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model and compute the spectra of its finite quotients.Moreover, we give a quick and simple
estimation for a given toroidal fullerene. Finally, we provide a realization of those families
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1. Introduction

Since the discovery of the first fullerene, Buckministerfullerene C60, fullerenes have attracted great interest in many
scientific disciplines. Many properties of fullerenes can be studied usingmathematical tools such as graph theory and group
theory. A fullerene can be represented by a trivalent graph on a closed surface with pentagonal and hexagonal faces, such
that its vertices are carbon atoms of themolecule; two vertices are adjacent if there is a bond between corresponding atoms.
Then fullerenes exist in the sphere, torus, projective plane, and the Klein bottle. In order to realize in the real world, we shall
assume that the closed surfaces, on which fullerenes are embedded, are oriented. In this case, a fullerene is called spherical
if it lies on the sphere (which is indeed just C60); it is called toroidal if it lies on the torus. Fullerenes with heptagonal faces
are called generalized fullerenes, which have to be realized on a high genus surface. (See [6] for constructing of high genus
fullerenes.)

According to the Hückel molecular orbital theory, the energy spectrum of π-electrons of the fullerene can be
approximated by eigenvalues of the adjacencymatrix of the associated graph up to a constantmultiple. (For details, see [22].)
One of the most important information of this energy spectrum is the HOMO–LUMO gap, which is the difference of energies
between the highest occupied molecular orbit and the lowest unoccupied molecular orbit. Some partial results about
the HOMO–LUMO gaps of certain families of graphs are known [4,5,10,12,14,17,25]. However, it is in general difficult to
construct a molecule with the prescribed HOMO–LUMO gap.

In this paper, we consider a special kind of family of fullerene: those with a Cayley graph structure. A Cayley graph
G(G, S) is a graph that encodes the structure of the group G with a generating set S. It turns out that except for the case of
C60 which is a Cayley graph on PSL2(F5) realized on the surface of a sphere, the remaining fullerenes are toroidal provided
that they are orientable. In chemistry, there are different techniques to construct a family of toroidal molecules, some are
based on combinatorial methods [2,3,16] and some are based on geometric approaches [23]. There are also several articles
of hexagonal maps on the torus from mathematical viewpoints [1,8,19,24]. Moreover, the spectra of toroidal fullerenes are
well studied in [9,13,15].
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A great advantage of the Cayley graph structure is that all the eigenvalues can be explicitly expressed using
representations of the underlying group, which allows us to control the HOMO–LUMO gap by choosing a proper group.

The plan of this paper is as follows. We first classify all possible group structures of fullerenes with the Cayley graph
structure (for both orientable and non-orientable cases). Second, we give a geometric model of each group structure and
compute the spectra of their finite quotients (for orientable cases only). Third,, we give an estimation of HOMO–LUMO gap
via solving the CVP(closest vector problem). As a by-product, we get an infinite family of toroidal fullerenes {Xp,q}

∞

q=1 with
the same HOMO–LUMO gap of size 2π

√
3p

+ O(p−2) for any natural number p not divisible by three.
In molecular modeling, there are constraints on bond lengths, bond angles, etc. There is an energy function associated

to these constraints which measures the stability of molecules. In the end of this paper, we provide an embedding of Xp,q
into three-dimensional space such that all bonds have almost equal lengths. One can choose this embedding as an initial
embedding and minimize the energy function using standard algorithms, which can be realized by chemistry softwares,
e.g. ChemOffice.

2. Fullerenes with the Cayley graph structure

In graph theory, a map is an embedding of a graph X on a closed surface Σ . For convenience, we regard X as a subset of
Σ . Each connected component of Σ \ X is called a face and the boundary of a face is a cycle of X . Note that every edge of
X lies in the boundaries of exact two faces. Conversely, let C be a set of cycles in a graph X such that every edge of X lies in
exact two cycles in C , then there is a unique map up to homeomorphism such that the boundaries of faces of X with respect
to the map are elements of C .

Let G be a group generated by a finite set S. Assume that S is symmetric, namely if s lies in S, so does s−1. The Cayley
graph X = G(G, S) is defined as follows. Vertices of X are elements in G and two vertices g1, g2 ∈ G are adjacent if g1 = g2s
for some s ∈ S. The group G acts on the graph X by left multiplication. Observe that each vertex has exact |S| neighbors and
we call X an |S|-regular graph. A graph endowed with a map is called a fullerene (graph) if it is a 3-regular Cayley graph
X = G(G, S) such that the boundary of each face is either a pentagon or a hexagon. Moreover, we also require that the map
is compatible with the group action of G. That is if γ is a boundary of a face, then so is gγ for all g in G.

A path γ = (g0, . . . , gn) in X can be represented by a word s1 · · · sn for some si in S, such that g1 = g0s1, g2 = g0s1s2, . . .,
and gn = g0s1 · · · sn. Especially, when γ is a cycle (, that is gn = g0), we obtain a relation s1 · · · sn = id on S. Let FS be the free
group with the generating set S. One can recover the group structure of G from X by

G ∼= Fs/{all relations arising from cycles in X}.

The relations arising from null-homotopic cycles in X are called trivial relations, which are generated by the relations of the
form s−1

i = sj. We call X a universal fullerene graph if all nontrivial relations on S only arise from the faces of X . It is obvious
that every fullerene with the Cayley graph structure is a quotient of some universal fullerene graph.

3. Classification of universal fullerene graphs

Let X = G(G, S) be a universal fullerene graph. Since the faces of X are preserved under the group action of G, it is enough
to study the faces containing the identity ofG. Let F be a face containing the identitywith the boundary (id, s1, s1 . . . sn = id).
If we choose s1 as the starting vertex, such that the boundary of F is represented by (s1, s1s2, . . . , id, s1). If we multiply s−1

1
on the left to this boundary, we get (id, s2, . . . , s2 . . . sns1 = id) which represents the boundary of another face containing
the identity. Thus, each cyclic permutation of s1 · · · sn = id represents a different face containing the identity. On the other
hand, there are exact three faces containing the identity such that the cyclic permutations of s1 · · · sn can only contain up to
three different elements. We conclude that s1 · · · sn must be equal to one of s51, s

6
1, (s1s2)

3, and (s1s2s3)2.
Set S = {a, b, c} and regard G as a quotient of a free group F3 = ⟨a, b, c⟩ by two kinds of relations: the trivial relations

and the relations arising from faces. We distinguish two cases:
Case (1). All generators have order two, say, a2 = b2 = c2 = id.

In this case, a relation of faces must have the form (ab)3 = id, (abc)2 = id, or their conjugations by permuting a, b, c .
Note that (ba)3 = id and (ab)3 = id represent the same boundary of a face with opposite directions. Consequently, there
are two subcases:
Case (1a). Three relations from faces are (abc)2 = id, (bca)2 = id and (cba)2 = id.
Case (1b). Three relations from faces are (ab)3 = id, (bc)3 = id and (ac)3 = id.
Case (2). One generator has order not equal to two, say, a2 = id, b2 ≠ id, c = b−1. In this case, a relation of faces must have
the form b5 = id, b6 = id, (ab)3 = id or (ab2)2 = id. Therefore, there are three subcases:
Case (2a). Three relations from faces are (ab2)2 = id, (bab)2 = id and (b2a)2 = id.
Case (2b). Three relations from faces are b6 = id, (ab)3 = id and (ba)3 = id.
Case (2c). Three relations from faces are b5 = id, (ab)3 = id and (ba)3 = id.
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Fig. 1. A hexagonal tiling of R2 .

We conclude that

Theorem 1. A fullerene with the Cayley graph structure G(G, S) is isomorphic to a finite quotient of one of the following five
graphs described in terms of generators and relations,

• G1 = ⟨a, b, c|a2 = b2 = c2 = (abc)2 = (bca)2 = (cab)2 = id⟩;
• G2 = ⟨a, b, c|a2 = b2 = c2 = (ab)3 = (ac)3 = (bc)3 = id⟩;
• G3 = ⟨a, b|a2 = (ab2)2 = (bab)2 = (b2a)2 = id⟩;
• G4 = ⟨a, b|a2 = b6 = (ab)3 = (ba)3 = id⟩;
• G5 = ⟨a, b|a2 = b5 = (ab)3 = (ba)3 = id⟩.

It is not hard to prove that G5 is isomorphic to PSL2(F5) (see [7]) and in this case the graph is the well-known C60. For the
first four cases, X contains only hexagonal faces. Let V , E and F be the number of vertices, edges and faces of X , respectively.
The Euler characteristic of X is equal to

V − E + F = |G| −
3
2
|G| +

1
2
|G| = 0.

Therefore, X lies on a torus if it is orientable; it lies on a Klein bottle if it is non-orientable.

3.1. Generalized fullerenes

If one allows that fullerene have heptagonal faces (which is called a generalized fullerene), there is one extra universal
fullerene graph, whose underlying group is G6 = ⟨a, b|a2 = b7 = (ab)3 = (ba)3 = id⟩. The group G6 is the von Dyck group
D(2, 7, 3) and it is isomorphic to Γ = PSL2(Z) modulo E7, the minimal normal subgroup in PSL2(Z) containing


1 7
0 1


. Let

X be a finite quotient of the universal fullerene graph. The Euler characteristic of X is equal to

V − E + F = |G| −
3
2
|G| +


1
6

+
1
6

+
1
7


|G| = −

1
42

|G| = 2 − 2g,

where g is the genus of the surface which X lies on. Hence we have |G| = 84(g − 1) and g ≥ 2. A well-known example is
that when the underlying group of X is Γ /Γ (7) ∼= PSL2(Z/7Z), X has 168 vertices and it lies on a surface of genus three,
called the Klein quartic. (See [11].)

4. Geometric models of universal fullerene graphs

In this section, we will give each Gi a geometric model.
Let Y be the hexagonal tiling of the Euclidean plane R2 such that the origin O is the center of a hexagon as shown in Fig. 1.
For convenience, we use {e⃗1, e⃗2} in Fig. 1 as the basis of R2 to express linear transformations and translations. The group

of affine transformations on R2 is the semi-direct product W = R2 o GL2(R). More precisely, the action of (v⃗, A) ∈ W on
u⃗ ∈ R2 is given by

(v⃗, A)(u⃗) = v⃗ + Au⃗,

and the group law is

(v⃗1, A1) · (v⃗2, A2) = (v⃗1 + A1v⃗2, A1A2).

When A is the identity matrix I2, (v⃗, I2) is a translation, denoted by Tv⃗ . All translations form a subgroup of W , called
the translation subgroup, denoted by T . The group W contains four different types of elements: rotations, reflections,
translations, and glide reflections. Note that only rotations and reflections have fixed points and may have finite orders.
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Fig. 2. ρ ◦ σ1(G1).

Fig. 3. ρ ◦ σ2(G2).

We shall construct an explicit embedding σi of each group Gi into W and show that it induces a graph isomorphism from
G(Gi, Si) to Y .

Let e⃗0 = e⃗1 + e⃗2 and let ρ : Aut(Y ) → Y be the evaluation map given by ρ(f ) = f (e⃗0).

Case (a). G1 = ⟨a, b, c|a2 = b2 = c2 = (abc)2 = id⟩.
Define σ1 : G1 −→ W by

σ1(a) =

[
2
1

]
,

[
−1 0
0 −1

]
, σ1(b) =

[
3
3

]
,

[
−1 0
0 −1

]
,

σ1(c) =

[
1
2

]
,

[
−1 0
0 −1

]
.

Here σ1(a), σ1(b) and σ1(c) are 180°-rotations centered at a0, b0, c0, respectively, as shown in Fig. 2.

Case (b). G2 = ⟨a, b, c|a2 = b2 = c2 = (ab)3 = (ac)3 = (bc)3 = id⟩.
Define σ2 : G2 −→ W by

σ2(a) =

[
0
0

]
,

[
1 0
1 −1

]
, σ2(b) =

[
3
3

]
,

[
0 −1

−1 0

]
,

σ2(c) =

[
0
0

]
,

[
−1 1
0 1

]
.

Here σ2(a), σ2(b) and σ2(c) are reflections with respect to the axes a0, b0, c0, respectively as shown in Fig. 3.

Case (c). G3 = ⟨a, b|a2 = (ab2)2 = (bab)2 = (b2a)2 = id⟩.
Define σ3 : G3 −→ W by

σ3(a) =

[
2
1

]
,

[
−1 0
0 −1

]
, σ3(b) =

[
1
2

]
,

[
1 0
1 −1

]
.

Here σ3(a) is a 180°-rotation around the point a0 and σ3(b) is a glide reflection with respect to the axis b0 as shown in Fig. 4.
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Fig. 4. ρ ◦ σ3(G3).

Fig. 5. ρ ◦ σ4(G4).

Case (d). G4 = ⟨a, b|a2 = b6 = (ab)3 = (ba)3 = id⟩.
Define σ4 : G4 −→ W by

σ4(a) =

[
2
1

]
,

[
−1 0
0 −1

]
, σ4(b) =

[
2
1

]
,

[
1 −1
1 0

]
.

Here σ4(a) is a 180°-rotation around the point a0 and σ4(b) is a 60°-rotation around the point b0 as shown in Fig. 5.
Observe that ρ induces a graph isomorphism from G(σi(Gi), σ1(Si)) to Y for i = 1, 2, 3, 4. To show that each σi is an
isomorphism, we use the following basic propositions in group theory.

Proposition 2. Let H be a normal subgroup of G and σ be a homomorphism from G to another group G′. If σ |H and the induced
map of σ̄ : G/H → σ(G)/σ (H) are both injective, then σ is also injective.

Proposition 3. Any surjective homomorphism from Z2 to Z2 is an isomorphism.

Let v⃗1 = 2e⃗1 + e⃗2, v⃗2 = e⃗1 + 2e⃗2. Recall that Tv⃗ is the translation x⃗ → x⃗ + v⃗.

Theorem 4. G(Gi, Si) is isomorphic to Y as a graph for i = 1, 2, 3, 4.

Proof. Since G(σi(Gi), σi(Si)) is isomorphic to Y as a graph, we only need to show that σi is injective and then it induces a
graph isomorphism from G(Gi, Si) to G(σi(Gi), σi(Si)). We shall find, for each Gi, the translation subgroups Hi and verify that
σi is injective on both Hi and Gi/Hi and hence σi is injective by Proposition 2.
Case (a). LetH1 = ⟨bc, ba⟩. It is easy to check thatH1 is an abelian normal subgroup of G1. Since σ1(H1) = ⟨σ1(bc), σ1(ba)⟩ =

⟨Tv⃗1 , Tv⃗2⟩
∼= Z2, we have thatH1 is also isomorphic to Z2. By Proposition 3, σ1 is injective onH1. On the other hand, in G1/H1,

c = b−1, a = b−1 and then G1/H1 = ⟨b|b2 = id⟩. Since b is not a translation, we have σ(bH1) ≠ σ(H1) and so σ1 is injective
on G1/H1.
Case (b). Let H2 = ⟨cbca, abac⟩. It is easy to check that H2 is an abelian normal subgroup of G2. Since σ2(H2) = ⟨σ2(abac),
σ2(cbca)⟩ = ⟨T2v⃗1−v⃗2 , T2v⃗2−v⃗1⟩

∼= Z2, we have that H2 is also isomorphic to Z2. By Proposition 3, σ2 is injective on H2.
On the other hand, in G2/H2, c = (aba)−1 and then G2/H2 = ⟨a, b|a2 = b2 = (ab)3 = id⟩. Thus G2 =


gH2, where

g = id, a, b, ab, ba, aba. Since none of a, b, ab, ba, aba is a translation, σ2 is injective on G2/H2.
Case (c). Let H3 = ⟨b2, baba⟩. It is easy to check that H3 is an abelian normal subgroup of G3. Since σ3(H3) = ⟨σ3(b2),
σ3(baba)⟩ = ⟨Tv⃗1 , T2v⃗2−v⃗1⟩

∼= Z2, we have that H3 is also isomorphic to Z2. By Proposition 3, σ3 is injective on H3. On the
other hand, G3/H3 = ⟨a, b|a2 = b2 = (ba)2 = id⟩. Thus G3 =


gH3, where g = id, a, b, ab. Since none of a, b, ab is a

translation, σ3 is injective on G3/H3.
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Case (d). Let H4 = ⟨b3a, bab2⟩. It is easy to check that H4 is an abelian normal subgroup of G4. Since σ4(H4) = ⟨σ4(b2),
σ4(baba)⟩ = ⟨T2v⃗1−v⃗2 , T2v⃗2−v⃗1⟩

∼= Z2, we have that H4 is also isomorphic to Z2. By Proposition 3, σ4 is injective on H4. On
the other hand, in G4/H4, a = b−3 and then G4/H4 = ⟨b|b6 = id⟩. Thus G4 =


biH4, where 0 ≤ i ≤ 5. Since none of bi is a

translation for 1 ≤ i ≤ 5, σ4 is injective on G4/H4. �

For now on, we identify each Gi with σi(Gi) as a subgroup of W .

5. Non-spherical fullerene

The Cayley graphs discussed in the previous section are infinite graphs and they are all isomorphic to the hexagonal
tiling Y as graphs. To obtain finite generalized fullerenes, we shall consider finite quotients of these graphs. Let H be a finite
index normal subgroup of Gi, then the Cayley graph X = G(Gi/H, S) is a finite graph on the surface S = R2/H . Without
changing the local structure of Y , we shall assume that none of two vertices of a hexagon in Y are identified as one vertex
in X . Under this assumption, H cannot have any fixed points, so the fundamental group of S is isomorphic to H . In this case,
H is torsion-free and H ∼= Z2 if S is a torus; H ∼= ⟨s, t|sts−1

= t−1
⟩, if S is a Klein bottle. In the first case, we call X a toroidal

fullerene and in the second case, we call X a non-orientable fullerene.

5.1. Toroidal fullerenes

We classify toroidal fullerene in this subsection.

Theorem 5. Let H be a rank-two free abelian subgroup of Gi, then H is a subgroup of the translation subgroup T .

Proof. Note that Gi ∩ T has finite index in Gi, so H ∩ T is a finite index subgroup of H and H ∩ T ∼= Z2, a two-dimensional
lattice in R2. Since H is abelian, for any g = (v⃗, A) in H , we have (v⃗ + Aw⃗, A) = gTw⃗ = Tw⃗g = (v⃗ + w⃗, A) for all Tw⃗ ∈ H ∩ T .
Thus 1 is an eigenvalue of A and its corresponding eigenspace has dimension two. We conclude that A is the identity matrix
and H is a subgroup of T . �

Next we shall determine when a subgroup of T is normal in Gi. Observe that T ⊂ G1 and every subgroup of T is normal
in G1. Moreover, if H is a normal subgroup in both Gi and Gj, then G(Gi/H, Si) and G(Gj/H, Sj) are isomorphic as graphs.
Consequently, all finite toroidal fullerenes arise from quotients of G(G1, S1) by its translation subgroups.

Recall that the generators G1 are

a = (v⃗1, −I2), b = (v⃗1 + v⃗2, −I2) and c = (v⃗2, −I2).

It is easy to see that

G1 = ⟨v⃗1, v⃗2⟩ o ⟨−I2⟩ ∼= Z2 o Z/2Z.

In the rest of the paper, we shall denote x1v⃗1 + x2v⃗2 by (x1, x2). We conclude that.

Theorem 6. Every toroidal fullerene is isomorphic to some XN = G(GN , {a, b, c}), where N is a rank-two subgroup of Z2 and
GN = Z2/N o Z/2Z.

Note that when N is generated by (x1, 0), (x2, x3), XN corresponds to TPH(x1, x2, x3) in [16] and H(x1, x3, x2 − x3) in [18].

5.2. Non-orientable fullerenes

We classify all normal subgroups H of Gi, such that R2/H is a Klein bottle in this subsection. Let

g = σ3(b) =

[
1
2

]
,

[
1 0
1 −1

]
, T1 = Tv⃗1 , and T2 = T ⃗2v2−v1

,

for short.

Theorem 7. Every non-orientable fullerene is isomorphic to G(G3/H, S), where

H = ⟨gTm
1 , T2⟩, ⟨gTm

1 , T 2
2 ⟩, or ⟨gTm

1 T2, T 2
2 ⟩.

for some m ∈ Z.

Proof. Let G(Gi/H, S) be a non-orientable fullerene such that H ∼= ⟨s, t|sts−1
= t−1

⟩. In this case, ⟨s2, t⟩ is an index two
abelian subgroup of H , which is a subgroup of T by Theorem 5. Write s = (v⃗, A) and t = (w⃗, I2). Since s is not a translation
and s2 is a nontrivial translation, we have A ≠ ±I2 and A2

= I2. From the discussion in Section 4, such A only exists in
G2 and G3. On the other hand, H is a normal subgroup of Gi, so {I2, A} is a normal subgroup in Gi/(Gi


T ). From the proof

of Theorem 4, we have G2/(G2


T ) ∼= S3 and G3/(G3


T ) ∼= Z/2Z × Z/2Z. It is clear that only Z/2Z × Z/2Z has an

order two normal subgroup. Therefore such normal subgroup H only exists in G3 and in this case A =


1 0
1 −1


. Recall that
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G3


T = ⟨T1, T2⟩. Since s = σ3(b) = g in G3/(G3


T ), write s = gTm
1 T n

2 for some integersm and n. By direct computation,
it is easy to see that sT1s−1

= T1 and sT2s−1
= T−1

2 . Since sts−1
= t−1, we have t = T k

2 for some k and wemay assume k > 0.
On the other hand, H is normal, so T2 s T−1

2 s−1
= T 2

2 ∈ H . Hence k = 1 or 2. If k = 1,

H = ⟨gTm
1 T n

2 , T2⟩ = ⟨gTm
1 , T2⟩.

If k = 2 and n = 2n′, then

H = ⟨gTm
1 T 2n′

2 , T 2
2 ⟩ = ⟨gTm

1 , T 2
2 ⟩.

If k = 2 and n = 2n′
+ 1, then

H = ⟨gTm
1 T 2n′

+1
2 , T 2

2 ⟩ = ⟨gTm
1 T2, T 2

2 ⟩.

Combining all together, we prove the theorem. �

Corollary 8. When N = ⟨2mv⃗1, 2v⃗2 − v⃗1⟩ or ⟨2mv⃗1, 4v⃗2 − 2v⃗1⟩ for some m. The toroidal fullerene XN is a double covering of a
non-orientable fullerene.

Proof. From the above theorem, we see that

H ∩ T = ⟨s2, t⟩ = ⟨T 2m
1 , T2⟩ or ⟨T 2m

1 , T 2
2 ⟩.

When N = ⟨s2, t⟩, an index two subgroup of H , XN is a double covering of G(G3/H, S). �

6. Spectra of toroidal fullerenes

In this section, we compute the spectrum of the toroidal fullerene XN . We do not discuss the spectra of non-orientable
fullerenes since they cannot be realized in three-dimensional space. (One can study the spectrum of a non-orientable
fullerene through its double covering XN .) First, we recall some basic facts in representation theory of finite groups.

6.1. Characters, regular representations and induced representations

A group representation of a group G is a homomorphism Φ : G → Aut(V ), where V is a finite dimensional vector space
over C. When V = C, Φ is called a character of G. When V = C(G), the set of all C-valued functions on G, Φ is called the
right regular representation of G provided that for f (x) ∈ C(G), Φ(g)(f )(x) = f (xg).

The right regular representation Φ can be decomposed as the direct sum of irreducible representations {Φi} of G such
that the multiplicity of Φi in Φ is equal to the dimension of Φi for all Φi. If S is a generating set of G, then the adjacency
matrix of G(G, S) can be written as

∑
s∈S Φ(s).

Let ρ be a character of a subgroup H of G. The induced representation IndG
Hρ is the set of functions given by

IndG
Hρ = {f : G → C|f (hg) = ρ(h)f (g)},

such that for f (x) ∈ IndG
Hρ, IndG

Hρ(g)(f )(x) = f (xg). Note that IndG
Hρ can be naturally regarded as a subspace of C(G).

6.2. The spectrum of GN

LetΦ is the right regular representation ofGN , then the adjacentmatrix of XN is equal toΦ(a)+Φ(b)+Φ(c). It suffices to
compute the eigenvalues of Φi(a) + Φi(b) + Φi(c) for every irreducible representation Φi. Denote by Â the set of characters
of an abelian group A. To find all irreducible representations of GN , we apply the following theorem [21].

Theorem 9. Let G = A o H, where H is a subgroup and A is a normal abelian subgroup of G. For χ ∈ Â, let Hχ = {h ∈

H|χ(h−1ah) = χ(a), ∀a ∈ A}. Let ρ be an irreducible representation of Hχ . Extend χ and ρ to a representation of AHχ . Then
IndG

AHχ
(χρ) is an irreducible representation of G and all irreducible representations of G come from this construction.

In our case, G = GN , H = Z/2Z = ⟨s⟩, A = Z2/N and Hχ = {id} or ⟨s⟩.
If Hχ = {id}, then it has only the trivial representation. In this case, IndG

AHχ
(χρ) = IndG

A(χ) is a two-dimensional

representation, denoted by χ̃ , such that χ̃(a) =


0 χ(v⃗1)

χ(v⃗1) 0


, χ̃(b) =


0 χ(v⃗1)χ(v⃗2)

χ(v⃗1)χ(v⃗2) 0


and χ̃(c) =


0 χ(v⃗2)

χ(v⃗2) 0


.

So

χ̃(a) + χ̃(b) + χ̃(c) =


0 χ(v⃗1) + χ(v⃗1)χ(v⃗2) + χ(v⃗2)

χ(v⃗1) + χ(v⃗1)χ(v⃗2) + χ(v⃗2) 0


,

which has eigenvalues ±|χ(v⃗1) + χ(v⃗2) + χ(v⃗1)χ(v⃗2)|.



M.-H. Kang / Discrete Mathematics 311 (2011) 2384–2395 2391

If Hχ = ⟨s⟩, then IndG
AHχ

(χρ) = χρ. Since ρ ∈ Ĥ takes values in {1, −1} and eigenvalues of the adjacency matrix are all
real, we have

ρχ(a) + ρχ(b) + ρχ(c) = ρ(s)(χ(v⃗1) + χ(v⃗1 + v⃗2) + χ(v⃗2))

= |χ(v⃗1) + χ(v⃗1 + v⃗2) + χ(v⃗2)| or − |χ(v⃗1) + χ(v⃗1 + v⃗2) + χ(v⃗2)|.

We conclude that

Theorem 10. The spectrum of XN is {±|χ(v⃗1) + χ(v⃗2) + χ(v⃗1)χ(v⃗2)||χ ∈ Â}.

6.3. HOMO and LUMO eigenvalues

For a graph X with 2M vertices, the HOMO eigenvalue λH is the (M +1)-th largest eigenvalue of X; the LUMO eigenvalue
λL is the M-th largest eigenvalue X . The difference λH − λL is called the HOMO–LUMO gap,1 denoted by Gap(X). If X is
bipartite, the spectrum of X is symmetric. In this case, λH is equal to the smallest non-negative eigenvalue; λL is equal to the
largest non-positive eigenvalue andλL = −λH . Note thatGN can bewritten as a disjoint union of (Z2/N, I2) and (Z2/N, −I2),
which gives a bipartite structure of XN .

To describe the characters of Z2/N , recall that a character χ of Z2 is uniquely determined by χ(v⃗1) = exp(iθ1) and
χ(v⃗2) = exp(iθ2), where θ1, θ2 ∈ R/2πZ. We identify χ ∈ Ẑ2 with (θ1, θ2) ∈ (R/2πZ)2. The characters of Z2/N are the
characters of Z2 trivial on N , which can be identified with

N⊥
= {(θ1, θ2) ∈ (R/2πZ)2| exp(i(θ1x + θ2y)) = 1, for all (x, y) ∈ N}.

Consider a function f defined by

f (θ1, θ2) = | exp(iθ1) + exp(iθ2) + exp(iθ1 + iθ2)|2

= 3 + 2 cos θ1 + 2 cos θ2 + 2 cos θ1 cos θ2 + 2 sin θ1 sin θ2.

By Theorem 10, we have

Corollary 11. Gap(XN) = min{2
√
f (θ1, θ2)| (θ1, θ2) ∈ N⊥

}.

Observe that f (θ1, θ2) has the minimum value zero for at (± 2π
3 , ∓ 2π

3 ). Suppose N is generated by (a, c) and (b, d)
for some integers a, b, c, d. Then N⊥ is generated by w⃗1 =

2π
ad−bc (d, −b) and w⃗2 =

2π
ad−bc (−c, a). Solving the equation

x1w⃗1 + x2w⃗2 = ( 2π
3 , − 2π

3 ), we have x1 =
a−c
3 and x2 =

b−d
3 . We conclude that Gap(XN) = 0 if and only if a−c

3 and b−d
3 are

integers.

Theorem 12. The following are equivalent
(1) Gap(XN) = 0.
(2) a − c ≡ b − d ≡ 0 mod 3.
(3) XN is a quotient of G(Gi, Si) for at least three different i.

Proof. We have seen that (1) ⇔ (2), so it suffices to show that (2) ⇔ (3). Recall that XN can be realized as a quotient
of G(Gi, Si) if and only if N is a subgroup of Ti, the translation subgroup of Gi. From the proof of Theorem 4, we see that
T2 = T4 = ⟨(2, −1), (−1, 2)⟩. Hence (3) ⇔ N ⊆ ⟨(2, −1), (−1, 2)⟩ ⇔ (2). �

7. Closest vector problem

To explicitly find the minimum of f on N⊥, it is enough to consider the values of f around ( 2π
3 , − 2π

3 ). From the Taylor
expansion of f (x, y) at ( 2π

3 , − 2π
3 ), we have

f

x −

2π
3

, y +
2π
3


= 3 − cos(x) − cos(x − y) − cos(y) +

√
3 [sin(x − y) − sin(x) + sin(y)]

= x2 − xy + y2 + O(|x|3 + |y|3).

Note that x2 − xy + y2 is a positive-definite quadratic form, so we can define a norm as

‖(x, y)‖2
= x2 − xy + y2.

Let

dN = min
(x,y)∈N⊥


x −

2π
3

, y +
2π
3

2

.

1 In terms of eigenvalues of the Laplacian, 3 − λH corresponds to HOMO and 3 − λL corresponds to LUMO.
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We can rewrite Corollary 11 as

Theorem 13.

Gap(XN) = 2

dN + O(d3/4N ).

Note that we can regard N⊥ as a lattice in R2, then to find dN , it is equivalent to solve a CVP(closest vector problem) on the
two-dimensional lattice N⊥. Set

ϵ1 =
a − c
3

−

[
a − c
3

]
and ϵ2 =

b − d
3

−

[
b − d
3

]
,

where [x] is the closest integer to x (which is well defined if x is not a half integer). Note that ϵ1, ϵ2 ∈ {0, ± 1
3 } and we can

rewrite dN as

dN = min
(n1,n2)∈Z2

‖(n1 + ϵ1)w⃗1 + (n2 + ϵ2)w⃗2‖
2.

Recall that the basis {w⃗1, w⃗2} is called Gaussian reduced, if

‖w⃗1‖ ≤ ‖w⃗2‖ and |⟨w⃗1, w⃗2⟩| ≤
1
2
‖w⃗1‖

2.

where ⟨·, ·⟩ is the inner product on R2 induced by ‖ · ‖. Such basis always exists and can be constructed by the Gaussian
reduction algorithm as follows. (For more details, see [20]).
Gaussian reduction algorithm

Given a basis {w⃗1, w⃗2} of a two-dimensional lattice with ‖w⃗1‖ ≤ ‖w⃗2‖, let µ =
⟨w⃗1,w⃗2⟩
‖w⃗1‖2

. If |µ| ≤
1
2 , then {w⃗1, w⃗2} is

already Gaussian reduced; if |µ| > 1
2 , replace w⃗2 by w⃗2 −[µ]w⃗1, then we have |µ| ≤

1
2 . In this case, if ‖w⃗1‖ is still less than

or equal to ‖w⃗2‖, then {w⃗1, w⃗2} is Gaussian reduced; if not, switch w⃗1 and w⃗2 and repeat the same process.

Theorem 14. If {w⃗1, w⃗2} is Gaussian reduced, then dN = ‖ϵ1w⃗1 + ϵ2w⃗2‖
2.

Proof. Consider

‖(n1 + ϵ1)w⃗1 + (n2 + ϵ2)w⃗2‖
2
− ‖ϵ1w⃗1 + ϵ2w⃗2‖

2

= (n2
1 + 2n1ϵ1)‖w⃗1‖

2
+ 2(n1n2 + ϵ1n2 + ϵ2n1)⟨w⃗1, w⃗2⟩ + (n2

2 + 2n2ϵ2)‖w⃗2‖
2

≥ (n2
1 + 2n1ϵ1)‖w⃗1‖

2
− |n1n2 + ϵ1n2 + ϵ2n1|‖w⃗1‖

2
+ (n2

2 + 2n2ϵ2)‖w⃗1‖
2

= (n2
1 + 2n1ϵ1 − |n1n2 + ϵ1n2 + ϵ2n1| + n2

2 + 2n2ϵ2)‖w⃗1‖
2.

Let

F±(n1, n2) = n2
1 + 2n1ϵ1 ± (n1n2 + ϵ1n2 + ϵ2n1) + n2

2 + 2n2ϵ2

=


n1 + ϵ1 ±

1
2
(n2 + ϵ2)

2

+
3
4
(n2 + ϵ2)

2
− (ϵ2

1 ± ϵ1ϵ2 + ϵ2
2).

It suffices to prove that F±(n1, n2) ≥ 0, for all n1, n2 ∈ Z. Note that F±(0, 0) = 0. Now if n1 ≠ 0, we have |n1 + ϵ1| ≥
2
3 and

F±(n1, n2) =
3
4
(n1 + ϵ1)

2
+


±

1
2
(n1 + ϵ1) + n2 + ϵ2

2

− (ϵ2
1 ± ϵ1ϵ2 + ϵ2

2)

≥
3
4


2
3

2

+ 0 −


1
9

+
1
9

+
1
9


= 0.

Similarly, if n2 ≠ 0, we have |n2 + ϵ2| ≥
2
3 and

F±(n1, n2) =


n1 + ϵ1 ±

1
2
(n2 + ϵ2)

2

+
3
4
(n2 + ϵ2)

2
− (ϵ2

1 ± ϵ1ϵ2 + ϵ2
2)

≥ 0 +
3
4


2
3

2

−


1
9

+
1
9

+
1
9


= 0. �
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Note that N is a lattice in R2, which has the standard norm as ‖ae⃗1 + be⃗2‖ = a2 − ab + b2. (See Fig. 1.) Then for (x, y) ∈ N ,

‖(x, y)‖ = ‖xv⃗1 + yv⃗2‖ = ‖x(2e⃗1 + e⃗2) + y(e⃗1 + 2e⃗2)‖ = 3(x2 + xy + y2).

It is easy to see that { 2π
ad−bc (−c, a), 2π

ad−bc (d, −b)} is a Gaussian reduced basis of N⊥ if and only if {(a, c), (b, d)} is a Gaussian
reduced basis of N .

Consider a function ϵ : Z → {−1, 0, 1}, such that ϵ(x) = x mod 3. Then

ϵ(x) = 3
 x
3

−

 x
3


.

Combining the above all results, we have

Theorem 15. Let {(a, c), (b, d)} be a Gaussian reduced basis of N, then

Gap(XN) ≈
4π

3|ad − bc|
‖ϵ(a − c)(d, −b) + ϵ(b − d)(−c, a)‖.

Example 1. Suppose N = ⟨(1, 8), (10, 1)⟩. By Gaussian reduction algorithm, we have

(1, 8), (10, 1) ⇒ (1, 8), (9, −7).

By Theorem 15, the HOMO–LOMO gap of XN is approximately equal to

4π
3 · 79

‖ − (−7, −9) + (−8, 1)‖ =
4π
237

‖(−1, 10)‖ =
4π
237

√
111 = 0.55863 · · · .

Remark. The HOMO–LOMO gap of XN is 0.56311· · ·.

Example 2. For two positive integers p and qwith 3 - p, let Np,q = ⟨(p, 0), (q, −2q)⟩ and denote XNp,q by Xp,q for short. Note
that {pv⃗1, −qv⃗1 + 2qv⃗2} is an orthogonal basis, hence it is Gaussian reduced. By Theorem 15,

Gap(Xp,q) ≈
4π

3 · 2pq
‖ϵ(p)(2q, q)‖ =

2π
√
3p

.

Together with Corollary 11, we have

Gap(Xp,q) =
2π
√
3p

+ O(p−
3
2 ).

Remark. In fact, one can show that Gap(Xp,q) is independent of q.

From chemical physics’ viewpoint, we can regarded Xp,q as a finite quotient of the carbon nanotubewith the chiral vector
(p, 0). It is well known that the nanotube is metallic (with zero gap) if and only if 3|p, which can be regarded as the special
case of Theorem 12.

8. Embedding graphs into three-dimensional space

In this section, we discuss how to realize the graph Xp,q in three-dimensional space with almost equal lengths. Note that
the lattice N ′

p,q = Np,q(e⃗0) on R2 has a fundamental domain D spanned by the orthogonal basis pv⃗1 and −qv⃗1 + 2qv⃗2 as
shown in Fig. 6. Choose the length of v⃗1 as the unit of length. The width of D equals p; its length equals 2

√
3q. The toroidal

fullerene Xp,q is obtained from the hexagon tiling Y quotient by the lattice N ′
p,q, so it suffices to find a map from R2/N ′

p,q to
three-dimensional space, which induces an embedding of Xp,q to three-dimensional space (see Fig. 7). Consider the standard
map F(u, v) = (x(u, v), y(u, v), z(u, v)) from D to a torus, where

x(u, v) =


R + r cos


2πu
p


cos


πv
√
3q


,

y(u, v) =


R + r cos


2πu
p


sin


πv
√
3q


,

z(u, v) = r sin

2πu
p


,

and R and r are some constants.
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Fig. 6. The fundamental domain D .

Fig. 7. An embedding of Xp,q in R3 .

In order to make all edges of the above embedding of Xp,q have the same length, we shall require F to be an isometry.
Therefore, F should satisfy ⟨Fu, Fv⟩ = 0, ⟨Fu, Fu⟩ =

4π2r2

p2
= 1 and ⟨Fv, Fv⟩ =

π2R2

3q2
|1+

r
R cos( 2πu

p ) |
2

= 1, which is impossible.

However, if we let r =
p
2π and R =

√
3q
π

, then ⟨Fu, Fu⟩ = 1 and ⟨Fv, Fv⟩ = |1 +
p

2
√
3q

cos( 2πu
p ) |

2 and F is close to an isometry
when p

q is small. Thus with p fixed and q increasing, we can increase the stability of the embedding without changing the
HOMO–LUMO gap.
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