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ABSTRACT

We theoretically calculate the resonance fluorescence spectrum from a two-level atom which is embedded in a
photonic bandgap crystal and is resonantly driven by a classical pump light. Non-Markovian noises caused by
the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a
new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. These
linearized equations can be solved directly in the Fourier domain to obtain the correlation functions of the
atomic operators and then the fluorescence spectrum from the atom. We find that if the atomic energy level
is far from the bandgap, fluorescence spectra with Mollow triplets are observed. When the atomic energy level
is near the bandgap, the relative magnitude and the number of the fluorescence peaks are found to be varied
according to the wavelength offset.
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1. INTRODUCTION

It has been well known that the spontaneous emission from an excited atom can be modified by the electro-
magnetic reservoir that surrounds the atom.1 Within a periodic dielectric structure (or especially the photonic
bandgap crystal),2, 3 the properties of the photon field reservoir as well as the properties of the spontaneous
emission can be modified dramatically. In photonic bandgap crystals, the propagation of light is prohibited
within a certain range of wavelengths (the bandgap) due to the lack of available photon states. When above or
below the bandgap, the density of photon states starts to increase from zero and has a non-unifoum distribution.
This is in contrast to the free space situation where the distribution of the photon density states is more uniform.
It is the aim of this paper to investigate the impacts of such non-unifoum photon state distribution upon the
characteristics of the resonance fluorescence from an atom with its emission wavelength near the bandgap.

In contrast to the situation at free space where the Markovian approximation and the quantum regression
theorem are valid, the atom-photon interaction in photonic bandgap materials is in general non-Markovian and
has been found to exhibit many interesting new phenomena including the appearance of photon-atom bound
states,4 spectral splitting,5 dark line with quantum interference effect,6 phase control of spontaneous emission,7

transparency near band edge,8 and single-atom switching.9 In this paper we will investigate the properties
of the resonance fluorescence emitted by a two-level atom embedded in a photonic bandgap crystal and driven
by a classical pumping light. Due to the non-Markovian nature of the atom-field interaction in this case, the
Born-Markovian approximation which is usually used in quantum optics for treating atom-photon interaction
problems can not be directly applied here. To overcome this difficulty, we first derive the generalized optical
Bloch equations without any approximation and then use the Liouville operator expansion to approximate
the nonlinear terms while still keep the non-Markovian memory functions. By solving the simplified linear
equations in the Fourier domain directly we can calculate the stationary two-time correlation functions of the
atomic operators as well as the spectral distribution of the resonance fluorescence without too much difficulty.
When the emission frequency of the atom is far from the band edge, the results are found to agree with the
results of Mollow10 for the case at free space. The triplet spectral shape is observed just as one will expect
intuitively. But when we change the emission wavelength of the atom to be close to the band edge, both the
number of the peaks as well as their profiles are found to be varied depending on the wavelength offset between
the atomic transition wavelength and the band edge. The details of these results as well as the theoretical
formulation for calculating them will be presented in the following sections respectively.
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2. GENERALIZED OPTICAL BLOCH EQUATIONS
The system we consider consists of a single two-level atom embedded in a photonic bandgap crystal and driven
by a classical pump light. The transition frequency of the atom and the frequency of the pumping light are
denoted to be ωa and ωL respectively. In this model we treat the photon states in the photonic bandgap crystal
as the background reservoir and use the Jaynes-Cummings model to describe the atom-photon interaction. The
Hamiltonian for our system can be written as:

H =
h̄

2
ωaσz + h̄

∑
k

ωka†
kak +

Ω
2

h̄(σ−eiωLt + σ+e−iωLt) + h̄
∑

k

(gkσ+ak + g∗ka†
kσ−) (1)

where a†
k and ak are the creation and annihilation operators of the background photon reservoir, Ω is the Rabi-

flopping frequency of the atom under the external pumping light and also represents the relative magnitude of
the pumping light, σz ≡ (|2〉〈2| − |1〉〈1|), σ+ ≡ |2〉〈1| = σ†

− are the usual Pauli matrices for a two-level atom,
and gk is atom-field coupling constant.

Although the form of the coupling constant gk depends on the gauge one choose, in non-relativistic quantum
field theories either the ep · A or the −µ · E formula is used. In this paper we chose the ep · A formulation and
under this formulation the coupling constant gk can be expressed as:

gk = |d|ωa

√
1

2h̄ε0ωkV
d ·E∗(r0) (2)

where |d| is the magnitude of the atomic dipole moment, d is the unit vector along the direction of the dipole
moment, V is the volume of the quantization space, and ε0 is the Coulomb constant.

By using Eq.(1) to derive the Heisenberg equations for our system in the rotating frame with the frequency
ωa and by eliminating the reservoir field operators, we get the generalized Bloch equations as follow:

σ̇−(t) = i
Ω
2

σz(t)e−i∆t +
∫ t

−∞
d t′G(t − t′)σz(t)σ−(t′) + n−(t) (3)

σ̇+(t) = −i
Ω
2

σz(t)ei∆t +
∫ t

−∞
d t′Gc(t − t′)σ+(t′)σz(t) + n+(t) (4)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t)− 2
∫ t

−∞
d t′[G(t − t′)σ+(t)σ−(t′) +Gc(t − t′)σ+(t′)σ−(t)] + nz(t)(5)

where ∆ ≡ ωL − ωa, and ∆k ≡ ωa − ωk. The two functions G(τ) and Gc(τ) are the memory functions of the
system and are defined as G(τ) ≡ ∑

k |gk|2ei∆kτΘ(τ), and Gc(τ) ≡
∑

k |gk|2e−i∆kτΘ(τ). Θ(τ) is the Heaviside
step function. Moreover, the three noise operators n−(t), n+(t), and nz(t) are defined as follows:

n−(t) = i
∑

k

gkei∆ktσz(t)ak(−∞) (6)

n+(t) = −i
∑

k

g∗ke−i∆kta†
k(−∞)σz(t) (7)

nz(t) = −2i
∑

k

gkei∆ktσ+(t)ak(−∞) + 2i
∑

k

g∗ke−i∆kta†
k(−∞)σ−(t) (8)

Supposing that the reservoir is in thermal equilibrium, then in the beginning the mean and correlation of the
reservoir field operators will be:

〈ak(−∞)〉R = 〈a†
k(−∞)〉R = 0 (9)

〈ak(−∞)ak′(−∞)〉R = 0 (10)

〈a†
k(−∞)a†

k′(−∞)〉R = 0 (11)

〈a†
k(−∞)ak′(−∞)〉R = n̄kδkk′ (12)

〈ak(−∞)a†
k′(−∞)〉R = (n̄k + 1)δkk′ (13)
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where n̄k obeys the Bose-Einstein distribution. Using the statistical characteristics of the reservoir field oper-
ators, it can be easily shown that the three noise operators n−(t), n+(t), and nz(t) are zero mean with their
correlation functions given below:

〈n−(t)〉R = 〈n+(t)〉R = 〈nz(t)〉R = 0 (14)
〈n−(t)n−(t′)〉R = 〈n+(t)n+(t′)〉R = 0 (15)

〈n−(t)n+(t′)〉R =
∑

k

|gk|2(n̄k + 1)ei∆k(t−t′)〈σz(t)σz(t′)〉 (16)

〈n+(t)n−(t′)〉R =
∑

k

|gk|2n̄ke−i∆k(t−t′)〈σz(t)σz(t′)〉 (17)

〈nz(t)nz(t′)〉R = 4
∑

k

|gk|2[(n̄k + 1)ei∆k(t−t′)〈σ+(t)σ−(t′)〉+ n̄ke−i∆k(t−t′)〈σ−(t)σ+(t′)〉] (18)

Eqs.(3-5) are the generalized optical Bloch equations, which are general equations and will serve as the starting
point for our further derivation.

3. MODELING OF PHOTONIC BANDGAP CRYSTALS

To model the the photon properties of photonic bandgap crystals, one will need to know the spectral distribution
of the photon states. In this paper we will use the anisotropic mode11 to describe the spectral density of
photon states near the photonic band edge. For three dimensional photonic bandgap crystals, if the wavevector
that corresponds to the band edge is ki

0, then the dispersion relation in the anisotropic model is described
by the following form: ωk = ωc + A|k − ki

0|2, where A is a model dependent constant and ωc is the band
edge frequency. Based on this dispersion relation, the corresponding density of states (DOS) is given by:
D(ω) = 1

A3/2

√
ω − ωcΘ(ω − ωc). The memory functions under this anisotropic model also can be derived:

G̃(ω) = β3/2 −i√
ωc +

√
ωc − ωa − ω

(19)

G̃c(ω) = β3/2 i√
ωc +

√
ωc − ωa + ω

(20)

where β3/2 = ω2
ad2

6h̄ε0πA3/2 η, and we have used the space average coupling strength η ≡ 3
8π

∫
dΩ|d · E|2 in the

derivation.

It can be easily checked that the Full-Width-Half-Maximum (FWHM) bandwidth of the memory functions
in Eq.(19) and Eq.(20) are 4ωc. In the optical domain, ωc ≈ 1014−15Hz, and the typical lifetime of the atom is
from 10−3 sec to 10−9 sec, which is much longer than the response time of the memory functions. Therefore
it should be possible to approximate the two-time operator products in Eqs.(3-5) by the equal time operator
products with the introduction of the Liouville operator expansion to be given below. For a two-level atom
system described by the Hamiltonian H, the time evolution of the atomic operators can be written in general
as:

σij(t) = e−iL(t−t′)σij(t′) =
∞∑

n=0

(−i(t − t′))n

n!
Lnσij(t′) (21)

where the Liouville operator L is defined as

Lnσij(t′) =
1
h̄n [· · · [σij(t′),H],H], · · · ,H] (22)

Since in this paper we will only consider the case in which the atom is with a longer lifetime and is under weak
pumping (small Rabi frequency), the time scale of the atomic evolution will be always longer than the time scale
of the memory functions. Therefore under such assumptions it should be legitimate to simply apply the zero-th
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order perturbation terms. We have also checked the results obtained by using the first order perturbation terms
and they only show difference when the pumping is extremely high.12 Under the zero-th order approximation,
σz(t) ≈ σz(t′), and σ±(t) ≈ σ±(t′) and the generalized optical Bloch equations Eqs.(3-5) can be reduced to:

σ̇−(t) = i
Ω
2

σz(t)e−i∆t −
∫ t

−∞
dt′G(t − t′)σ−(t′) + n−(t) (23)

σ̇+(t) = −i
Ω
2

σz(t)ei∆t −
∫ t

−∞
dt′Gc(t − t′)σ+(t′) + n+(t) (24)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t)−
∫ t

−∞
dt′[G(t − t′) +Gc(t − t′)](1 + σz(t′)) + nz(t) (25)

It is important to note that the equations are now in a linear form while the non-Markovian memory functions
are still kept. Since it is now a linear problem, by using Fourier transform the modified optical Bloch equations
become:

M(ω) · �X (ω) = �X0(ω) (26)

where

M(ω) =


 −i(ω +∆) + G̃(ω) 0 −iΩ

2

0 −i(ω −∆) + G̃c(ω) iΩ
2

−iΩ iΩ −iω + G̃(ω) + G̃c(ω)


 (27)

�X (ω) =

 σ̃−(ω +∆)

σ̃+(ω −∆)
σ̃z(ω)


 (28)

�X0(ω) =


 ñ−(ω +∆)

ñ+(ω −∆)
−2π[G̃(ω) + G̃c(ω)]δ(ω) + ñz(ω)


 (29)

where ñ−(ω), ñ+(ω), ñz(ω), G̃(ω), and G̃c(ω) are Fourier transforms of n−(t), n+(t), nz(t), G(t), and Gc(t),
respectively. The solutions of Eq.(26) are

σ̃−(ω +∆) =
(2g h+Ω2) ñ−(ω) + Ω2 ñ+(ω) + iΩg ñz(ω)− i2πΩg[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(30)

σ̃+(ω −∆) =
Ω2 ñ−(ω) + (2f h+Ω2) ñ+(ω)− iΩf ñz(ω) + i2πΩf [G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(31)

σ̃z(ω) =
2iΩg ñ−(ω)− 2iΩf ñ+(ω) + 2f g ñz(ω)− 4πf g[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(32)

where

f(ω) = −iω − i∆+ G̃(ω)
g(ω) = −iω + i∆+ G̃c(ω)
h(ω) = −iω + G̃(ω) + G̃c(ω)

Because the two-time correlation function of the atomic dipole is proportional to the first order correlation
function g(1)(τ), we can obtain the fluorescence spectrum by taking the Fourier transform of the first order
correlation function:

S(ω) =
∫ ∞

−∞
dτ g(1)(τ)eiωτ (33)

∝ 〈σ̃+(ω)σ̃−(−ω)〉R
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By using this equation the fluorescence spectrum can be determined from Eqs.(30-31)after applying the noise
correlation functions. It should be noted that here we cannot directly apply the quantum regression theorem
since it is invalid for non-Markovian process.

As a check, we first use our formulation to calculate the free space case. At free space, one can assume the
memory functions are delta functions since

∑
k |gk|2ei∆kt = Γδ(t) with Γ being the decay rate of the excited

atom. The noise correlation functions at zero temperature are also delta-function correlated (i.e., white noises).
Therefore, the fluorescence spectrum at steady state is given by:

〈σ̃+(ω)σ̃−(−ω)〉R =
π2Ω2(Γ2

4 +∆2)
Ω2

2 +∆2 + Γ2

4

δ(ω +∆) (34)

+
πΓΩ4(Ω2

2 + Γ2 + (ω +∆)2)

2(Ω2

2 +∆2 + Γ2

4 )[Γ
2(Ω2

2 +∆2 + Γ2

4 − 2(ω +∆)2)2 + (ω +∆)2(Ω2 +∆2 + 5
4Γ

2 − (ω +∆)2)2]

In the limit of strong on-resonance pumping (Ω� Γ, ∆ = 0), Eq.(34) can be reduced to:

〈σ̃+(ω)σ̃−(−ω)〉R = 2π{2π Γ2

4Ω2
δ(ω) +

3
16Γ

(ω +Ω)2 + 9
16Γ

2
+

1
4Γ

ω2 + 1
4Γ

2
+

3
16Γ

(ω − Ω)2 + 9
16Γ

2
} (35)

Then, the resonance fluorescence spectrum exhibits the Mollow triplets10 for white noise: three Lorentzian
profiles with peaks in the ratio 1 : 3 : 1, and widths of 3

2Γ, Γ, and
3
2Γ. This check provides a good support for

our new formulation.

We now continue to calculate the case for a photonic bandgap material. By using the density of states for
the photonic bandgap crystal, D(ω) = 1

A3/2

√
ω − ωcΘ(ω − ωc), we get the following noise correlation functions

in the frequency domain at the zero temperature:

〈ñ−(ω1)ñ+(−ω2)〉R = 4πβ3/2

√
ωa + ω1 − ωc

ωa + ω1
Θ(ω1 + ωa − ωc)δ(ω1 − ω2) (36)

〈ñz(ω1)ñz(−ω2)〉R = 4β3/2

√
ωa + ω1 − ωc

ωa + ω1
[2πδ(ω1 − ω2) + 〈σ̃z(ω1 − ω2)〉R]Θ(ω1 + ωa − ωc) (37)

〈ñz(ω1)ñ−(−ω2)〉R = 0 (38)

〈ñ−(ω1)ñz(−ω2)〉R = 4β3/2

√
ωa + ω1 − ωc

ωa + ω1
〈σ̃−(ω1 − ω2)〉RΘ(ω1 + ωa − ωc) (39)

〈ñz(ω1)ñ+(−ω2)〉R = 4β3/2

√
ωa + ω1 − ωc

ωa + ω1
〈σ̃+(ω1 − ω2)〉RΘ(ω1 + ωL +−ωc) (40)

〈ñ+(ω1)ñz(−ω2)〉R = 0 (41)

Please note that these noise correlation functions are not only of the color-noise type but also with the char-
acteristics of the photonic bandgap. After applying these noise correlation functions Eqs.(36-41) as well as
the memory functions in Eqs.(19-20), we can get the fluorescence spectrum under resonant pumping from the
two-time correlation function 〈σ+(t)σ−(t′)〉R given in Eq.(33):

〈σ̃+(ω)σ̃−(−ω)〉R = 4β3/2

√
ωa + ω − ωc

ωa + ω
· (42)

πΩ4 + iΩ3g(−ω)〈σ̃−(0)〉R − iΩ3f(ω)〈σ̃+(0)〉R +Ω2f(ω)g(−ω)(2π + 〈σ̃z(0)〉R)
{Ω2[f(ω) + g(ω)] + 2f(ω)g(ω)h(ω)}{Ω2[f(−ω) + g(−ω)] + 2f(−ω)g(−ω)h(−ω)}Θ(ω + ωa − ωc)

+
4π2Ω2f(0)g(0)(G̃(0) + G̃c(0))2

{Ω2[f(0) + g(0)] + 2f(0)g(0)h(0)}2
δ(ω)

Depends on the sign of ωc − ωL, Eq.(42) has following steady state solutions,
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Figure 1. Fluorescence spectrum with resonant pumping (ωa = ωL) when ωa � ωc; ωa = 110β, and ωc = 100β,
Ω = 0.5β.

for ωc − ωL ≥ 0:

〈σ̃−(0)〉R = 0 (43)
〈σ̃+(0)〉R = 0 (44)
〈σ̃z(0)〉R = 0 (45)

and for ωc − ωL < 0:

〈σ̃−(0)〉R =
i2πΩg(0)[G̃(0) + G̃c(0)]

Ω2[f(0) + g(0)] + 2f(0)g(0)h(0)
(46)

〈σ̃+(0)〉R =
−i2πΩf(0)[G̃(0) + G̃c(0)]

Ω2[f(0) + g(0)] + 2f(0)g(0)h(0)
(47)

〈σ̃z(0)〉R =
2πf(0)g(0)[G̃(0) + G̃c(0)]

Ω2[f(0) + g(0)] + 2f(0)g(0)h(0)
(48)

In Fig.(1), we plot the resonance fluorescence spectrum at a constant Rabi frequency when the atomic
transition frequency is above the bang edge. Here the line-width of each peak is proportional to β3/2. When
the atomic transition frequency is far away from the band edge (ωa � ωc), the normal resonance fluorescence
spectrum of Mollow triplets is obtained just as expected. As the atomic transition frequency moving toward the
band edge, asymmetrical Mollow triplets spectra appear. The peak in the lower frequency is suppressed due
to the bandgap as shown in Fig.(2). Its residual profile can be with a sharp edge as shown in the inset of the
figure. It should also be noted that the peak in the higher frequency is enhanced a lot as can be clearly seen in
the Figure. Eventually the peak in the lower frequency will be totally suppressed when the atomic transition
frequency is moving more toward the band edge. At this time the resonance fluorescence spectrum now only
has two peaks. This is of course due to the bandgap effect. It is interesting to see that now the enhancement
of the original middle frequency peak becomes larger then the original higher frequency peak. If the atomic
transition frequency is further below the band edge, then eventually only one peak is observed and its profile
will also depend on the wavelength offset as shown in Fig.(4(a)-(d)).
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Figure 2. Fluorescence spectrum with ωa near the band edge; ωa = 100.5β, ωc = 100β, and Ω = 0.5β; inset: enlarge
picture of low-frequency peak.

Figure 3. Fluorescence spectrum with ωa very close to ωc; ωa = 100.1β, ωc = 100β, and Ω = 0.5β.
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Figure 4. Fluorescence spectrum with ωa < ωc; (a): ωa = 99.999β; (b): ωa = 99.4β; (c): ωa = 99β; (d): ωa = 95β, and
ωc = 100β, Ω = 0.5β

4. CONCLUSIONS

In conclusion, we have developed a new formulation to calculate the resonance fluorescence spectrum when a
single atom is embedded in a photonic bandgap crystal with its transmission wavelength near the photonic band
edge. The new approach can overcome the difficulty caused by the non-Markovian nature of the problem due to
the non-uniform distribution of the photon states in the photonic bandgap crystal. This has been accomplished
by employing the zero-th order Liouville operator expansion to simplify the nonlinear Bloch equations into
linear ones and directly calculate the correlation functions of the atomic operators in the Fourier domain. The
calculated results have indicated that the resonance fluorescence spectrum near a photonic bandgap can exhibit
interesting behavior including the suppression and enhancement of the relative fluorescence peak amplitudes at
different wavelength offsets. It shall be very interesting to see if one can actually observe these new phenomena
experimentally.
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