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For an n-by-n complex matrix A, its numerical range W (A) is, by definition, the subset {{Ax, x) : x € C", ||x|| = 1} of the
plane, where (-, -) and || - || denote the standard inner product and its associated norm in C", respectively. It is known that
W (A) is a nonempty compact convex subset of C. For its other properties, the reader may consult [1, Chapter 1].

A prominent result as regards the numerical range is the one obtained by Anderson in the early 1970s.

Anderson’s Theorem. If Ais an n-by-n matrix with W (A) contained in a closed circular disc D such that dW (A) N dD has more
than n points, then W (A) = D and the center of D is an eigenvalue of A with algebraic multiplicity at least 2.

His proof, never published, is based on Kippenhahn'’s result (W (A) is the convex hull of the real points (x, y) satisfying
q(x,y,1) = 0, where q(x,y,z) = 0 is the dual, in the projective plane, of the curve det(xRe A + yIm A + zl;,) = 0,
ReA = (A+ A*)/2and Im A = (A — A*)/(2i) being the real and imaginary parts of A) and Bézout’s theorem (if two
projective curves p(x, y,z) = 0 and q(x, y, z) = 0 of degrees m and n, respectively, intersect at more than mn points, then
p and g have a common factor). For other related results, see [2, Theorem], [3, Theorem 1], [4] and [5, Theorem 4.12 and
Corollary 4.4]. For the first assertion of Anderson’s theorem, the author discovered (in [6, Lemma 6]) another proof by using
the Riesz-Fejér theorem on nonnegative trigonometric polynomials and the fundamental theorem of algebra. The purpose
of this note is to utilize this approach to prove a generalization of Anderson’s theorem. The following is our main result.

Theorem 1. If A is an n-by-n matrix of the form

al, B
0 C

(0 < m < n) such that W (A) is contained in the closed circular disc D centered at a and dW (A) N aD has more thann — m
points, then W(A) = D and a is an eigenvalue of C.

To prove this theorem, we need the following lemma. Let D = {z € C : |z| < 1} be the open unit disc.
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Lemma 2. Let A be an n-by-n matrix. Then the following hold:

(a) W(A) C Difand only if Re (eA) < I, for all real 6.
(b) Assume that W (A) € D and 6, is some real number. Then e'% is in W (A) if and only if 1 is an eigenvalue of Re (e'®A).

These assertions are easy consequences of the fact that the numerical range W (B) of a Hermitian matrix B is the closed
interval [q, b] of the real line, where a (resp., b) is the smallest (resp., largest) eigenvalue of B.

Proof of Theorem 1. Assume that D has radius r. Replacing A by (A — al,)/r and D by (D — a)/r, we may assume, without
loss of generality, that a = 0 and D = D. Since W(A) C D, we have Re (eYA) < I, for all real by Lemma 2(a) and thus
p(e?) = det (I, — Re (e’ A)) > 0 for all 6. On the other hand, that 9W (A) N 9D contains more than n — m points implies, by

Lemma 2(b), the existence of distinct 61, . .., Gn_m+1 in [0, 277) such that p(e%) = 0 forallj, 1 <j < n — m + 1. Note that
o In —el’B/2
p(e ) = det |:_e—163*/2 In—rn _ Re(EIQC)

. 1 . .

= det <1n_m —Re(e?C) — 4(—e‘93*)(—e'93))
i0 1 *

= det| I,_n, —Re(e”C) — ZB B].

We may assume that C = [}, s uppertangular (G = 0 for) > k) and B'5/4 = [ Then - — Re (¢9C) —
(B*B/4) = [dul}' L, where

1—Re(e”cy) —b; if j=k,
dy = 1 —(€“ci/2) — by ifj<Kk
—(e75/2) — by if j > k.

Hence p(e'?) is a trigonometric polynomial of the form Z;’:”(nfm) we with uy_m = (—=1D""™c11 -+ Comonem/2" ™ and

u_; = u for all I. Since p(e!) > 0 for all 6, the classical Riesz-Fejér theorem implies that p(el’) = |q(e'?)|? for some
polynomial q of degree at most n —m (cf. [7, p. 77, Problem 40]). On the other hand, p(e'?) = 0 for 6 = 0,1<j<n—-m+1,
yields the same for g(e'?). Applying the fundamental theorem of algebra to g, we obtain that p(e'?) = |q(e'?)|?> = 0 for all
. Thus 1is an eigenvalue of Re (e?A) for all 6 and therefore W (A) = D by Lemma 2(b). From p = 0, we have u,_, = 0 and
hence ¢ = 0 for some j, 1 <j < n — m. This shows that 0 is an eigenvalue of C as asserted. O

Note that in the preceding theorem, the case m = 0 corresponds to Anderson’s theorem. Also note that if we assume
that D € W(A) instead of W(A) C D, then W(A) may not equal D even in the context of Anderson’s theorem. This is seen
from the n-by-n (n > 3) matrix A = [1] @ J,_1, where J,_; is the (n — 1)-by-(n — 1) Jordan block

0 1
0

1
0

since in this case W (A) equals the convex hull of the point 1 and the circulardisc {z € C : |z| < cos (7t /n)} (cf.[8, Proposition
1]). Using arguments analogous to those in the proof of the preceding theorem but without invoking the Riesz-Fejér theorem,
we can easily show the following corollary, whose proof we omit.

Corollary 3. Let A be an n-by-n matrix of the form

al,, B
0 C

(0 < m < n)and D be a closed circular disc centered at a. If dW (A) N 0D contains more than 2(n — m) points, then a is an
eigenvalue of C.

The next corollary gives spectral information on the center of a circular numerical range. It generalizes [5, Corollary 4.4].

Corollary 4. If A is an n-by-n matrix such that 0W (A) contains more than 2n points of a circle centered at a, then a is an
eigenvalue of A with its geometric multiplicity strictly less than its algebraic multiplicity. In this case, the number 2n is sharp.
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Proof. Thatais an eigenvalue of A follows from case m = 0 of Corollary 3. Let n; (resp., n,) be the geometric (resp., algebraic)

multiplicity of a. We obviously have n; < n,.Ifn; = n, = m, thenAis unitarily equivalent to a matrix of the form [ag" g] on

C" = ker (A — al,) @ (ker (A — al,,))* with C — al,_,, one-to-one. However, Corollary 3 implies that a is an eigenvalue of C.
This is a contradiction. Thus n; < n, as asserted.
The sharpness of 2n is seen from the n-by-n diagonal matrix A = diag(1 + €, w,(1 + €), wﬁ(l +€),..., w{}‘l(l + €)),

where w, = e"/" and € > 0 is sufficiently small. In this case, W (A) is the regular n-gonal region with vertices wﬁ(l + €),
0 <j<n-—1,and 0W(A) N D containing exactly 2n points. O

For a matrix similar to a normal one, we can say slightly more of its numerical range.

Corollary 5. Let A be an n-by-n matrix which is similar to a normal one. Then the following hold:

(a) oW (A) contains no circular arc.
(b) If W(A) € Dor D C W(A), where D is a closed circular disc, then dW (A) N D contains at most n points. In this case, the
number n is sharp.

Proof. (a) This follows from Corollary 4 since under our assumption the geometric and algebraic multiplicities of every
eigenvalue of A are equal to each other.

(b) If W(A) C D, then the assertion regarding dW (A) N dD is a consequence of Theorem 1 (or Anderson’s theorem) and
(a). Next assume that D € W(A) and dW(A) N aD has more than n points. If n = 2, then W(A) is an elliptic disc. Our
assumptions imply, via Anderson’s theorem, by interchanging the roles of W (A) and D, that W (A) and D coincide. Hence
both eigenvalues of A are a, the center of D. It follows that A is similar to the scalar matrix al, and, therefore, is equal to al,
itself. Thus W(A) = {a}, which contradicts W(A) = D. On the other hand, if n > 3, then [4, Theorem 2.5 (b)] implies that
dW (A) contains an arc of dD. This contradicts (a). This shows that in any case W (A) N D contains at most n points.

The sharpness of n is seen from the n-by-n diagonal matrix A = diag(1, wy, a)ﬁ, e, w,’q'*l), where w, = e*™/" and
D =D (for W) CD)orD={z e C:|z|] <cos(w/(n+ 1))} (forD C W(A)). O

Corollary 6. If Ais the product of two positive semidefinite matrices, then dW (A) contains no circular arc.

Proof. Our assumption on A implies that it is similar to a positive semidefinite matrix (cf. [9, Theorem 2.2]). The assertion
then follows from Corollary 5(a). O

We conclude this note by remarking that most of the results here are no longer valid for operators on infinite-dimensional
spaces. As an example, if A is the bilateral weighted shift with weights ..., 1,1, w, 1, 1, ..., where |w| > 1:

A(.. X2, X-1,X0, X1, X2, .. .) = (..., X2, X_1, WXp, X1, - . .)

on 2(Z) (both the Oth weight and the Oth component of a vector are underlined), then it can be shown that W(A) = {z ¢
C: |z| < (Jw|> + 1)/(2|w])} by using the method developed in [10, Section III, p. 500] (cf. also [ 11, Theorem 4.9 (b)] for an
alternative proof). In this case, A is similar to the (simple) bilateral shift (the bilateral weighted shift with weights all equal
to 1) by [12, Theorem 2 (a)], and hence has its spectrum o (A) equal to dD. In particular, 0, the center of W (A), is not in o (A).
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