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ABSTRACT: The robust stability of control systems with perturbation is considered. Using
Lyapunov functions, quantitative bounds on the perturbation are obtained such that the systems
remain stable. Four classes of perturbations are treated and four measures of robust stability
are proposed: the nondelay unstructured, delayed unstructured, nondelay structured, and
delayed structured measures. Examples are given, and comparisons with the results given in
current literature are made.

Nomenclature

R" real n-dimensional vector space

R linear operators from R” to R”

(1! inverse matrix of an invertible matrix [-]

[ transposed matrix of [']

[1'? square-root of positive-definite matrix []

[ symmetric portion of square matrix [-]

[ positive-semidefinite matrix formed by replacing each eigenvalue of the sym-
metric matrix [] by its modulus value

Omax([']) maximum singular value of matrix [-]

Omin([]) minimum singular value of matrix [-]

llo|] Euclidean norm of vector v

P>0 square symmetric matrix P being positive-definite

P>0 square symmetric matrices P and Q that satisfy P—Q > 0

L. Introduction

The inclusion of plant uncertainty and parameter variations to the analysis
and design of control systems has been an important problem. The uncertainty,
described as unstructured perturbation, often arises from an imperfect knowledge
of a system working at the presence of noise and disturbance. The parameter
variations, described as structured perturbations, arise if a system is operated in
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widely different regimes. Such a system is termed a robust system if stability is
preserved under a class of perturbations influencing the system. Presently, there
are two approaches that quantitatively define the measures of robust stability : the
[frequency domain approach and the state-space approach. In frequency domain
approach, the main direction of research is to extend the well-known SISO treat-
ments to MIMO systems. A Bode-type criterion is generalized by use of the singular
value decomposition method (1, 2), and a Nyquist-type criterion is generalized by
use of the E-contours method (3, 4). The perturbations are mainly viewed in terms
of the tolerable gain and phase changes of unstructured perturbations. On the
other hand, the state-space approach can be categorized into three perspectives:
the rootlocus-based analysis (5-7), the integral-inequality analysis (8), and the
Lyapunov-based analysis (9-12). The state-space approach is more amenable to
the consideration of the structured perturbations in the form of parameter
variations and nonlinearities. This paper is an extension of the Lyapunov-based
analysis.

While nondelay perturbations are considered, it has been shown that the root-
locus-based analysis produces better measures of robust stability than the
Lyapunov-based analysis (13, 14). Nevertheless, the Lyapunov-based analysis pos-
sesses the exclusive feature of accompanying the measures of robust stability with
a quadratic Lyapunov function. In addition, this analysis takes an important part
in the design of robust stabilizing controllers (15-17), and it is extendable to include
delayed perturbations. In (12), the Lyapunov-based analysis has been extended to
include a delay-independent analysis of robust stability for systems with delayed
unstructured perturbations. However, a delay-independent criterion that does not
include the information on delays is conservative especially when the delays are
small. The motivation of making an extension to include delay-dependent analysis
of robust stability for control systems with delayed perturbations guides us to do
the research. It should be noted that, while delayed perturbations are considered,
the rootlocus-based analysis fails and the integral-inequality analysis produces very
conservative result.

In this paper, six theorems are presented to provide measures of robust stability
for linear control systems with state-space models. Four classes of perturbations
are considered : nondelay unstructured, delayed unstructured, nondelay structured,
and delayed structured perturbations. Examples are given and comparisons with
the results given in current literature are made.

I1. Problem Formulations
In order to study the robust stability of linear control systems, we consider four
measures of robust stability defined by the following definitions.

Definition I (measure of allowable nondelay unstructured perturbation)
Consider the perturbed closed-loop system described by

dx(#)/ds = Ax() +/(x(1), 1), (D
where 4 € R"*" is the stable system matrix and f (x(?), {) € R"is a bounded perturbing
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function with £(0, 1) = 0 for all time ¢. If stability of the perturbed system (1) is
guaranteed for all bounded perturbations with perturbing magnitude given by

ILf (@, D]
P < @

then u, is a nondelay unstructured robustness measure of the system with matrix
A.

Definition II (measure of allowable nondelay structured perturbation)
Consider the perturbed closed-loop system described by

dx(1)/de = [A ) r,-(t)AEf]xm @3

i=1

where 4 € R"*" is the stable system matrix, AE;e R**" are the perturbing matrices,
and r{(¢) are bounded scalar functions with |r(¢)| < 1 for all time ¢. If the stability of
the perturbed system (3) is guaranteed, then 7, is a nondelay structured robustness
measure of the system with matrix 4.

Definition IIT (measure of allowable delayed unstructured perturbation)
Consider the perturbed closed-loop system described by

dx()/dt = Ax()+f (x(t—71), 1), )

where 4 e€R"*" is the stable system matrix, T > 0 is any time-varying time delay,
and f(x(t—1), 1) e R" is a bounded perturbing function with £(0, 7} = 0 for all time
t. If stability of the perturbed system (4) is guaranteed for all bounded perturbations
with perturbing magnitude given by

If (x(t—2), O
Ve { |x(t—1)|l } = Ha )

then pu, is a delayed unstructured robustness measure of the system with matrix 4.

Definition IV (measure of allowable delayed structured perturbation)
Consider the perturbed closed-loop system described by
P

dx(¢)/dt = Ax(t) +n, Z ri(NAEx(t—1), 6)

i=1

where A€ R"*" is the stable system matrix, ¢ > 0 is any time-varying time delay,
AE;e R"*" are the perturbing matrices, and r,(¢) are bounded scalar functions with
|r(0)| < 1 for all time ¢. If the stability of the perturbed system (6) is guaranteed,
then #, is a delayed structured robustness measure of the system with matrix A4.

Remark 1
Using the Lyapunov-based analysis of robust stability, two delayed unstructured
robustness measures will be obtained. The measure which does not include infor-

Vol. 332B, No. 4, pp. 361-376, 1995
Printed in Great Britain. All rights reserved 363



Horng-Giou Chen and Kuang-Wei Han

mation on the delay time () is called the delay-independent measure and is denoted
by u(o0). On the other hand, the measure which carries information on the delay
time is called the delay-dependent measure and is denoted by p,(7). Since the delay-
independent measure is conservative especially when the delay time is small, the
delay-dependent measure is used to complement the delay-independent measure
such that

tg = max{p,(0), u(7)}. (N

Obviously, we have

Ha(t = 0) = s, ®)

where u, is the nondelay unstructured measure defined in Definition I.

Remark 11
Similarly, two delayed structured robustness measures will be obtained: the
delay-independent measure denoted by #,(c0), and the delay-dependent measure
denoted by n,(1). The delay-dependent measure is used to complement the delay-
independent measure such that
N¢ = max{n,(0), nv)}. )

We also have

’7d(T = 0) = Hn, (10)

where #, is the nondelay structured measure defined in Definition II.

IHI. Main Results

Suppose that a matrix Q > 0 has been selected, and a matrix P > 0 is determined
by solving the Lyapunov equation, i.c.
A'P+PA = —2Q0. (11)

Given matrices P and Q that fulfil the Lyapunov equation (11), the measures of
robust stability are proposed in the following six theorems.

Theorem 1
The nondelay unstructured robustness measure of the system with matrix A4 is
given by

1

" max {1PQ~"2yl1Q ="y} (12
Yyl = 1)
Proof: Select the Lyapunov function as
V(x(n)) = x(1)"Px(2), (13)

where P > 0 is the Lyapunov matrix given in Eq. (11). A sufficient condition for
the stability of the perturbed system (1) is
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(Ax(®)+1(x(2), ) Px(t) + x(¢) P(Ax(t) + f (x(1), 1)) < 0. (14)
Followed from the Lyapunov Eq. (11), we have
S (@), 1y Px() < x(8) Qx(1). (15)
This relation is sufficiently justified by
I Ce(), DIIPx (D] < x(2) @x(1), (16)
and by
s {0 < i O = e an
Making the substitution
x() =07, (18)
the relation given in Eq. (17) becomes
4y = min { b } (19)
4o PO 0 2y
Thus, the nondelay unstructured robustness measure of the system with matrix A4
is given by Eq. (12). [ ]

Theorem I1
The nondelay structured robustness measure of the system with matrix 4 is given
by

1

amax(Z’: [Pi]px)

M = > (20)

where matrices P; are defined by algebraic manipulations of the perturbation
matrices AE; given in Eq. (3) with the Lyapunov matrices P and Q given in the
Lyapunov equation (11), i.e.

P, =Q '"?[PAEL,Q "2, i=12,....p. 210

Proof: Select the Lyapunov function as V(x(t)) = x(¢)’ Px(r), we will show that
it is also a Lyapunov function of the structurally perturbed system (3) with 5, given
in (20).

A simple computation shows that

P

dV(x(n))/dr = 2X(t)’Q”2(f1n > ri(t)Pi—_I>Q”2x(t)~ (22)

i=1
It is clear that dV{(¢)/dt < 0 if
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4
nnamax<2 r,-(t)P,) <. (23)
i=1
Note that, foralli =1, 2,..., p and for all |r(f)| < 1, we have
[P, —ri(0)P; > 0. (24)
Thus,
P P
Z [Pi]px > Z ri(t)Piﬂ (25)
i=1 i=1
and

0max<.i [Pi]ps> > Gmax<.i ri(t)Pi>~ (26)

Hence, Eq. (20) implies Eq. (23), and the nondelay structured robustness measure
of the system with matrix A is given by Eq. (20). [ ]

Theorem 111
The delay-independent delayed unstructured robustness measure of the system
with matrix 4 is given by

O min (P 1’/‘2)

Jmax {IPQylIP1Q "Ry}

pa(o0) = (27)

Proof’: Select the Lyapunov function as ¥(x(¢)) = x(¢)’ Px(t), where P > Qs the
Lyapunov matrix given in Eq. (11). The following inequality is assumed to hold
for all time s and delay 4 > 0:

g’ V(x(s)) > V(x(s—h)). (28)

A sufficient condition for the stability of the perturbed system (4) is given by the
Razumikhin theorem [(18), p. 127] as, for sufficiently small g(g > 1),

Ax(O+f(x(t—1), 1)) Px(£) + x(t) P(Ax(t) +f(x(t—1),1)) < 0. 29)

From the Lyapunov equation (11), we have

Sf(x(t—1), 0 Px(t) < x(2)'Qx(1). (30)
This relation is sufficiently justified by
I/ (et =), DI Px() ]| < x(2)’Qx(2) (31
and by
If(x(t=1), Dl : x(1)' @x(1)
Vordow { Ix(—1)| } = Voo {qu(z)u Ix(t—1) |}' (32)

From the inequality given in Eq. (28), we have
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qIP'2x(D] > Omin(P"?) | x(t—1)]. (33)

Thus, as the parameter g approaches 1, relation (32) is sufficiently justified by

SG=001] e { x(1) Qx(1) }=
vg%{ Ix(t— D)l }“'"‘"(P R T Ty Gk

Making the substitution

y=0"x(1), (35)
relation (34) becomes
#4(90) = Gra(P?) min { bl } (36)
Yoo (| PQ 2RO Ty
Thus, the delayed unstructured robustness measure of the system with matrix A4 is
given by Eq. (27). [ |

Theorem IV
The delay-dependent delayed unstructured robustness measure of the system
with matrix 4 is given by u(t) > 0 that fulfills

1 ) 1
- +To-min(Pl/2)a-max(AP71/2)

m Ha(00) )

=—, (37
pa(00)  pa(T)

where p, is the nondelay unstructured robustness measure given in Eq. (12), and
ua(o0) is the delay-independent delayed unstructured robustness measure given in
Eq. (27).

Proof: Knowing that

t

x(t—1) = x(1) —J’ x(syds = x(z) —J {Ax(s)+f(x(s—1),8)} ds, (38)

-1
we have

t

1—7T

I!X(I—T)H<HX(1)H+J [Ax(s)| dS+J Vf (x(s—1),5)ll ds

t

< XD+ Omax (AP~ "'Z)J 1P 2x(s)] ds

-1

N J C =D ids (39)

o IxGs=D)l
where P > 0 is the Lyapunov matrix given in Eq. (11). Select the Lyapunov
function as V(x(?)) = x(2)' Px(¢); the following inequality is assumed to hold for
all time s and delay 4 > 0:
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GV (x(s)) > V(x(s—h)). (40)
For all s < ¢, we have
gl P'" x| > [PV x(s)], 41)
and
qIP'"x(O)]| > Omin(PV?) [ x(s—1)|. (42)

Thus, relation (39) becomes
(=) < Ix(D]| +qg10ma (AP~ )| P2 x(0)

1P x| If(x(t=), 9|
gt m Vg {W} (43)

A sufficient condition for the stability of the perturbed system (4) is given by the
Razumikhin theorem as, for sufficiently smalil ¢ (g > 1),

(Ax(@)+f(x(t—1), 1)) Px() +x() P(Ax(t) + f (x(t—1), 1)) < 0. 44)
From the Lyapunov Eq. (11), we have

Sx(t—1), 1y Px(f) < x{(8) Qx(1). (45)
This relation is sufficiently justified by
I/ (x(t =), DI Px(D] < x(1)’ Qx(¥). (46)

Thus, for all x # 0 and for all time ¢, we need to fulfil

|/ x=n. 0 __ x()Ox(1)
lx(t =) I Px (@) Ix(t—7)I"

(47)

Insert the result given in relation (43), the condition given in Eq. (47) is sufficiently

justified by
I f(x(t—1), Dl 1
s 00 { Ix(t—o)] } = max (M5 x(0)}” @)
where
_IPx@) [ IIx(0) || L IPX@UITP Y2 x(0))
M(g, 7, x(1)) = X0 0x() +q10 0 (AP )W

LS {Hf(x(t— 7). 1) H} IPx(@) [ P2 x(0) 49)

oo (P2 Ves00 | x(—D)] x(t) Ox(1)

Given the definitions of u, in Eq. (17) and p(o0) in Eq. (34), and as the parameter
q approaches 1, we have
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max {M(q,1,x(1))} < : — + 10 (P )0y (AP 1) ———

Y(x#0,) M, (00)
I (et—), 0l 1
“v{?féﬁ){ Ix(t=7)] }ud(oo)' )

From Eq. (48), a sufficient condition for the stability of the perturbed system (4)

is given by
ILf(x(t—1), D)
o {W} < pa(T), (51

where p(t) > 0 and fulfills

1 ,
—+To-min(P]/2)O-max(AP7]/2)

+ T (T) —— . 52
" w0y T o) T Y
Thus, the delayed unstructured robustness measure of the system with matrix A4 is
given by Eq. (37). [ ]
Theorem V

The delay-independent delayed structured robustness measure of the system with
matrix A4 is given by

1
Ma(c0) = : (33)

ZV(I‘B?XI){HPIZQ ]/Zy”“P IZAEPQ‘IZ H}
i=1

Proof: Select the Lyapunov function as ¥(x(¢)) = x(¢)' Px(r), where P > 0 is the
Lyapunov matrix given in Eq. (11). The following inequality is assumed to hold
for all time s and delay # > 0:

g V(x(s)) > V(x(s—h)). (54)

A sufficient condition for the stability of the perturbed system (6) is given by the
Razumikhin theorem as, for sufficiently small ¢ (g > 1),

XMV Y. r(DAEx(i—1) < x(Y Qx(0). (55)

From the inequality given in Eq. (54), we have
qiP'*x(0)) > | P x(r—7)|. (56)
Since
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x(t)'ny(c0) P Z r(OAEx(t—1) < n4(00) Z |x(¢) PAEx(t—1)|
< 4(00) i 1P~ 2AEPX(OIP 2 x(t =), (57)

the relation (55) is sufficiently justified by
14
x(8) Qx(t) > qna(o)|P2x ()| ), 1P~ AEPx(1)]. (58)
i=1

As the parameter g approaches 1, we need to fulfil

2 || P x(n)]|| P PAEPx(d)|
Z , (59)
W(OO) = x(£)' Qx(1)
Making the replacement of
y=0"x(», (60)
relation (59) becomes
1 p P1/2 —1/2 P—l/ZAE/_P —1/2
>3 P20 "yl POyl 1)
na(c) 5 [ yl2
Thus, delayed structured robustness measure of the system with matrix A4 is given
by Eq. (53). [ |
Theorem VI

The delay-dependent delayed structured robustness measure of the system with
matrix A is given by n,(7) > 0 that fulfills

1 1 1
— 41— + 14T 62
Nn r’ea r,d( )nee ﬂd(T) ( )

where #, is the nondelay structured robustness measure given in Eq. (20), and

1
Hea = » ’ (63)
2 m Wi x {|P'2Q "2yl P~ AAEPQ ™y}
i=1
1
Hee = P P ' (64)
Z Z V(Hy?xl){”PmQ 1/ZJ/” P~ l/ZAE AEPQ - 1/2y||}
j=1i=

Proof: We know that
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(4

x(t—1) = x(¥) —J x(s)ds

1—1

4 4

= x(t)— J {Ax(s) +14(1) Y. ri()AEx(s— ‘c)} ds, (65)
t—t i=1

and that the following inequality is assumed to hold for all time s and delay # > 0:

q*V(x(s)) > V(x(s—h)), (66)

where P > 0 is the Lyapunov matrix given in Eq. (11) and the Lyapunov function
is selected as V(x(#)) = x(¢) Px(1).

A sufficient condition for the stability of the perturbed system (6) is given by the
Razumikhin theorem as, for sufficiently small ¢ (g > 1),

4
x(O)'n(DP Y, ri(NAEx(t—1) < x(1)' Ox(2). (67)
i=1
Inserting Eq. (65), and defining P, = Q™ '?[PAE],Q~'/* we have

1 P
0.0 x(0)'Qx(1) > ;

r(Ox(ty Q2P0 2 x(t) — _i ri(H)x(ty PAE; f Ax(s) ds

— i“ r{)x(f)’ PAE, f {nd(r) i rj(s)AE,-x(s—r)}ds. (68)

i=1

Note that, foralli=1,2,...,pand for all [r(f)| < 1,

[Pi]ps_ri(t)Pi > 0. (69)
Thus, we have
I P
Y r(Ox@'QPPQ 2 x(r) < Y, x(1) Q' [P],Q " x(0). (70)
i=1 =1
From the inequality given in Eq. (66), we get
gIP'*x(t)| > |IP'x(s—1)|, (71)
and
glP2 x| > ||IP'x(s)]. (72)
Thus, we also have
P t P 4
-y ri(t)x(t)’PAEiJ Ax(s)ds < ), J x(t) PAE;Ax(s) ds
i=1 r—T i=1Jr—t

P t
<) f |P~"2A’AEPx(®)| | P'?x(s)| ds
i=1Jt

4
<gr ) |PTPAAEPx@] IP (0], (73)
i=1

and
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t

— 5 r()x(1) PAE, J

t—1

{ﬂd(f) i r(S)AEx(s— r)} ds

<@y 3 J |x(t) PAEAE,x(s — )| ds,

i=1lj=1 Jr~1¢

< 14(7)

M=
™~

J |P~2AEAEPX(D] || P x(s—1)]| ds,

1

I
i

1j

< q114(7) Z ; 1P~ AEAEPx(D)| | P2 x (1) (74

Thus, relation (68) is sufﬁciently justified by

—SA00x(0 > $ X010 ()

p
+qt ), |PT P AAEPx(0)] [|P2x(0)]
i=1

p P
+qma(t) Y, 3 IPTIPAEAEPx()| | P x(D)]. (75)
i=1j=1

Making the substitution

y=0"x(n), (76)
and as the parameter g approaches 1, relation (75) is sufficiently justified by

ij}(u’:) > Umax(; [P]ps>uy” +1 Z HP 1/2A EPQ—I/Z “ ”P1/2Q 1/2 H

i Mm

P
+ﬂ1d(f Z |P=12EJEPQ ™yl [P12Q T 2yl (77)

Given the definition of #, in Eq. (20), the delayed structured robustness measure
of the system with matrix 4 is given by Eq. (62). [ ]

1V, Examples

Given matrices P and Q that fulfil the Lyapunov equation (11), measures of
robust stability can be determined. The Lyapunov-based robustness-measure prob-
lem demands a judicious choice of the matrix Q such that less conservative measures
can be achieved. In comparison with the results given in current literature, the
proposed measures are investigated in the following examples.

Remark 111
If an upper bound on the delay time (7) is available, the measures of robust
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stability for delayed perturbations given by applying Theorem III and Theorem V
can be improved respectively by using Theorem IV and Theorem V1. In the sequel,
only the delay-independent measures (u,(00), #00)) are evaluated for delayed
perturbations.

Example 1
Consider a system with nominal system matrix given by

I (78)

L1roof
For nondelay unstructured perturbation, the rootlocus-based analysis given in (14)
produces the exact bound of robust stability of u, = 0.5402. In (9), while the

matrix Q = I, is selected, Patel and Toda provides a Lyapunov-based measure of
i, = 0.3820. Here, we obtain a measure of y, = 0.4842 using Theorem I with

5.2361 2.6180
= , (79)

2.6180 2.6180

where matrix Q is obtained by use of the algorithm given in the Appendix (19).
As far as Lyapunov-based methods are concerned, Theorem I provides a less
conservative measure of robust stability for nondelay unstructured perturbation.

For delayed unstructured perturbation, since the matrix measure of 4 given in
Eq. (78) is positive, the integral-inequality analysis fails to achieve a bound of
robust stability. In (12), Cheres er al. produce a Lyapunov-based measure of
t(o0) = 0.178. Here, we obtain a measure of u,(oc) = 0.3842 using Theorem 111
with the matrix Q given in Eq. (79). Thus, Theorem I1I provides a less conservative
measure of robust stability for delayed unstructured perturbation.

Example 11
Consider a system with nominal system matrix given by

79.0 200 —300 -—20.0
—41.0 —12.0 17.0 13.0

4= ) (80)
167.0 40.0 —60.0 —38.0

335 90 —145 -110

In (7), the rootlocus-based analysis produces the measure of robust stability of
i, = 0.08234 for “nonlinear” nondelay unstructured perturbation. Here, we obtain
a measure of y, = 0.07007 using Theorem I with

824.1 2477 —-2984 2271
247.7 77.19 —89.62 —67.94

Q= , 81)
—2984 —89.62 109.2 82.30
—227.1 —67.94 82.30 64.66
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where matrix Q is obtained by use of the algorithm given in the Appendix. Note
that, for nondelay unstructured perturbation, the result of applying Theorem I is
fairly close to the result given by use of the rootlocus-based analysis. Note also
that, the Lyapunov-based analysis can be applied to a wider class of unstructured
perturbations. Using Theorem I with the matrix Q given in Eq. (81), we obtain
a measure of u,(c0) = 0.03220 for delayed unstructured perturbation.

Example 111
Consider the following matrices :
-2 0 -1
A=| 0 =3 0], (82)
-1 -1 -4
0 1
AE, =0 0 0 (83)
01
and
0 0 0
AE,=|0 1 0] (84)
010

For nondelay structured perturbation, the rootlocus-based analysis given in (13)
produces the measure of robust stability of #, = 1.7500. In (11), while the matrix
Q = I, is selected, Zhou and Khargonekar provide a Lyapunov-based measure of
#, = 1.5533. Here, we obtain a better measure of #, = 1.6894 using Theorem 11
with

1.2789 0.0567 0.6383
0 =10.0567 19710 0.3509, (85)
0.6383 0.3509 2.5118

where matrix Q is obtained by use of the algorithm given in the Appendix. As far as
Lyapunov-based methods are concerned, Theorem II provides a less conservative
measure of robust stability for nondelay structured perturbation. Note also that
the result of applying Theorem II is fairly close to the result given by use of the
rootlocus-based analysis.

For delayed structured perturbation, by use of the integral-inequality analysis
proposed by Wang et al. (8), a measure of robust stability of 7,(c0) = 0.4566 is
obtained. Here, we obtain a measure of u,(o0) = 0.8753 using Theorem V with the
matrix Q given in Eq. (85). Thus, Theorem V provides a less conservative measure
of robust stability for delayed structured perturbation.
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V. Conclusions

In this paper, Lyapunov-based analysis of robust stability has been extended to
include four classes of perturbations : the nondelay unstructured, delayed unstruc-
tured, nondelay structured, and delayed structured perturbations. Both delay-
independent analysis and delay-dependent analysis have been presented for systems
with delayed perturbations. As illustrated in the examples, the allowable per-
turbation bounds obtained by use of the proposed theorems are less conservative
than those given in current literature.
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Appendix

Algorithm [computes the matrix Q for Lyapunov equation (19)]
Step 1. Assign

0, =1 and Q,=1 (A
Step 2. Equate Lyapunov equations to acquire the matrices P, and P,, i.e.
AP +P A+20, =0, (A2)
and
PyA+A4P,+20, =0. (A3)

Step 3. Equate matrices Y, and Y., where

Y, =aQ,+bP;'Q,P5", (A4)
and
Y, =c¢Q,+dP7'Q, PT", (AS)
and the parameters a, b, ¢ and d are chosen such that
Omax (@01 )Omin(a@1) = 1, (A6)
Omax(DP7 ' Q2P )0min(BP5 'O, P51) = 1, (A7)
Omax (€Q2)0min(¢Q2) = 1, (A8)
Omax (dPT' Q1 PT)0min(@PT 'O PT) = 1. (A9)

Step 4. Make the replacement of
Ql = Yl/amm(Yl)7 and Q2 = YZ/amm(Y2); (AIO)

and repeat from Step 2 until a convergent condition is detected. Then, we have 0 = Q,.
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