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Abstract 

In this paper, we determine the largest number of maximal independent sets among all con- 
nected graphs of order n, which contain at most one cycle. We also characterize those extremal 
graphs achieving this maximum value. As a consequence, the corresponding results for graphs 
with at most one cycle but not necessarily connected are also given. 
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1. Introduction 

In a graph G = (V,E), an independent set is a subset S of V such that no two 

vertices in S are adjacent. A maximal independent set is an independent set that is 

not a proper subset of any other independent set. The number of maximal independent 

sets of G is denoted by mi(G). 

The problem of determining the maximum value of mi(G) in a general graph of 

order n and those graphs achieving the maximum value was proposed by Erdiis and 

Moser, and solved by Moon and Moser [7]. The problem was independently solved 

by Fiiredi [l] and Griggs et al. [3] for connected graphs; for triangle-free graphs by 

Hujter and Tuza [4]; for bipartite graphs by Liu [6]; for trees independently by Wilf [9], 

Sagan [8], Griggs and Grinstead [2], and Jou [5]. Sagan’s solution for trees uses an 

induction from a vertex whose neighbors are all leaves except possibly one. Jou’s 

method is to get the solution for forests and then use this to prove the results for trees. 

The main purpose of this paper is to study the problem for connected graphs with 

at most one cycle. We first give alternative proofs for the solutions to the problem 

in trees and forests by a method combining the ideas in Sagan’s and Jou’s papers. 

The idea then is used to solve the problem for connected graphs with at most one 
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Fig. 1. Batons. 

cycle. The corresponding results for graphs with at most one cycle, but not necessarily 

connected, are also obtained. 

2. Trees and forests 

This section gives an alternative proof for the solution to the problem of determining 

the maximum value t(n) (respectively, f(n)) of mi(G) for a tree (respectively, forest) 

of order n and those trees (respectively, forests) achieving this maximum value. 

The neighborhood N(x) of a vertex x is the set of vertices adjacent to x and the 

closed neighborhood N[x] is {x} UN(x). A vertex x is an isolated vertex if N(x) = 4 

and a leaf if IN(x)] = 1. For a graph G = (V,E) and S C V, the deletion of S from 

G is the graph G -S obtained from G by removing all vertices in S and all edges 

incident to these vertices. We use C,, to denote the cycle with n vertices. 

Lemma 1 (Hujter and Tuza [4] and Jou [5]). Zf G is a graph in which x is adjacent 

to exactly one vertex y, then mi(G) = mi(G - N[x]) + mi(G - N[y]). 

Lemma 2 (Ftiredi [l]). rfn 2 6, then mi(C,)=mi(C,_~)+mi(C,_~). 

Lemma 3 (Hujter and Tuza [4] and Jou [5]). Zf G is the disjoint union of two graphs 

G1 and Gz, then mi( G) = mi(G1 )mi(Gz). 

For simplicity, let Y = 4. For i, j > 0, define a baton B(i, j) as follows. Start with 

a basic path P with i vertices and attach j paths of length two to endpoints of P; see 
Fig. 1. Note that B(i, j) is a tree with i + 2j vertices. 

Lemma 4. For any j > 0, mi(B( 1, j)) = 2j, mi(B(2, j)) = 2j + 1 and mi(B(4,j)) = 

2j+r + 1. 

Proof. The lemma follows from repeatedly applying Lemma 1 to the leaves of the 

batons. 0 
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We now give an alternative proof for the solution to the problem in trees. 

Theorem 5 (Wilf [9], Griggs and Grinstead [2], Sagan [8] and Jou [5]). rf T is a tree 

with n 2 1 vertices, then mi(T) 6 t(n), where 

r ‘-’ + 1 
t(n) = 

if n is even, 

r n-l if n is odd. 

Furthermore, mi(T) = t(n) if and only if T 2 T(n), where 

T(n) = 
B(2,y) or B(4, q) ifn is even, 

B(l, 9) if n is odd. 

Proof. First, note that mi(T(n)) = t(n) by Lemma 4. We shall prove the theorem by 

induction on n. The theorem is obviously true for n < 3. Assume that it is true for all 

n’ <n. Suppose T is a tree of order n B 4. Choose an end vertex x of a longest path 

in T. Then x is a vertex adjacent to exactly one vertex y such that T - N[x] 2 T’ U iK1 
for some i 3 0 and a tree T’ with n - 2 - i vertices; and T - N[y] 2 T” UjK, U kK2 

for some j, k > 0 and a tree T” with n - 3 - i - j - 2k vertices. (We may assume 

that T” = 0 or T” contains at least 3 vertices.) Note that t(m) < r”-’ for m # 2. By 

Lemmas 1 and 3 and the induction hypothesis, 

mi(T) = mi(T-N[x])+mi(T-N[y]) 

< t(n - 2 - i) + t(n - 3 - i -j - 2k)2” 

d 
i 

t(n - 2 - i) + r2k if T” = 8, i.e., 2k = n - 3 - i -j, 

t(n - 2 - i) + r n-3-I-j-2k-lr2k otherwise 

6 
i 

t(n-2)+r”-3 if n=2k+3, 

t(n - 2) + rnp4 otherwise 

d t(n). 

Moreover, the equalities holding imply that either n = 2k + 3 or n is even with i = j = 0, 

T-N[x]rT(n-2), and T-N[y]rB(l, v) U kK2 by the induction hypothesis. 

For the case of n =2k + 3, T rB(l, K$) = T(n). For the later case, No(y) = {x,z} 

and z is an endpoint of the basic path of the baton T-N[x] g T(n - 2) =B(2, ?$) 

or B(4, F), except possibly when T-N[x] ?B(2,1)=B(4,O)=P4. For the excep- 

tional case, we can view P4 as a suitable B(2,l) or B(4,O); and still assume that z 

is an endpoint of the basic path of the baton. Thus, T E+ B(2, F) or B(4, y ), i.e., 

T= T(n). Cl 

Theorem 6 (Jou [5]). Zf F is a forest of n 2 1 vertices, then mi(F) d f(n), where 
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n is even n is odd 

Fig. 2. H(n). 

Furthermore, mi(F) = f(n) if and onZy if F = F(n), where 

F(n) = 
;K2 if n is even, 

B(L +)uKf s 2 orsomes withO<s<q ifnisodd. 

Proof. First of all, mi(F(n)) = f(n) by Lemmas 3 and 4. Suppose F = sK2 U (Ur=, Ti), 
where s > 0, m 2 0, and each I;: is a tree with ni # 2 vertices. Note that t(n) < r”-’ 

when n # 2. By Lemma 3 and Theorem 5, 

mi(F) < 2’ fi t(q) < r2’ fir”‘-’ = rnPm 6 f(n). 
i=l i=l 

Furthermore, if the equalities hold, then either m = 0 or m = 1 with nr odd and t(nl ) = 

r”l-‘. For the former case, F 2 ;K2 = F(n). For the later case, by Theorem 5, Tr Z 

B(l, 9) and so F ZF(n). Cl 

3. Graphs with at most one cycle 

This section gives solutions to the problem of determining the maximum value h(n) 
(respectively, g(n)) of mi(G) in a connected graph (respectively, general graph) of 

order n that contains at most one cycle. 
Define the graph H(n) of order n as follows, see Fig. 2. For even n, H(n) is the 

graph obtained from B( 1, y) by adding a KS and a new edge joining a vertex of 
K3 and the only vertex in the basic path of B( 1, 9). For odd n, H(n) is the graph 

obtained from B( 1, 9) by adding a KS with one vertex identified with the only vertex 
in the basic path of B( 1, 9 ). 

Theorem 7. If G is a connected graph with n 3 3 vertices such that G contains at 
most one cycle, then mi(G) < h(n), where 

3rnP4 
h(n) = 

if n is even, 

r”-’ + 1 if n is odd. 

Furthermore, for n > 6, mi(G) = h(n) if and only if G g H(n). 
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Proof. By repeatedly applying Lemma 1, we have mi(H(n)) = h(n). We shall prove 

the theorem by induction on n. The theorem is clearly true for 3 < n < 5. Assume 

that it is true for all n’ <n. Suppose G is a connected graph with H > 6 vertices such 

that G contains at most one cycle. If G is the cycle C,,, then, by Lemma 2 and the 

induction hypothesis, 

mi(G) = mi(C,) = mi(C,_2) + mi(C,_s) 

i 

5 if n = 6, 

6 h(n-2)+h(n-3) if n > 7 

1 5 if n = 6, 

d 3T6 + (rnm4 + 1) if n 2 8 is even, 

(T3 + 1) + 3rnp7 if n 2 7 is odd 

= 

{ 

5 if n = 6, 

5rnp6 + 1 if n > 8 is even, 

7rnM7 + 1 if n 3 7 is odd 

< h(n). 

Now, assume that G y C,. Either G contains a unique cycle C, or else G is a tree 

in which a leaf C is chosen. Choose a vertex x which is farthest to C. Then x is a leaf 

adjacent to y such that G - N[x] is the union of i 3 0 isolated vertices and a connected 

graph G’ with n - 2 - i vertices. Note that the connected subgraph G’ contains at most 

one cycle. By the induction hypothesis, mi(G’) < h(n - 2 - i). Thus, by Lemma 3, 

mi(G - N[x]) = mi(iKi ) mi(G’) d h(n - 2 - i) 6 h(n - 2). 

Also, mi(G - N[x]) = h(n - 2) implies that i = 0 and G - N[x] g H(n - 2) by the in- 

duction hypothesis. On the other hand, G - N[y] has at most n - 3 - i vertices, which 

is either a forest or the union of a forest F and a connected subgraph G” with t ver- 

tices, 3 < t 6 n - 3 - i, that contains exactly one cycle. So mi(F) 6 f(n - 3 - i - t) 

by Theorem 6 and mi(G”) d h(t) by the induction hypothesis. Thus, 

mi(G - N[yl) < 
f(n - 3 -i) if G - N[y] is a forest, 

f(n - 3 -i - t)h(t) if G - N[y] is not a forest 

max{rnP4, r”-4-‘(3r1-4), rn--3-t(r’-’ + 1)) if n is even, 
< 

max{rnP3, rn-3--t(3r’-4), r”-4--r(r’-’ + 1)) if n is odd 

3rnw6 if n is even, 
d 

r n-3 if n is odd. 
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Also, the equalities holding imply that ]G - N[y] I= n - 3 and 

G-N[y]Z 
KS U yK2 if n is even, 

?Kz if n is odd, 

by the induction hypothesis and Theorem 6. So, by Lemma 1, 

mi(G) = mi(G-N[x])+mi(G-N[y]) 

if n is even, 
6 

{ 

h(n - 2) + 3 . F6 

h(n - 2) + Y”-3 if n is odd 

3 . F6 + 3. rnp6 if n is even, 

= i (rnP3 + 1) + P-’ if n is odd 

= h(n). 

And the equalities holding imply that G EH(n), since G - N[x] gHH(n - 2) and 

G - N[y] is as above. 0 

Theorem 8. Zf G is a graph with n >, 1 vertices such that G contains at most one 

cycle, then mi(G) < g(n), where if n is even, 

if n is odd. 

Furthermore, mi(G) = g(n) if and only if G 2 G(n), where 

G(n) = 
;K2 if n is even, 

K3 u 9K2 if n is odd. 

Proof. By Lemma 3, it is clear that mi(G(n)) = g(n). For the case when G is a forest, 

by Theorem 6, mi(G) < f(n) < g(n); and the equalities holding implies that n is even 

and GS F(n) = G(n). For the case when G is connected with exactly one cycle, by 

Theorem 7, mi(G) < h(n) < g(n); and the equalities holding implies that n = 3 and 

G NK3 = G(3). So we may suppose that G=F UH, where F is a forest of order nl 

and H is a connected graph of order n2 with exactly one cycle. By Lemma 3 and the 

above two cases, 

mi(G) = mi(F)mi(H) < f(nl)h(nz) < 
r”‘g(n2) = s(n) if n1 is even, 

r”‘-‘g(nz)<g(n) if nl is odd. 

Furthermore, if the equalities hold, then n1 is even with mi(F) =f(nl) =g(nl) 
and mi(H)= h(nz)=g(ng). By the first two cases, FE SK2 and H NK3, i.e., 

G”G(n). 0 
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