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Abstract 
Reducing overkills is one of the main objectives 

in wafer testing process, however the major mean to 
prevent overkills is retest. In this paper, we foimulate 
the problem of reducing overkills and retests as a 
stochastic optimization problem to determine iiptimal 
threshold values concerning the number of good dies 
and the number of bins in a lot and wafer to decide 
whether to go for a retest after a regular wafer probing. 

Ihe considered stochastic optimization problem 
is an NF' hard problem. We propose an Ordinal 
Optimization theory based two-level method to solve 
the problem for good enough threshold values to 
achieve lesser overkills and retests within a reasonable 
computational time. Applying to a case based on the 
true mean of bins of a real semiconductor product, the 
threshold values we obtained are the best among 1000 
sets of randomly generated threshold values in the sense 
of lesser overkills under a tolerable retest rate. 
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1. Introduction 
The wafer fab process is a sequence of hundreds 

of different process steps, which results in an 
unavoidable variability accumulated from the small 
variations of each process step. Thus, to avoid incurring 
the significant expense of assembling and packaging 
chips that do not meet specifications, the wafer probing 
in the manufacturing process becomes an essential step 
to identify flaws early. 

Wafer probing establishes a temporary electrical 
contact between test equipment and each individual chip 
on a wafer to determine the goodness of i i  chip. 
Although there exist techniques such as the SPC [I] for 
monitoring the operations of the wafer probes, the 
probing errors may still occur in many aspects and 
cause some good dies being over killed; consequently, 
the profit is diminished. Thus, reducing the number of 
overkills is always one of the main objectives in wafer 
testing process. The major mean for preventing overkills 
is retest. However, retest is an operation of high 
engineering cost and a major factor for decreasing the 

throughput. Thus, the overkill and the retest possess 
inherent conflicting factors, because reducing the 
former can gain more profit while increasing the latter 
will degrade the throughput and increase the cost. What 
implies is that drawing a fine line for deciding whether 
to go for a retest is an important research issue in the 
wafer testing process. 

There may be different testing procedures in 
different chip manufacturers. But, no matter what 
testing procedures are used, the decision for carrying 
out the retest should be based on whether the number of 
good dies and the number of bins in a lot and wafer 
exceed the corresponding threshold values. Thus, 
determining these threshold values so as to minimize the 
overkills and retests is the main theme of our problem. 
Furthermore, since the goodness of a chip and the 
probing errors are of stochastic nature, our problem 
becomes a stochastic optimization problem, which in 
general is a simulation oriented NP hard problem. It is 
well-known that to obtain an optimal solution of an NF' 
hard optimization problem is computationally 
intractable. To deal with this hard stochastic 
optimization problem, we propose in this paper an 
Ordinal Optimization (00) theory [2] based two-level 
approach to solve for a good enough solution of the 
threshold values in the aspect of reducing overkills and 
retests. 

2. Problem Statement and Mathematical 
Formulation 

In this paper, we employ a typical testing 
procedures used in a semiconductor manufacturing 
company in Taiwan, which is briefly described in the 
following. 

For every wafer in a lot, a wafer probing is 
performed twice. A die is considered to be good if it is 
good in either test. We let g, and zg denote the 

number of good dies in lot i and wafer j of lot i ,  
respectively, and let sg, denote the number of bin k 

in wafer j of lot i .  Then, a three-stage checking on 
the number of good dies is performed to determine the 
necessity of carrying out a retest. We let g , _  and 

denote the threshold values of the number of gw,, 
good dies to pass or hold the lot and wafer, respectively; 
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we k t  n+-, k = 1, ..., K , denote the threshold values 
of bin k in the hold wafer to determine whether to 
perform a retest, where K denotes the number of the 
types of bin. The mechanism of the three-stage checking 
can be summarized below. If g, tgLm, we pass the 
whole lot; otherwise, we will check the number of good 
dies in each individual wafer of this lot. If g, 2 g,,, , 
we pass wafer j ;  otherwise, we will hold this wafer 
and check its bins. For those hold wafers, if 2 nkmu, 

we will perform retests for bm k to check whether 
there are probmg errors. 

In the above testing procedures, although we may 
pass the lot or wafer when the threshold-value test is a 
success, there may be overkills. In general, the 
percentage of overkills is proportional to the number of 
probed bad dies, that is, for smaller number of probed 
bad dies, there will be less overkills. The relationship 
between them can be found empirically from the real 
manufacturing process. We let p , ( ~ , ) ,  p , ( ~ , , )  and 

p b , ( ~ t k )  denote the functions of the percentage of the 

overkills in probed bad dies in lot i , wafer j and bm 

k , denoted hy B, . B, and B, , respectively. D e f ~ g  

",. and as the number of overkills in lot i ,  
wafer j and bin k I e v e i y ,  we have V, = p , ( ~ , )  x B, , 

vy = P , ( ~ g ) x ~ q  ad V z  = p a k ( ~ , , ) x ~ n k  k = L...,K . 
However, we assume that for any retested bin, there will 
be no overkill because the dies had been probed three 
times. Thus, a flow chart of the employed testing 
procedures after the initial two times of wafer probing is 
shown in Figure 1. 

Based on these procedures, we see that if we 
increase g',,,," and g,m while decreasing n,,, the 
number of overkills will decrease, however the number 
of retests will increase. Thus, to reduce both overkills 
and retests, we will set minimizing the overkills as our 
objective function while keeping retest rate under a 
satisfactory level. Furthermore, since the defects of bins 
in a wafer occurred randomly with a Poisson probability 
distribution, the testing procedures are of stochastic 
nature. Based on the above analysis, our problem can be 
formulated as the following stochastic optimization 
problem: 

m i n E [ V ]  ' 

subject to 
E [ R J S r , .  (1) 

where x [gLm, gwmxn ,nkmu. k = 1 ,..., K ]  denotes the 
vector of threshold values; X denotes the sample 
space of x ;  the random variables V and R denote 
the number of overkills and retests per wafer, 
respectively; ,q.] denotes the expected value of ['I; 
the stochastic wafer testing procedures is described in 
Figure 1, which will be used to compute the values of 
V and R for each wafer with randomly generated bins; 
r, denotes the tolerable retest rate in units of number of 
retests per wafer. 

,*J 

{stochastic wafer testing procedures}, 

Overkills for loti 

0verkiUs.for wafer j 

Overkills for bin k 

Figure 1: Flow chart of the wafer testing procedures. 

It should be noted that the value of r, is 
determined based on the economic environment. When 
the chip demand is weak, the throughput, in general, is 
not a critical problem in the manufacturing process. We 
can allow a higher retest rate, that is larger r, , so as to 
reduce more overkills to gain more profit; on the other 
band, if the chip demand is strong, the throughput is 
more important, and we should set the value of rr 
smaller. Thus, our stochastic optimization problem (1) is 
to find the optimal vector of threshold values, X* to 
minimize ,?[VI, the expected number of overkills per 
wafer, subject to the employed testing procedures and 
the constraint on E[R] ,  that is the expected number of 
retests per wafer should be kept under a tolerable level 
rr . 

3. Ordinal Optimization Theory Based 
Two-Level Algorithm 

3.1 Preliminaries 

The stochastic optimization problem (1) is clearly 
an NP hard problem in two aspects. The first one is the 
immense sue of the sample space X , which is 
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explained in the following. Considering a lot containing 
25 wafers, and each wafer consisting of, say, 2438 dies, 
the possible ranges of the integer values g , - ,  gFm* 

and are IO, 609501, [0, 24381 and [0, 24381, 
respectively. Consequently for K = 12, the sue of X 
will be more than 10”. The second one is to c’ompute 
the accurate E[Y] and E[R] for a given 

a stochastic simulation. That is to compute the values of 
Y and R for more than 10000 wafers with randomly 
generated bins based a Figure 1 then take their average 
values. This implies that we have to perform ,at least 
IO” lengthy stochastic simulations to obtain the 
optimal solution X‘ of (I). This is computaionally 
intractable. 

Thus, to deal with this NP hard optimization 
problem (I), we will employ a recently developed 
optimization technique called Ordinal Optimization 
(00) [2] to solve for a good enough solution with high 
probability instead of searching the best solution for 
sure. 

There are two basic tenets of the 00 theory [2]. 
The first one is that of order versus value in decision 

is much more easier than determining J(  8, ) - J(  O2 ) = ? : 
considering the intuitive example of determining which 
of the two melons in two hands is heavier versus 
identifying how heavier one is than the other, The 
second tenet is the goal softening. Instead of askmg the 
best for sure in optimization, it settles for the good 
enough with high probability. What softening of the 
goal buys is on easing of the computational burden. It is 
much easier to get something in the top n% than it is to 
get the best. Thus what 00 theory concluded is the 
following: Suppose we simultaneously evaluate a large 
set of altematives very approximately and order them 
according to the approximate evaluation. Then there is 
high probability that we can fmd the actual good 
alternatives if we limit ourselves to the top n% of the 
observed good choices. Thus, fustly. we use only a very 
rough model to “order” the goodness of a solution 
relying on the robustness of ORDER against noise and 
model error to separate the good solutions from the bad 
solutions. Secondly, we soften the goal of the problem 
and look for a good enough solution, which is among 
the top n% of the search space with high probability. 
These two steps will greatly reduce the computational 
burden for the NP hard problem (I). 

3.2 ATwo-Level 00 Approach 

3.2.1 Motivation 
The current 00 theory based approach [2-51 is 

carried out in the following three steps: (i) Uniformly 
select N, say 1000, samples fiom the sample sp:ace x 
of the vectors of threshold values. (ii) Using :P rough 
model of the considered problem to select the tap s, say 
35, samples fiom the N, that is the ESTIMATED top 
3.5% samples among the N. (iii) Use the exact model of 
the considered problem to evaluate the s ;samples 
obtained in (ii); then the top k, say I ,  sample should be 

x(= [g,-,g,,, ,nkmu ,k = I  ,..., K ] )  , we need to cclmplete 

making. Of Course, dett%mhhg whether J ( $ , ) < :  J(0,)  

the actual good enough, actual top 3.5% among the N, 
solution with high probability ( 2 0.95) as guaranteed by 
the 00 theory [3]. 

However, according to [4], the top 3.5% of the 
uniformly selected N samples will be a top 5% sample 
of the sample space x with a very high probability 
(20.99). Thus, for x with sue of IO3’, a top 5% 
sample is a sample among the top 5 x 1 0 ~ ~  samples. 
This certainly not seems to be a good enough solution in 
the sense of practical optimization. The factor causing 
this non-satisfactory result is that the N samples are 
uniformly selected from X. Thus to overcome this 
defect, we propose a two-level 00 approach. In the fust 
level, we will use a rough but efficient and effective 
model instead of uniform selection to obtain excellent N 
samples from X to replace step (i) of the regular 00 
approach as indicated above. Then, in the second level, 
we will proceed with steps (ii) and (iii). Before the 
detailed description of our two-level approach, we need 
to convert (1) into an unconstrained problem fmt. 

3.2.2 Converting (1) to the Unconstrained Problem 

In general, the constrained 00 problem is typically 
harder than the unconstrained one [5].’ However, since 
our constraint on the retest rate shown in (1) is a 
soft-constraint in a sense. Therefore, we can use a 
penalty function to relax that constraint and transform (1) 
into the following unconstrained stochastic optimization 
problem: 

mi0 E[Y] + P(E[R] - rr )(E[Rl- rr ) 

subject to {the stochastic testing procedures} (2) 
where P(E[R]- r r )  denotes a continuous penalty 

function of E[R] - rT such that P(E[R] - rr ) >O if 
E[R]>r,,and P(E[R]-r,)=O,oth&se. 

3.2.3 The First-Level Approach 

As indicated in the 00 theory [2], “order” of the 
samples is likely preserved even with a rough model. 
Thus, to select N excellent samples fiom X without 
taking much computation time, we need to construct a 
rough but efficient and effective model to evaluate the 
objective value of (2) for a given sample x ,  i.e. a 
vector of threshold values, and use an efficient scheme 
to select excellent samples. Our model is constructed 
based on two Artificial Neural Networks ( A N N s ) ,  and 
our selection scheme is the Genetic Algorithm (GA). 
3.23.1 The Artificial Neural Network (A”) Based 

Model 
The ANN can be trained to implement a given 

mapping between the inputs and outputs. Considering 
the inputs as the samples x E X , then we can use two 
A N N s  to implement the mapping fiom the inputs to the 
outputs of E[V] and E[R] , respectively. Once these 
two A N N s  are trained by a given set of training data, we 
can input any sample x to the two A N N s  to obtain the 
corresponding E[V] and E[R] , which will be used to 

calculate the objective value of (2). This forms our 
effective and efficient model to calculate the objective 
value of (2) for a given sample x . 

The ANN we employed in our approach is the 

,EX 
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two-layer feed-fomard back propagation neural 
network. We obtain the set of training data by the 
following two steps. (a) Narrow down the sample space 
X by excluding the imtional threshold values and 
denote the reduced sample space by 2. (b) Uniformly 
select n samplesf" t andcomputethecorresponding 
E [ V ]  and E[R]  using a shorter stochastic simulation, 
that is to perform the simulations of the testing 
procedures shown in Figure 1 for 300 wafers with 
randomly generated bins and take the average of the 
valuesof V and R .  

Denoting the n samples by x , , i = i  ,..., n ,  the n 
corresponding E[V]  by ,..., , and the n 
corresponding E [ R ]  by r , , i= i  ,._., n . Then, the 
training problems for these two ANNs to determine their 
branch weights are: 

m % Z [ V Z  - f , ( x ,  I W > ) l 2  (3) 
ai, 

(4) 

where %VI andw, denote the vectors of the branch 

denote the actual outputs of the two ANNs for the 
E[V]  and E [ R ]  when the inpnt is x, and the vectors 

of branch weights are vvl and w 2 ,  respectively. To 
speed up the convergence of the training, (3) and (4) are 
best solved by the Levenberg-Marqnardt algorithm [6,7] 
and Scaled Conjugate Gradient algorithm [8,9], 
respectively. 
3.2.3.2 The Genetic Algorithm (GA) 

With the above effective and efficient objective 
value (or the so-called fitness value in GA terminology) 
evaluation model, we can then efficiently select the 
excellent N samples from X using GA, which is 
briefly described as follows. Assuming an initial random 
population produced and evaluated, genetic evolution 
takes place by means of three basic genetic operators: (a) 
parent selection; (b) crossover; (c) mutation. The 
population in GA terminology represents a sample x , 
i.e. a vector of threshold values, in our problem, and 
each population is encoded by a string of Os and 1s. 
The string is called a chromosome. Parent selection is a 
simple procedure whereby two chromosomes are 
selected from the parent population based on their 
fitness values. Solutions with high fitness values have a 
high probability of contributing new offspring to the 
next generation. The selection rule we used in our 
approach is a simple roulette-wheel selection [ l o ] .  
Crossover is an extremely important operator for the 
GA. It is responsible for the structure recombination 
(information exchange between mating chromosomes) 
and the convergence speed of the GA and is usually 
applied with high probability (0.7). The chromosomes 
of the two parents selected are combined to form new 
chromosomes that inherit segments of information 
stored in parent chromosomes. There are many 
crossover scheme, we employ the single-point crossover 
[lo] in our approach. While crossover is the main 

weights of the two N s ;  f , ( x ,  I,",) and J - , ( ~ ,  I w , )  

genetic operator exploring the information included in 
the current generation, it does not produce new 
information. Mutation is the operator responsible for the 
injection of new information. With a small probability, 
random bits of the offspring chromosomes flip from 0 to 
1 and vice versa and give new characteristics that do not 
exist in the parent population. In our approach, the 
mutation operator is applied with a relatively small 
probability (0.02) to evety hit of the chromosome. 

There are two criteria for the convergence of GA. 
One is when the fitness value of the best population 
does not improve from the previous generation, and the 
other is when evolving enough generations. 

We start ftom 10000 randomly selected samples 
from X as our initial populations. Aftm the applied 
GA converges, we rank the fmal generation of 
populations based on their fitness values and pick the 
top 1000 populations to serve as the N samples in the 
second-level 00 approach, 

3.2.4 The Second-Level Approach 

In the second-level, starting from the N samples 
obtained in the first level, we will proceed with step (ii) 
by evaluating each sample using a rough model, which 
is a shorter stochastic simulation based on Figure 1 as 
described previously, for evaluating the objective value 
of (2). We will then order the N samples based on the 
obtained objective values and choose the top s (=35) 
samples. Then in step (iii), we will evaluate each of the 
s samples using an exact model. The exact model we 
employed here for each sample is to calculate the 
objective value of (2) based on a longer stochastic 
simulation. That is replacing the 300 wafers with 
randomly generated bins in shorter stochastic 
simulations by 10000 wafers. Then the sample 
associated with the least objective value of (2) is the 
solution that we are lookmg for. 

3.3 The 00 Theory Based TWo-Level Algorithm 

Now, our 00 theory based two-level algorithm can 
be stated as follows. 

Step 0: Narrow down the sample space X by 
excluding the irrational values of gLmm, g,,, and 
n,,,k = 1 ,..., K , and denote the reduced sample space 
by 2. 

Step 1: Uniformly select 300 samples from t as 
inputs and perform a shorter stochastic simulation based 
on Figure 1 to obtain the corresponding approximate 
E[V]  and E[,?]. Training two ANNs to implement the 
mapping between the inputs and the Corresponding two 
sets of outputs. 

Step 2: Randomly produce 10000 samples from t 
as the initial populations. Apply GA to these populations 
using the efficient and effective fitness-value evaluation 
model based on the two ANNs trained in Step 1. After 
the algorithm converges, we rank all the final 
populations based on their fitness values and select the 
top N (=1000) populations. 

Step 3: Run a shorter stochastic simulation for each 
of the N samples obtained in Step 2 to evaluate the 
corresponding objective value of (2). Ranking the N 
samples based on their objective values and select the 

289 PO03 IEEHSEMI Advanced Manufacturing Conference 



top s (=35 ) samples. 
Step 4 Run a longer stochastic simulation f a  each 

of the s samples to evaluate the corresponding objective 
value of (2). The sample, i.e. the vector of threshold 
values, with the least objective value of (2) is the gwd  
enough solution that we are looking for. 

4. Simulation Results 
Our simulation is based on the followirg data 

obtained Gom certain product of a foundry. Each lot 
contains 25 wafers, and the total number of dies in a 
wafer and a lot are 2438 and 60950, respectively. There 
are 12 bms, and their means P ’ i , k = ~  ,..., 12, are 
11.6,13.4,27.3,0.3,20.5,1.2,1.4,59.5,34.0,6.6,2.5,nnd 0.2. 
The yield rate is around 92.67%. The functions of the 
percentage of the overkills in probed bad dies, p , ( B , ) ,  

B - U ,  ,and pw (Bu)  = 0 . 0 1 ~  (LO+ 3 . 0 ~  -) 
Pw 

and P L  = 2sP,. We used the sigmoid-type function as 
our penally function P(E[R]-r,) in (2). We set the 
tolerable retest rate rr =50. 

In Step 0 of our algorithm, the narrowed rariges we 
use for the g L m  and gwmn are [30000. 609!iO] and 
[1200, 24381, respectively, while the range for the 
nimax is [I, 3 p u ,  1, k=1, ..., 12. We uniformly select 
300 samples Gom this reduced sample space 2. In Step 
1, the shorter stochastic simulation for each vector of 
threshold values is performed by processing 300 wafers 
through the testing procedures with randomly generated 
bins based on a Poisson probability distribution with 
parameters of Pk,k = I  ,.,., 12.  In Step 2, the conv(srgence 
criteria we employed for OUT GA is when the evolving 
number of generations exceed 50. In Step 3, the shorter 
stochastic simulation for each vector of threshold values 
is carried out in the same way as in Step 1, so does the 
longer stochastic simulation in Step 4 exoTt for 
replacing 300 by 10000 wafers. 

The good enough vector of threshold values we 
obtained is g,,, = 56525, gt,,m =2261, and 
(nl, ,...,n12max) = (31,21,10,2,8,3,4,63,12,20,1,3) . 
The E[V] and E[R] resulted from these good 
enough threshold values are shown in Figure 2 by the 
o point. In the same figure where the E [ V ]  and 
E[R] shown by the * points are resulted from 1000 
randomly selected vectors of threshold values. We see 
that for the retest rate under 50, the expected number of 
overkills per wafer resulted by our vector of threshold 
values is the best among all the randomly !;elected 
vectors of threshold values. 

- 
E 
W 

0.5 1 1.5 2 5 

Legend 
o - the (E[v],Ep]) resulted from the 
good enough vector of threshold values 
determined by ow algorithm. 
* -the (EM,Ep]) resulted from the 
1000 randomly generated vectors of 
threshold value. 

Figure 2: Performance comparison of the randomly 
generated threshold values and the threshold 
values determined by our algorithm. 

5. Conclusions 
In this paper, we have proposed a novel 

formulation to reduce the overkills and retests by 
determining a good enough vector of threshold values in 
a wafer testing process of three-stage check. Our 
formulation provides a flexibility for practical applications 
by taking various economic conditions into account. In 
addition, the presented 00 theory based two-level 
algorithm will not only work successfully in the 
stochastic optimization problem considered in this paper 
but also be useful for other semiconductor manufacturing 
related optimization problems. 
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