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ABSTRACT: The robust stability of control systems with perturbation is considered. Usin 9 
L yapunov functions, quantitative bounds on the perturbation are obtained such that the systems 
remain stable. Four classes of perturbations are treated and four measures of robust stability 
are proposed: the nondelay unstructured, delayed unstructured, nondelay structured, and 
delayed structured measures. Examples are given, and comparisons with the results given in 
current literature are made. 

Nomenclature 

~n 
~nxn 
[.] 1 

[.] ' 

El,, 

O'm,,,([']) 
O'nlin ( [ '] ) 
[/vll 
P > O  
P>Q 

real n-dimensional vector space 
linear operators from ~" to R" 
inverse matrix of an invertible matrix [-] 
transposed matrix of ['] 
square-root of positive-definite matrix [.] 
symmetric portion of square matrix [-] 
positive-semidefinite matrix formed by replacing each eigenvalue of the sym- 
metric matrix [.] by its modulus value 
maximum singular value of matrix [.] 
minimum singular value of matrix [.] 
Euclidean norm of vector v 
square symmetric matrix P being positive-definite 
square symmetric matrices P and Q that satisfy P -  Q > 0 

L Introduction 

The inclusion of plant uncertainty and parameter  variations to the analysis 
and design of control systems has been an important  problem. The uncertainty, 
described as unstructured perturbation, often arises from an imperfect knowledge 
of  a system working at the presence of  noise and disturbance. The parameter  
variations, described as structured perturbations, arise if a system is operated in 
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widely different regimes. Such a system is termed a robust system if stability is 
preserved under a class of perturbations influencing the system. Presently, there 
are two approaches that quantitatively define the measures of robust stability : the 
frequency domain approach and the state-space approach. In frequency domain 
approach, the main direction of research is to extend the well-known SISO treat- 
ments to MIMO systems. A Bode-type criterion is generalized by use of the singular 
value decomposition method (1, 2), and a Nyquist-type criterion is generalized by 
use of the E-contours method (3, 4). The perturbations are mainly viewed in terms 
of the tolerable gain and phase changes of unstructured perturbations. On the 
other hand, the state-space approach can be categorized into three perspectives: 
the rootlocus-based analysis (5-7), the integral-inequality analysis (8), and the 
Lyapunov-based analysis (9-12). The state-space approach is more amenable to 
the consideration of the structured perturbations in the form of parameter 
variations and nonlinearities. This paper is an extension of the Lyapunov-based 
analysis. 

While nondelay perturbations are considered, it has been shown that the root- 
locus-based analysis produces better measures of robust stability than the 
Lyapunov-based analysis (13, 14). Nevertheless, the Lyapunov-based analysis pos- 
sesses the exclusive feature of accompanying the measures of robust stability with 
a quadratic Lyapunov function. In addition, this analysis takes an important part 
in the design of robust stabilizing controllers (15--17), and it is extendable to include 
delayed perturbations. In (12), the Lyapunov-based analysis has been extended to 
include a delay-independent analysis of robust stability for systems with delayed 
unstructured perturbations. However, a delay-independent criterion that does not 
include the information on delays is conservative especially when the delays are 
small. The motivation of making an extension to include delay-dependent analysis 
of robust stability for control systems with delayed perturbations guides us to do 
the research. It should be noted that, while delayed perturbations are considered, 
the rootlocus-based analysis fails and the integral-inequality analysis produces very 
conservative result. 

In this paper, six theorems are presented to provide measures of robust stability 
for linear control systems with state-space models. Four classes of perturbations 
are considered : nondelay unstructured, delayed unstructured, nondelay structured, 
and delayed structured perturbations. Examples are given and comparisons with 
the results given in current literature are made. 

IL Problem Formulations 

In order to study the robust stability of linear control systems, we consider four 
measures of robust stability defined by the following definitions. 

Definition I (measure of allowable nondelay unstructured perturbation) 
Consider the perturbed closed-loop system described by 

dx(t)/dt = Ax(t) +f(x(t) ,  t), (1) 

where A ~ ~" ×" is the stable system matrix andf(x(t) ,  t) ~ ~" is a bounded perturbing 
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function with f (0 ,  t) = 0 for all time t. If stability of the perturbed system (1) is 
guaranteed for all bounded perturbations with perturbing magnitude given by 

max ~llf(x(t),t)ll~ 
V~x~0,,) ~ IIx(t)ll J </a, ,  (2) 

then/~, is a nondelay unstructured robustness measure of the system with matrix 
A. 

Definition H (measure of allowable nondelay structured perturbation 
Consider the perturbed closed-loop system described by 

dx(t)/dt= [A+~l,, ~ (3) 

where A e ~"×" is the stable system matrix, AE~e R "×" are the perturbing matrices, 
and rM) are bounded scalar functions with [ri(t)l < 1 for all time t. If the stability of 
the perturbed system (3) is guaranteed, then r/, is a nondelay structured robustness 
measure of the system with matrix A. 

Definition III (measure of allowable delayed unstructured perturbation) 
Consider the perturbed closed-loop system described by 

dx(t)/dt = Ax(t) + f ( x ( t -  ~), t), (4) 

where A ~ ~"×" is the stable system matrix, ~ > 0 is any time-varying time delay, 
andf(x( t -r) ,  t) ~ ~" is a bounded perturbing function with f (0 ,  t) = 0 for all time 
t. If stability of the perturbed system (4) is guaranteed for all bounded perturbations 
with perturbing magnitude given by 

max ~l[f(x(t-r), t)ll} 
v~x~0,,)~ IIx(t-v)lF < m, (5) 

then Pd is a delayed unstructured robustness measure of the system with matrix A. 

Definition IV (measure of allowable delayed structured perturbation) 
Consider the perturbed closed-loop system described by 

P 

dx(t)/dt = Ax(t) + qd ~ r,(t)AE~x(t- r), (6) 
i = l  

where A ~ ~"×" is the stable system matrix, r > 0 is any time-varying time delay, 
AEi~ ~n ×n are the perturbing matrices, and ri(t) are bounded scalar functions with 
IrM)l < 1 for all time t. If the stability of the perturbed system (6) is guaranteed, 
then r/(t is a delayed structured robustness measure of the system with matrix A. 

Remark I 
Using the Lyapunov-based analysis of robust stability, two delayed unstructured 

robustness measures will be obtained. The measure which does not include infor- 
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mation on the delay time (~) is called the delay-independent measure and is denoted 
by #a(oo). On the other hand, the measure which carries information on the delay 
time is called the delay-dependent measure and is denoted by/~j(z). Since the delay- 
independent measure is conservative especially when the delay time is small, the 
delay-dependent measure is used to complement the delay-independent measure 
such that 

Obviously, we have 

tt~ = max{ttu(oe), #d(r)}- 

t~d(z  = O) = tLn, 

where ttn is the nondelay unstructured measure defined in Definition I. 

(7) 

(8) 

Remark H 
Similarly, two delayed structured robustness measures will be obtained: the 

delay-independent measure denoted by rld(OO), and the delay-dependent measure 
denoted by ~/d(Z). The delay-dependent measure is used to complement the delay- 
independent measure such that 

r/d = max{~/d(OO), ~/d(~)}. (9) 

We also have 

~d(~ = o) = n., (lO) 

where q, is the nondelay structured measure defined in Definition II. 

IlL Main Results 

Suppose that a matrix Q > 0 has been selected, and a matrix P > 0 is determined 
by solving the Lyapunov equation, i.e. 

A ' P + P A  = - 2 Q .  (11) 

Given matrices P and Q that fulfil the Lyapunov equation (11), the measures of 
robust stability are proposed in the following six theorems. 

Theorem I 
The nondelay unstructured robustness measure of the system with matrix A is 

given by 

1 
#, - . (12) 

max {IIPQ-l/2yl[ IIQ-l/2ytl} 
V(ll.vll = 1) 

Proof: Select the Lyapunov function as 

V(x( t ) )  = x ( t ) ' P x ( t ) ,  (13) 

where P > 0 is the Lyapunov matrix given in Eq. (11). A sufficient condition for 
the stability of  the perturbed system (1) is 
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(Ax(t) +f(x( t ) ,  t))'Px(t) + x(t) 'P(Ax(t) +f(x( t ) ,  t)) < 0. (14) 

Followed from the Lyapunov Eq. (11), we have 

f (x ( t ) ,  t)'Px(t) < x(t)'Qx(t). (15) 

This relation is sufficiently justified by 

Ikf(x(t), t)It II Px(t)II < x(t)'Qx(t), (16) 

and by 

v(x~0.,,[ Ix(t~p J < min - #,. (17) vc~ ~ o,,~ -II Px( t ) ll II x( t ) ll 

Making the substitution 

x(t) = Q 1/2y, (18) 

the relation given in Eq. (17) becomes 

g. = min ~" IIYN2 }. (19) 
vo. ~ o~ [IIPQ '/2yll IrO-l/2y]l 

Thus, the nondelay unstructured robustness measure of the system with matrix A 
is given by Eq. (12). • 

Theorem H 
The nondelay structured robustness measure of the system with matrix A is given 

by 

1 
r/, - (20) 

0"max \ i =  I [Pi]p, 

where matrices Pi are defined by algebraic manipulations of the perturbation 
matrices AEi given in Eq. (3) with the Lyapunov matrices P and Q given in the 
Lyapunov equation (11), i.e. 

pi =_ Q I/2[pAEi]sQ 1 / 2  i =  1,2 . . . . .  p. (21) 

Proof: Select the Lyapunov function as V(x(t)) = x(t)'Px(t), we will show that 
it is also a Lyapunov function of the structurally perturbed system (3) with qn given 
in (20). 

A simple computation shows that 

dV(x( t ) ) /d t= 2x( t ) 'Ql /2(qn~ r~(t)Pi-I)Q1/2x(t). (22) 

It is clear that dV(t)/dt < 0 if 
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q~0"ma x r i ( t ) P  i < 1. 
i 

Note that, for all i = 1, 2 . . . .  ,p  and for all [r~(t)l < 1, we have 

[P~]p,~- r~(t)e~ > O. 

Thus, 

and 

(23) 

(24) 

p p 

.~, [Pi]p.< > ~ rAt)P,, (25) 
i = l  i=1  

O'max E [Pi]ps > ~7 . . . .  E ri( t )Pi .  ( 2 6 )  
\ i  = 1 \ i  = 1 

Hence, Eq. (20) implies Eq. (23), and the nondelay structured robustness measure 
of the system with matrix A is given by Eq. (20). • 

Theorem III 
The delay-independent delayed unstructured robustness measure of the system 

with matrix A is given by 

O'min ( P  1/2 ) 
pa(~)  = . (27) 

max {IIPQ-I"Zyll Ilp'izQ-'"Zyll } 
V(llvll = I ) 

Proof: Select the Lyapunov function as V(x(t)) = x(t)'Px(t), where P > 0 is the 
Lyapunov matrix given in Eq. (11). The following inequality is assumed to hold 
for all time s and delay h > 0 : 

q2 V(x(s)) > V(x(s-h)).  (28) 

A sufficient condition for the stability of the perturbed system (4) is given by the 
Razumikhin theorem [(18), p. 127] as, for sufficiently small q(q > 1), 

(Ax(t) + f ( x ( t -  z), t))'Px(t) + x(t)'P(Ax(t) + f ( x ( t -  z), t)) < 0. (29) 

From the Lyapunov equation (11), we have 

f ( x ( t - -  ~), t)'Px(t) < x(t)'Qx(t). (30) 

This relation is sufficiently justified by 

(31) II f ( x ( t -  z), t)II II Px(t)II < x(t)'Qx(t) 

and by 

max 011[ 
vc~+o.,){ ~ 1  J < min V(x @ 0,t) 

From the inequality given in Eq. (28), we have 

x(t)'Qx(t) 
(32) 
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q IIPl/2x(t)[I > amin(pl/z)llx(t-r)H. (33) 

Thus, as the parameter q approaches 1, relation (32) is sufficiently justified by 

fllf(x(t-r),~ll t)ll)j ~" x(t)'Qx(t) } max ~ ~< Omi,(P 1/2) min =/~a(oo). (34) 
vI~¢ o.,t v~x~o,n [11 ex(t)[I It P'/2x(t) t1 

Making the substitution 

y = Q l"2x(t), (35) 

relation (34) becomes 

{ IIyII2 }. (36) 
# d ( ~ )  ~ O n a i n ( P  1 ' 2 )  min '/2yIJ l:2yn vo,~o) IIPQ Itp1"2Q 

Thus, the delayed unstructured robustness measure of the system with matrix A is 
given by Eq. (27). • 

Theorem IV 
The delay-dependent delayed unstructured robustness measure of the system 

with matrix A is given by #a(z) > 0 that fulfills 

1/2 1 1 1 
L _~_ ~O-rnin (p1,,2)O.ma x ( A  P (37) ~,, ) ~ +~m(~) m(~)  m(~)' 

where/~n is the nondelay unstructured robustness measure given in Eq. (12), and 
/t~(oo) is the delay-independent delayed unstructured robustness measure given in 
Eq. (27). 
Proof: Knowing that 

we have 

I t I t x ( t -  r) -- x ( t ) -  So(s) ds = x(t)  - {Ax(s)  + f ( x ( s -  r),s)} ds, 

ft I' 
I]x(t--r)ll < Nx(t)]l + HAx(s)ll ds+ ]~(x(s-r),s)n ds 

i 
t 

I]x(t)ll + O'max(AP-1/2) ItP'"Zx(s)ll ds 
r 

(38) 

f , IlJ'(x(s-z),s)l] Irx(s-z)ll ds, (39) 
+ IIx(s-r)ll t 

where P > 0 is the Lyapunov matrix given in Eq. (11). Select the Lyapunov 
function as V(x(t)) = x(t)'Px(t) ; the following inequality is assumed to hold for 
all time s and delay h > 0' 
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q2 V(x(s)) > V(x(s-h)) .  

For all s < t, we have 

and 

qltel"2x(t)ll > IleW-x(s)ll, 

(40) 

(41) 

II Px(t)II IIx(t)II II Px(t)II II pl/2x(t)Ib 
M(q, z, x(t) ) = .÷ qZ~Ymax(AP-1/2) 

x( t)' Qx( t) x( t)" Qx( t) 

qz m a x  ~ IIf(x(t- r), t)II} I1Px(t)II IL P '/2x(t)II 
÷ amin(pI/2) V(xeO't) ~ ~ ( f ~ ] l  x(t)'Qx(t) (49) 

Given the definitions of #, in Eq. (17) and pa(ov) in Eq. (34), and as the parameter 
q approaches 1, we have 

368 Journal of the Franklin Institute 
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where 

qllpl/2x(t)ll > amin(p1/2)llx(s-z)ll. (42) 

Thus, relation (39) becomes 

IIx(t-v)ll < Hx(t)ll÷qZ~rm.x(Ap-1/2)llP'/2x(t)H 

Ilel"2x(t)ll ) 'LIf(x(t-z),  t)H'~ 
+ qz max (43) 

O-min(e I/2) V(x#0,t) [ I I x ( t - r ) l l  J" 

A sufficient condition for the stability of  the perturbed system (4) is given by the 
Razumikhin theorem as, for sufficiently small q (q > 1), 

(Ax(t) -I-f(x(t-- z), t))'Px(t) ÷ x(t) 'P(Ax(t) + f ( x ( t -  z), t)) < 0. (44) 

From the Lyapunov Eq. (11), we have 

f ( x ( t -  z), t)'Px(t) < x(t)'Qx(t). (45) 

This relation is sufficiently justified by 

II f ( x ( t -  r), t)tl ]l Px(t)ll < x(t)'Qx(t). (46) 

Thus, for all x ~ 0 and for all time t, we need to fulfil 

II f ( x ( t -  z), t )IL x(t)'Qx(t) 
< (47) 

IIx(t-m)ll liPx(t)ll qlx(t-~)ll ' 

Insert the result given in relation (43), the condition given in Eq. (47) is sufficiently 
justified by 

max ~ l i f (x ( t - z ) ,  t)ll} 1 
v(x~o.t) ( ~ l  < , (48) max {M(q,z,x(t))} 

g(x ~ 0,t) 
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1 1 
max {M(q, r, x(t))} ~< - -  + "/70"min (P ll2)~rm.x(AP-1/2) _ _  

v~,<~.o,,~ Ix. Ixa(oo) 

+ r  m a x  ~_lif(x(t-~),,)li~ 1 (50 )  
v~x+,o,,~{ I lx( t -v) l l  Jm(oo)" 

From Eq. (48), a sufficient condition for the stability of the perturbed system (4) 
is given by 

m a x  ~llf(x(t-r),t)lr~ 
(51) 

where Ixd(r) > 0 and fulfills 

1 1 1 1 
_ _  + . C f f m i n ( p l / 2 ) C r m a x ( A p  1 / 2 ) _ _  
m Ix,l(oo) + ~m(r) m(oo) Ix~(~)' (52) 

Thus, the delayed unstructured robustness measure of the system with matrix A is 
given by Eq. (37). • 

Theorem V 
The delay-independent delayed structured robustness measure of the system with 

matrix A is given by 

1 
~,,(oo) -- (53) 

P 

Y" max {IIpI,"2Q l~ZylltlP l"2AE;eQ-l,'2yN} 
i =  1 W(llyll = I) 

Proof: Select the Lyapunov function as V(x(t)) = x(t)'Px(t), where P > 0 is the 
Lyapunov matrix given in Eq. (11). The following inequality is assumed to hold 
for all time s and delay h > 0 : 

q2 V(x(s)) > V(x(s-h)). (54) 

A sufficient condition for the stability of the perturbed system (6) is given by the 
Razumikhin theorem as, for sufficiently small q (q > 1), 

P 

x(t)'qa(~)P ~ r,(t)AEix(t- r) < x(t)'Qx(t). (55) 
i = l  

From the inequality given in Eq. (54), we have 

qllP'/2x(t)H > He"2x(t-~)ll. (56) 

Since 
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P P 

x(t)'?ld(C~v)P ~, r,(t)AE~x(t-- z) <. ?ld(OO) ~ Ix(t)'PAE, x ( t -  z) l 
i = 1  i = 1  

P 

?ld(O0) ~ liP l/2AE~ex(t)llllp'/2x(t-v)ll, 
i = 1  

(57) 

the relation (55) is sufficiently justified by 

P 

x(t)'Qx(t) > q?la(~)fl P'/Zx(t)II ~, lIP- I/2AE~Px(t)II. 
i = 1  

(58) 

As the parameter q approaches 1, we need to fulfil 

A _  Ilel/2x(t) ll Ile-1/2 AgTex(t) ll 
?ld(oo) > g i = l  x(t)'Qx(t) 

(59)  

Making the replacement of 

y = Q l/2x(t), (60) 

relation (59) becomes 

1 P IIpI/2Q-'/2yll liP I/2AE~PQ 1/eyll 
- -  > ~ (61)  
? l d ( 0 0 )  i = 1  Ilyll 2 

Thus, delayed structured robustness measure of the system with matrix A is given 
by Eq. (53). • 

Theorem VI 
The delay-dependent delayed structured robustness measure of the system with 

matrix A is given by ?ld(Z) > 0 that fulfills 

1 1 1 1 
+ ~ - -  + z?la('O - (62)  

?in /'lea ?lee ?ld('l~') ' 

where ?l, is the nondelay structured robustness measure given in Eq. (20), and 

?lea ~ p 

max {l[pl/2Q-I/ZYll IIp-I/2A'AE;pQ-I"2yH} 
i =  1 V(IlYll = 1) 

(63) 

?lee ~ p p 

}-' max {llel/2Q-I/2yll liP I/2AEf/AETpQ-I/ZylI} 
j = l  i = 1  V(IlYlI= 1) 

(64) 

Proof: We know that 
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£ x ( t -  z) = x(t) - Jc(s) ds 
- z  

i{  } = x ( t ) -  Ax(s)  +qd(Z) ri(s)AEix(s--z) ds, (65) 
--z  i = 1  

and that the following inequality is assumed to hold for all time s and delay h > 0" 

q2 V(x(s)) > V ( x ( s -  h)), (66) 

where P > 0 is the Lyapunov matrix given in Eq. (1 l) and the Lyapunov function 
is selected as V(x(t)) = x(t) 'Px(t) .  

A sufficient condition for the stability of the perturbed system (6) is given by the 
Razumikhin theorem as, for sufficiently small q (q > 1), 

P 

x(t) 'qd(z)P ~ r~(t)AEix(t-- z) < x(t) 'Qx(t) .  (67) 
i = 1  

Inserting Eq. (65), and defining P~ - Q-1/2[PAE~]sQ-1/2 we have 

~ld(Z) x( t) 'Qx(t)  > ri(t)x(t)'Q 1/2p~Q ~/:x(t) - r~(t)x(t)'PAE~ Ax(s) ds 
i = 1  i = 1  "r 

-- ri(t)x(t) 'PA rld(Z ) rj(s)AEjx(s--z ds. 
i = l  - -r  J 

(68) 

Note that, for all i = 1, 2 . . . .  ,p and for all Ir~(t)l < I, 

[Pi]p~ - r~(t)P, > 0. (69) 

Thus, we have 

P P 

ri(t)x(t) 'al/2p~Ol/2x(t) < ~ x(t)'Ql/2[pi]psOl/2x(t). (70) 
i - - I  i - - I  

From the inequality given in Eq. (66), we get 

qllpl/2x(t)ll > Ilel/2x(s-~)ll, 

qllel/2x(t)ll > EIe'/Zx(s)ll. 
and 

Thus, we also have 

[ as - ri(t)x(t) 'PAEi Ax(s)  ds <<. x( t ) 'PAEiAx(s)  
i =  1 d t - - r  i ~  1 - - z  

<<, IIP-~/2A'AE'ePx(t)II IIpl/2x(s)ll as 
i = 1  z 

P 

< qz ~ IIp-1/2A'AE~Px(t)I[ IIP~/2x(t)ll, 
i = 1  

(71) 

(72) 

(73) 

and 
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-- ri(t)x(t)'eAE, rj(s)AEjx(s-r) ds 
i=l --z 

< ~d('/:) i = l j = '  ~ ~ '  I ~-~ Ix(t)'PAE~AEjx(s--r)I ds, 

r/a(r) liP I/ZAEjAETPx(t)II Ilel/2x(s--v)ll ds, 
i = l j = l  --r 

P P 
< qrrla(z) ~ ~ liP I/2AEjAE~Px(t)tl lipl/2x(t)ll. 

i = l j = l  

Thus, relation (68) is sufficiently justified by 

1 P 
x(t)'Qx(t) > ~ x(t)'Q l/2[pi]ps Q l/2x(t) 

~a(r) i=1 

(74) 

P 
+qz ~ lip I/2A'AE~Px(t)Ib Ilel/2x(t)lb 

i=1 

P P 
+qzqa(r) ~. ~ IIP-1/2AE~AE;Px(t)H Ilpl/2x(t)ll. 

i = l j = l  

Making the substitution 

(75) 

y = Q ~/2x(t), (76) 

and as the parameter q approaches 1, relation (75) is sufficiently justified by 

) - - >  O'max\i= 1 [P,]p, [lyll 2 +V,=l ~ [[P-I/2A'E~pQ-I/2yll IIp1/2Q-1/2y[I tlyll 2 
r/a(r) 

P P 
+v~la(v) ~ ~ IIP-1/ZEjE~pQ-1/Zyll IIpI/ZQ-I/2YlI. (77) 

i = l j = l  

Given the definition of q. in Eq. (20), the delayed structured robustness measure 
of the system with matrix A is given by Eq. (62). • 

IV. Examples 

Given matrices P and Q that fulfil the Lyapunov equation (11), measures of 
robust stability can be determined. The Lyapunov-based robustness-measure prob- 
lem demands a judicious choice of the matrix Q such that less conservative measures 
can be achieved. In comparison with the results given in current literature, the 
proposed measures are investigated in the following examples. 

Remark III 
If an upper bound on the delay time (r) is available, the measures of robust 
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stability for delayed perturbations given by applying Theorem III and Theorem V 
can be improved respectively by using Theorem IV and Theorem VI. In the sequel, 
only the delay-independent measures (/~a(ov), r/a(~)) are evaluated for delayed 
perturbations. 

Example I 
Consider a system with nominal system matrix given by 

1-3 A = . (78) 
1 

For nondelay unstructured perturbation, the rootlocus-based analysis given in (14) 
produces the exact bound of robust stability of #n = 0.5402. In (9), while the 
matrix Q = 12 is selected, Patel and Toda provides a Lyapunov-based measure of 
/tn = 0.3820. Here, we obtain a measure of/~n = 0.4842 using Theorem I with 

5.2361 2.61801 

Q =  L2.6180 2.6180f 
(79) 

where matrix Q is obtained by use of the algorithm given in the Appendix (19). 
As far as Lyapunov-based methods are concerned, Theorem I provides a less 
conservative measure of robust stability for nondelay unstructured perturbation. 

For delayed unstructured perturbation, since the matrix measure of A given in 
Eq. (78) is positive, the integral-inequality analysis fails to achieve a bound of 
robust stability. In (12), Cheres et al. produce a Lyapunov-based measure of 
Pd(~) = 0.178. Here, we obtain a measure of pal(Or) = 0.3842 using Theorem III 
with the matrix Q given in Eq. (79). Thus, Theorem III provides a less conservative 
measure of robust stability for delayed unstructured perturbation. 

Example H 
Consider a system with nominal system matrix given by 

A = 

79.0 20.0 -30 .0  - 2 0 . 0 ]  

-41 .0  -12 .0  17.0 13.0 / . 

167.0 40.0 -60 .0  -38 .0  / 

33.5 9.0 -14 .5  - l l . O J  

(80) 

In (7), the rootlocus-based analysis produces the measure of robust stability of 
#n = 0.08234 for "nonlinear" nondelay unstructured perturbation. Here, we obtain 
a measure of kt, = 0.07007 using Theorem I with 

824.1 247.7 --298.4 -227.1 

247.7 77.19 --89.62 -67.94 

--298.4 --89.62 109.2 82.30 

--227.1 --67.94 82.30 64.66 

(81) Q = 
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where matrix Q is obtained by use of  the algorithm given in the Appendix. Note 
that, for nondelay unstructured perturbation, the result of  applying Theorem I is 
fairly close to the result given by use of the rootlocus-based analysis. Note also 
that, the Lyapunov-based analysis can be applied to a wider class of unstructured 
perturbations. Using Theorem III with the matrix Q given in Eq. (81), we obtain 
a measure of #a(~)  = 0.03220 for delayed unstructured perturbation. 

Example III 
Consider the following matrices : 

[ i] 
2 0 

A =  0 - 3  , 

- 1  - 1  - 

(82) 

[i°i] AEI = 0 , 

0 

(83) 

and 

AE2 = 1 . 

1 

(84) 

For  nondelay structured perturbation, the rootlocus-based analysis given in (13) 
produces the measure of  robust stability of qn = 1.7500. In (11), while the matrix 
Q = 13 is selected, Zhou and Khargonekar provide a Lyapunov-based measure of 
r/, = 1.5533. Here, we obtain a better measure of r/n = 1.6894 using Theorem II 
with 

-1.2789 0.0567 0.63831 

Q = 0.0567 1.9710 0.3509[, 
/ 

[0.6383 0.3509 2.5118J 

(85) 

where matrix Q is obtained by use of the algorithm given in the Appendix. As far as 
Lyapunov-based methods are concerned, Theorem II provides a less conservative 
measure of robust stability for nondelay structured perturbation. Note also that 
the result of applying Theorem II is fairly close to the result given by use of the 
rootlocus-based analysis. 

For  delayed structured perturbation, by use of  the integral-inequality analysis 
proposed by Wang et al. (8), a measure of  robust stability of r/a(~) = 0.4566 is 
obtained. Here, we obtain a measure of/~a(~) = 0.8753 using Theorem V with the 
matrix Q given in Eq. (85). Thus, Theorem V provides a less conservative measure 
of robust stability for delayed structured perturbation. 
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V. Conclusions 

In this paper, Lyapunov-based analysis of  robust stability has been extended to 
include four classes of  perturbations : the nondelay unstructured, delayed unstruc- 
tured, nondelay structured, and delayed structured perturbations. Both delay- 
independent analysis and delay-dependent analysis have been presented for systems 
with delayed perturbations. As illustrated in the examples, the allowable per- 
turbation bounds obtained by use of  the proposed theorems are less conservative 
than those given in current literature. 
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Appendix  

Algorithm [computes the matrix Q for Lyapunov equation (19)] 
Step 1. Assign 

Q1 = I ,  and Q: = I .  (A1) 

Step 2. Equate Lyapunov equations to acquire the matrices P~ and P2, i.e. 

A'P~ + P I A + 2 Q j  = 0, (A2) 

and 

P2 A' -Jr AP: + 2Qz = 0. (A3) 

Step 3. Equate matrices YI and Y2, where 

Y~ = aQ~ +bPz~QzP2 ', (A4) 

and 

Y2 = cQz + dP~ l Q1P1 ~, (A5) 

and the parameters a, b, c and d are chosen such that 

am,x(aQl)ami,(aQ,) = 1, (A6) 

am,x(bp~lQ2P~')amin(bP~Q2P2')  = 1, (A7) 

~rmax(cQ2)~rmin(cQ2 ) = 1, (A8) 

ama×(dPl'Q~Pl')aman(dP,~Q,Pl ~) = 1. (A9) 

Step 4. Make the replacement of 

Q, = Y~/amm(Y~), and Q2 = Y2/am,.(Y2); (A10) 

and repeat from Step 2 until a convergent condition is detected. Then, we have Q = Q~. 
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