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ON COUPLED INTEGRAL H-LIKE
EQUATIONS OF CHANDRASEKHAR*

JONQ JUANG

Abstract. A recently proposed "simple transport model" equation with an "angular shift"
(0 _< _< 1) leads to a coupled integral H-like equation of Chandrasekhar. Such coupled H-like

equations can be treated in terms of a one-parameter (kl, 0 < kl < 1) family. From there an a

priori bound can be obtained, which is independent of kl, c, and c (0 _< c <_ 1). Here c denotes the
average total number of particles emerging from a collision. Consequently, we conclude that positive
solutions of such coupled integral H-like equations exist. Moreover, we show that such equations have
a unique positive solution pair for c 0 or c and c 0 or c 1, and that the equations have
exactly two positive solution pairs for 0 c 1 and 0 <_ < 1 or c- 1 and c sufficiently close to 1.

Key words, integral equation, H-like functions of Chandrasekhar, a priori bound, existence
and multiplicity
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1. Introduction. In this work we study the coupled integral H-like equations
of the form

c jfl H2(#") d#"(la) HI (#) 1 + H(#)(# + c)
# + #,,

-c < # < i,

and

(lb)
c /_ H(#") d#" #’+ . +

< <

Here c denotes the average total number of particles emerging from a collision, which
.is assumed to be conservative, i.e., c <_ 1, and a denotes an "angular shift" with
0 <_ a _< 1. Equation (1) first appeared in [8], where it was derived from a "simple
transport model" (see, e.g., [5], [8]) using Chandrasekhar’s method of solution. For
c 0, equation (1) reduces to Chandrasekhar’s well-known integral equation. Various
methods (see, e.g., [1]-[4], [6], [7], [10], [11]) have been applied to such equations. In
summary, they have shown that Chandrasekhar’s integral equation has one solution
if c 1 and at most two solutions if c < 1.

In this article, we first show that an a priori bound, which is independent of c and
a, can be obtained by introducing a one-parameter (k, 0 < k < 1) family. Therefore,
the degree theory is applied to show the existence of positive solutions. Second, the
techniques used in [6], [10l are generalized to show that equation (1) has a unique
positive solution pair for c 0 or c 1 and a 0 or a 1, and that equation (1)
has exactly two positive solution pairs for 0 < c < 1 and 0 <_ a < 1 or c 1 and a

sufficiently close to 1. The above results are contained in 2.
We conclude this introductory section by noting that using the solutions obtained

by equation (1), the simple transport model can then be treated as a "pure" initial
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870 JONQ JUANG

value problem. More precisely, consider the following simple transport model:

(# + a) O(x, #) c/_ (x, #’) d#’, 0 < x < oc, [it[ < 1,+

(0, #) =f(#), 1 _> # > -a.

Then, for -1 _< It _< -a, we have (see equations (3) and (12) of [8]) that

c f It’ +______a_aaHl(It,)H2(_It)f(It,) dIt’.

Such an approach provides an interesting and effective alternative for solving the
simple transport model theorectically as well as numerically.

2. Main results.
Notation. Set

x H1 (It) dit, y H2 (it’) dit’,

a - ,
H, (it)H2

It q_ It,, d#,

and

b - g(It)H2(It")
It + It dIt.

Note that a + b xy. We begin by deriving some integral properties which a solution
of (1) must satisfy.

LEMMA 1. If H1 and H2 are solutions of (1), then the following holds:

(2) (1 x)(1 y) 1 c.

Proof. Multiplying equation (1) by and integrating equations (la)and (Xb)
over the ranges of It and It, respectively, we obtain

(3a) x -(l + a) + xy a

and

c(1-a)+xy-b.(3b) y

Adding up (3a) and (3b) would yield the assertion of Lemma 1.
Remark. For a 0, (2) reduces to some well-known expressions concerning the

properties of H equations (see, e.g., [3, pp. 106-107]).
For a : 1, we see immediately that if H and H2 are positive solutions of (1),

then there must exist two positive numbers kl and k2, where 0 < k, k2 <: 1 and
k q-k2 1, so that

.(4a) a kxy

and

(4b) b k2xy.
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COUPLED INTEGRAL H-LIKE CHANDRASEKHAR 871

It then follows from (2), (3), and (4) that the following holds:

1 (1 a) + klc-1- v/J1 (1 a) + kl]2 2k1(1 + a)c
(ha) x

2kl
:--hi +bl,

1 (1 + a) + k2c :1:v/J1 (1 + a) + k2cl2 2k(1 a)c
a2 -t- b2.(5b) y=

2k2

Since kl and k2 are to be treated as real parameters, necessary conditions for (5) to
be meaningful are that both [1 (1 a) + klc]2 2klc(1 + a) and [1 (1 + a) +
k2c]2 -2k2c(1- a) are nonnegative. However, these are so if 0 _< a _< 1 and 0 _< c _< 1.
To see this, we note that, for c 0, fl(kl) := [1 (1 a) + klC]2 2klC(1 + a)
has a minimim (1 + a)(1- a)(1- c), which is nonnegative whenever..0 <_ a <_ 1 and
0<c<l.

We denote by S the feasible region {(k,c,a) 0 < k < 1, 0 _< c < 1 and 0 _<
a < 1} for the solution of (1). The cross-section {(k,c,a) 0 < k < 1,0 <_ c <_
1 and a is fixed} of S will be denoted by S. The properties and signs of 1 x and
1-y will be examined in the next lemmas.

LEMMA 2. (i) 1- al + 51 >_ 0 and 1- al 51 <_ 0 for all (kl, e, a) E S.
(ii) 1-a2+b2>_0 and l a2 b2 <_ O for all (k2,c,a) E S.
(iii) For each fixed a, where 0 <_ a < 1, we have that 1- a + bl and 1- a2 + b2,

considered as functions from Sa --. R, can be continuously extended to .
(iv) Let c be sufficiently small, say 0 <_ c <_ . Then 1-a1+51 >_ 1/2 and

1- a2 + b2 >_ for all kl and k2, 0 < kl,k2 < l, and all a, O <_ a <_ l.

Proof. Since the computation leading to (i) and (ii) is similar, we shall only
illustrate (i). To see (i), it suffices to show that b2 >_ (1 hi)2, or equivalently

[1-- (1-- a) + klC] 2 c _ca >_0.2klc(l+a) [(2kl 1)(1 )_]2
Since the left-hand side of the inequality is equal to 4(1 kl)(kl)(1 -c), the assertion
of Lemma 2(i) thus follows. To prove (iii), we note that

al bl
(1 + a)c

.-’-
1 ( ) +1+ v/j1 (1 ) +1 (1 + )

(1
gl(kl,C,a)

and

(1
a2 b2 :--

( + ) + + v/J1 (1 + ) + .1 e( )
(1 a)c

g(k.,c,a)"

Since gl (kl, c, c) _>. 1/2 for all (kl, c, a) oO, we conclude that al bl, and hence
1 al -[- bl, can be continuously extended to S. Now, if a is fixed as assumed, then
g2(k,c,a) >_ 1/2(1 -a) > 0 for all (k2, c). Therefore, for each fixed a, 1 -a2 +b2 can
be continuously extended to S.

(1--t.-)aTo prove (iv), we see that if 0 <_ c , then al -bl 91(kx,c,a) <- 2c(1 + a) _< 3,

for all kl and. a. Thus, 1 -al + bl _> 1/2 as asserted. Similarly, we have

a2 b2
(1 a)c < c < c <1

g2(k2, c,a) -,1-(1+) 1-c- 7"

Therefore, 1 a2 + b2 >_ as asserted.
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872 JONQ JUAN(]

Remarks. The function 1- a / bl, as indicated in the proof, can be continuously
extended to S. However, the same assertion fails for 1 a2 + b2. To see this, we note
that if a 1, then a2 -b2 0 for all k2 and c. However, if c 1 then a2 -b2 1 for
any a( 1) and k2 _< 1/2(1- a).

In view of (2), the case c-- 1 shall be further studied.
LEMMA 3. (i) 1 al + b 0 if and only if 1/2(1 + a) > k and c 1. Moreover,

1-a-b -O if and only if 1/2(l +a) < kl andc-1.
(ii) 1-a2+b2 0 if and only if kl > 1/2(l+a) and c 1. Furthermore,

l : a2 b2 O if and only if k < 1/2(l + a) and c l.
2kl-l-a Moreover, ifa) kl and 1, then 1 + b 2(iii) If (1 + < c a

1(1 + a) > kx and c 1 then 1- a- bl 2kl-1-a
2 2k

1+-21 Furthermore, if(iv) Ilk1 < 1/2(l+a) andc- 1, then 1-a2+b2- 2(-k)
l+cz-2kl.k > 1/2(l + a) and c -1, then l a2 b2 2(’)

Proof. The necessary parts of Lemma 3(i) follow from (2) and some simple alge-
bra. The remainder of the proof is trivial and thus omitted.

Some simple algebra would yield the following equivalent formulation of (1).
LEMMA 4. The functions H and H2 satisfy, respectively,

(6a)

and

C L #[HI (#)]-! (1 y) +
tt + tt" H2(#") d#"

(6b) [H2(#’)]- (1 x)+ #,,HI(#")
if and only ifH and H2 satisfy (la) and (lb), respectively.

In view of (2), we see that if H and H2 are solutions of (1), then either

(7a) 1- x _> 0 and 1-y _> 0

or

(Tb) 1- x < 0 and 1 -y < 0.

Let C[-a, 1] x C[a, 1] be the Banach space of pairs of bounded real-valued con-
tinuous functions with sup norm. That is, if (h, h2) E C[-a, 1] C[a, 1], then

{ max ,h2(/’),:=lIh2 ]l}-(h h2)II: max max h,()I’=II h, II,<<
In preparation for the use of a bomotopy invariance argument define, for (K, K2) 6

oil,

(S) ,((,)) ( -) + 5 ] + ,, (,,, d,",

cJ_ #’+a 1
d#’,(8b) 2,c(Kl(tt’)) (1 x) +

#’ + #" KI(#")

(8c) bc(K1 (#), K2(#’)) (bl,c(K2(#))), b2,c(K (#’)).
An a priori bound, which is independent of k and c, is obtained in the following

lemma.

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



COUPLED INTEGRAL H-LIKE CHANDRASEKHAR 873

LEMMA 5. Let K1 and K2 be any positive continuous solutions of (K1, K2)
c(K1,K2) satisfying (Ta). Then there is an m > 0 (independent of c and c) such
that K(#) >_ m and K2(#’) >_ m for all (#, #’) E [-c, 1] [c, 1], all 0

_
a

_
1, and

allO<c<l.
Proof. Clearly, H and H2 are positive solutions of (1). Consequently,

1

_
K1 (#) and 1 _> K2(#’) for all [#, #’) E I-a, 1] [c, 1]. Therefore,

and

C jfaKI(#) >_ 1-y+ #"+ 1 d#" 1 y + gl (c, a)

rz #,,,.+ a d#" "= 1- x + g.(c, a).K.(#’)>_I-x+
-a #,,+1

Since 1-y _> 0 and 1-x >_ 0, there must exist positive constants k and k, kl+k 1,
such that 1-x 1-a+b and 1-y 1-a:+b, whereal-b anda-b

for0 < c < Since forare defined as in (5). Now, via Lemma 2(iv), 1- x _> .
fixed c, g:(c, a) is an increasing function (in a) we have that fl, ,,+ d#" > 1-n2"+1
Consequently,

K2 >_ min , (1 n2) (1 n2)"= m2

for all (#, #’) [-a, 1] x In, 1], all 0 _< c _< 1, and all 0 <_ a _< 1. On the other hand,

c f 1 c(1 a)
u J. <

and so 1 y > 1 c(1 -,a) Hence, if 0 < c < m2 or a > 1 m2 then 1 y > .2m2
However, if 1 >_ c >_ m2 and 0 _< a _< 1 m2 then

m f F’-(1- m2) d#" := rh > 0.gl(C,O) > Y Jl-m. #" + I

Consequently, K(#) >_ min{, rh} := m as asserted. The assertion of the lemma
now follows by choosing rn rain{ml, m2 }.

Remark. The lower bound for K2 is not sharp. A better bound can be obtained.
s Thus,To see this, let c be such that 0 < c < 2 then a bl < 2c(1 + a) <9--n2

1 a + b > 1--tn2 for 0 < c < 2 Hence,9--n2 9--n2"

c {1-n2 i-gn2} 1-n2
K2(#’)kl-x+(1-gn2)>_min 9-tn2’ 9-gn2 9-tn2"

THEOREM 1. For each a and c, where 0 <_ a < 1 and 0 <_ c <_ 1, c has a fixed
point satisfying (Ta).

Proof. Note, via Lemma 2(iii), that there exists a positive constant rh such that

max{ max (1-a +bl), max (1 a2 + b2)}
_

rh.
k ,, e 2, k ,c, e

Choose a min(1/2 m) and b + h + 1, where m is chosen as in Lemma 5.
Set D {(K, K2) C[-a, 1] C[a,] a < K(), K(p’) < b for all (, ’)
[-, 1] In, 1]}. Clearly, D is a nonempty bounded open subset of C[-a, 11 x C[a, 1l,
and c D --, C[-a, 1] x C[c, 1] is compact. Next, we show that if (K1, K.)
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874 JONQ JUANG

c(K1, K2) for (K1, K2) E D, then (K, K2) E D. To prove this note first that from
the a priori bound for (g, K2), we see that g(#), K2(#’) > m > a for all #, #’.
Second,

c(1II (K1, K2) II  -II c(K1, K2) <_ rh +
2m

< b.

Thus u D as asserted. The preparations for the use of degree are now complete.
Consider the homotopy I- c. By homotopy invariance (see, e.g., Theorem 13.6 of
[9]), since (1,1) e D,

d(I c, (0, 0), D) d(I o, (0, 0), D) d(I, (1, 1), D) 1.

Therefore, the existence of equation (1) now follows from the Leray-Schauder fixed
point theorem.

To show the uniqueness of equation (1) satisfying (7a), we need the following
lemma.

LEMMA 6. Equation (1) has minimal positive solutions Hl,min(#) and H2,min (#’)
in the following sense if HI (it) and H2(tt’) are positive solutions of (1), then
Hl,min() <_ HI(#) and H2,min(#t) <_ H2(#t) for all #, #’.

Proof. Consider the two iterates {Hp) } and {Hp) } defined as follows:

(9a) H)(#) 1,

(9b) H2(1) (#’) 1 for all #,

(9c)

and

(9d)

H(2p)Hp) o) (") d#",Hp+) (#) 1 + -c (#)(# +
#+ #,,

c H(p // Hp)

H2(+1) (#’) 1 + (#’)(#’ a)
a -7 _-7 d#".

Clearly, for each # and #’, {H}P)(#)} and {H2(P)(#’)} are both increasing sequences.
It follows from Theorem 1 that equation (1) has positive solutions, say H(#) and
H2(#’). Since H(#) >_ 1 and H2(#’) >_ 1 for all #, #’, an easy induction would yield
H}p) (#) _< H(#) and H(2p) (#’) _< H (#’) for all #, #’ and all p. Hence, the sequences

{H})(#)} and {HP)(#’)}, respectively, converge upward to two limits, say/1(#) and
/2(#’). It then follows from the monotone convergence theorem that/1 and/2 solve
equation (1), and that H(#) _< H (#) and H2(#’) _< H2(#’) for all #, #’. The proof
of the lemma is thus complete.

THEOREM 2. For c 0 or a 1, equation (1) has unique solutions. Further-
more, for 0 < c < 1, equation (1) his unique solutions HI and H2 satisfying (7a).

Proof. The uniqueness for c 0 or a 1 is trivial. For 0 < c < 1, and 1 x > 0
and 1-y > 0, we have that

fl Hl,min(#)d# > 1 x > 0,
c

1--Xmin :-- 1--
a-a

1- Ymin :’-- 1-- S2,min(#’)d#’ >_ 1-y > O,
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COUPLED INTEGRAL H-LIKE CHANDRASEKHAR 875

and

[H(#,)]_
1 c c/ #" + c

d#"+
#,,
H (#")

1--C

1 Ymin c/_ #" + a
d#"__

[H2,min(’)] -1

Therefore, H2 H2,min, and hence HI Hl,min, and the lemma is proved.
Our final result is concerned with the number of positive solutions for equation

(1). The techniques for proving this result are motivated by those of Leggett [10]. To
this end, we first prove the following lemma.

LEMMA 7. Let 0 < c < 1 and 0 <_ < 1, and let (HI, H2) and (HI, H2) be
positive solutions pairs of equation (1) satisfying (7a) and (7b), respectively. Then the
following holds:

(i) There exist, respectively, two positive constants kl and k2, where 0 < kl < 1+
and 0 < k2 < -a such that

c f H1 (#")(10a) _, 1- kl(#"+ ) d#" 1

and

c/1 H2(#")(10b)
,a 1 k2(#" a) d#" 1.

Furthermore, such choices of k and k2 are unique.
(ii) There exist, respectively, two positive constants kl and 2, where 0 < 1 < l+a

and 0 < fc2 < Y-5, such that

c l( 0c) + + d#" 1

and

L1 /2 (/") d#"(10d)
c 1 -- 1 (’! o)

1

Moreover, such choices of [Cl and 2 are unique.
Proof. Since the analysis leading to (10a), (10b), (10c), and (10d) is similar, we

illustrate only (10b) and (10c). Define the function T’(0, 1_) ---+ R by

c fl H2 (#")T(k) - 1 k(#" a) d#".

Then

lim T(k)
c ji (I- a)H2(#") d#",(11)

k-.( _---z, 1-#"

since (1 k(#"- a))-I increases monotonically with k, 0 < k < l_-a. Note that the

improper integral in (11) diverges to +c. Since T(0) f H2(#")d#" < 1, and
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876 JONQ JUANG

since T(k) is strictly increasing with T() +oc, there exists a unique k2 6 (0,)
for which (10b) holds. Now suppose that /l and /2 satisfy (1) and (7b). Then

f_/l (/’) d#" > 1, and

d#"
c // 1- a

(#" d#"l +

1- [/2(1)1-1 < 1.

Therefore, there exists a unique 2, 0 < 2 < _-, such that (10c) holds.
THEOREM 3. Equation (1) has exactly two positive solutions if 0 < c < 1 and

0<a<l.
Proof. Let H and H2 be positive solutions of (1) satisfying (Ta). Define

(12a) /1 (#)
1 + k2# + k2a

Hi (#)
1 kl#-

(12b) /2(#") 1 + kl#" klO H2(#").
1 k2#’r + k2o

Here kl and k2 are chosen as in Lemma 7. Now, using (10b), we find

2 # + #"
2(#")d#"

c j21 (# + a)(1 + kl#" kick) d#"(# + #")(1 k2/’ + k2a)H2(#")

1 + k2# + k2a # + #,,H2

1 + k2# + k2a 1 k2#" + k2a

1 1 (kl + k2)(# + a)
Hi(#) + l+k#+ko

=1

A similar computation would yield that

c// #’ a
d#"

1

’ +/,
(") i

(/).

That is,/l and/2 satisfy equation (1). Hence, /1 and/2 must satisfy either (7a)
or (75). Since H1 and H2 are the unique positive solutions of (1) satisfying (7a), and
since/1 (#) > H1 (#),/2(#’) > H2(#’) for almost all #, #’,./l and/2 must satisfy
(7b). Thus, we have shown that equation (1) has at least two positive solutions when
c and a are as assumed. It remains to show that such an equation has at most two
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COUPLED INTEGRAL H-LIKE CHANDRASEKHAR 877

solutions. To this end, we suppose that H1 and H2 are positive solutions satisfying
(1) and (75). Define

(13a) Hi(#)- l-k1#_ -kl_1
1 + k2# +

and

(13b) H2(#")
1 k2#"_ + k2c= 2(#").
1 + kla" klC

Here kl and k2 are chosen as in Lemma 7. Now, using (10c), we obtain

Hi(#n d#"= c/_a (#’(#’--77ii-la)(1 -7t_1#"--g_T/.7I_IO)-G)/1 (#n) d#"
1+ 1#’- 1 ()_ #’-O (#" d#"1 2#’ +2 -a #, + #,,1

1+ ;1’- 10 I1 1]_1 2#’ + =oe /2 (#’) 1 k2#’ + k2o

1

H2(#’)"
Similarly, we obtain that

c fl # + c
d#"

1

# + #,, H2 (#") 1
Hi(#)"

Therefore, H1 and H2 satisfy equation (1). It follows from (13) and (10c), (10d)
that fl H1 (#)d# < 1 and fl H2(#’)d#’ < 1; i.e., H1 and H2 satisfy (7a). Since
the solutions of (1) satisfying (Ta) are unique, we conclude that the solutions of (1)
satisfying (7b) are also unique, and the theorem is proved.

THEOREM 4. Let c 1 and let c be sufficiently close to 1. Then equation (1)
has exactly two positive solutions.

Proof. Let H1 and H2 be solutions of equation (1) satisfying (7a). It follows from
Lemma 5 that y must approach zero as c approaches 1 from the left. Hence if c 1
and is chosen to be sufficiently close to 1, then x 1 and y < 1. Define H1 and H2
as follows:

1(#) (1 + k2# + k2c)Hl(#)
and

H=(#")2(#")
1 k2#" + k2’

where k2 is uniquely satisfied by (10b). Using a procedure similar to the proof of
Theorem 3, it follows that H1 and H2 are positive solutions of (1) satisfying (Tb).
Since H1 : H1 and H2 : H2, it remains to show that such an equation has at most
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two positive solutions.
(Tb). Then either

(1) :=

Suppose rl and /2 are positive solutions of (1) satisfying

/1 (#)d# > 1 and :-- [
or

(14b) 1 and > 1,

or

/2 (#’)d#’ 1,

(14c) 1 and 1.

If (14c) held, then H1 and H2 would also satisfy (Ta), and hence 9 0 as a --, 1, a
contradication. Thus, (14c) should be ruled out. If (14b) were the case, then H and
H2, defined as in (13a) and (13b), respectively, with kl 0 and k2 satisfying (10c),
were positive solutions of (1) satisfying (7a). Since H1 <_ H and H = H, we see
immediately tha x < 1 and y- 1. "This is not possible. Therefore, (14a) must hold.

Define H and H2 as in (13a) and (13b), respectively, with k2 0 and k satisfying
(10d). Then such H and H2 are the positive solutions of (1) satisfying (Ta). Now, if
we can show that the positive solutions of equation (1) satisfying (Ta) are unique, then
the proof of the theorem will be complete. To this end, we note, as observed in the
first paragraph of the proof, that Xmin must be equal to 1. Therefore, fla(H (#)
Hl,min()) d# 0, and so H1 Hl,min and H2 ---- H2,min. Thus, the theorem is
proved.

We conclude this paper with the following remarks.
Remarks. 1. We may conclude, via the proofs of Theorems 3 and 4, that for

c 1, if x and y are not both equal to 1, then equation (1) admits exactly two
positive solutions.

2. On the other hand, if x y 1, then equation (1) has unique positive
solutions. To see this, we note that either Xmin := c Ul,min()d# or Ymin "--

f_a H2,min (#P)d# is equal to 1. We assume, without loss of generality, that Ymin 1.
Thus,

0 H2,min (#’) H2 (#’) d#’.

Since H2,min- H2 is a continuous nonpositive function, we find that H2,min =-- H2, and
hence H,min --- H. Note that for a 0 and c 1, we have x y 1.

3. The case where c is not a constant can be easily generalized.
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comments.
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