1))} (for D ⊆ W (A)). �

Corollary 6. If A is the product of two positive semidefinite matrices, then ∂W (A) contains no circular arc.

Proof. Our assumption on A implies that it is similar to a positive semidefinite matrix (cf. [9, Theorem 2.2]). The assertion
then follows from Corollary 5(a). �

Weconclude this note by remarking thatmost of the results here are no longer valid for operators on infinite-dimensional
spaces. As an example, if A is the bilateral weighted shift with weights . . . , 1, 1, w, 1, 1, . . . , where |w| > 1:

A(. . . , x−2, x−1, x0, x1, x2, . . .) = (. . . , x−2, x−1, wx0, x1, . . .)

on l2(Z) (both the 0th weight and the 0th component of a vector are underlined), then it can be shown that W (A) = {z ∈

C : |z| ≤ (|w|
2
+ 1)/(2|w|)} by using the method developed in [10, Section III, p. 500] (cf. also [11, Theorem 4.9 (b)] for an

alternative proof). In this case, A is similar to the (simple) bilateral shift (the bilateral weighted shift with weights all equal
to 1) by [12, Theorem 2 (a)], and hence has its spectrum σ(A) equal to ∂D. In particular, 0, the center ofW (A), is not in σ(A).
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