Rendering complex scenes based on spatial subdivision,
object-based depth mesh, and occlusion culling

Chih-Chun Chen, Bo-Yin Lee, Jung-Hong Chuang, Wei-Wen Feng, Ting Chiou”
Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan

ABSTRACT

In this paper, we combine geometry-based and image-based rendering techniques to develop a VR navigation system
that aims to have efficiency relatively independent of the scene complexity. The system has two stages. In the pre-
processing stage, the x-y plane of a 3D scene is partitioned into equal-sized hexagonal navigation cells. Then for each
navigation cell, we associate each object outside the cell with either a LOD mesh or an object-based depth mesh
depending on its self-occlusion error. The object with the error larger than a user-specified threshold is associated with
a LOD mesh of an appropriate resolution. For the object with error smaller than the threshold, we associated it with a
depth mesh that is reduced from its original mesh based on the silhouette and depth information of its image rendered
from the cell center. All LOD meshes are then culled by a conservative back-face computation, and then all LOD and
depth meshes are culled by a conservative visibility computation, all aim to remove polygons that are invisible from any
point inside the cell. At run-time stage, LOD meshes are rendered normally while depth meshes are rendered by texture
mapping with their cached images. Techniques for run-time back-face culling and occlusion culling can be easily
included. Our experimental results have depicted fast frame rates for complex environments with an acceptable quality-
loss.

Keywords: Virtual Reality, Visibility, Image Caching, Image-Based Rendering, Hybrid Rendering
1. INTRODUCTION

In order to achieve an immersive visual effect during the VR navigation, rendering with photo-realistic scene images
and high frame rate has been our ultimate goal. However, in the traditional geometry-based rendering, complex scenes
always require numerous polygons, and, therefore, can be rendered at an unacceptably low frame rate even using a
state-of-the-art hardware. Many techniques have been proposed in last decades on reducing the polygon count while
preserving the visual realism of complex scenes, including visibility culling, level-of-detail (LOD) modeling, and more
recently, image-based rendering. Although image-based rendering scheme is capable of rendering complex scenes with
photo-realistic images in the time complexity that is independent of the scene complexity, it has been suffered from the
limited viewing degree of freedom and some losses of image quality due to gaps and holes. Hybrid rendering that
combines geometry- and image-based technique has become a viable alternative.

To take the advantages of both geometry- and image-based rendering techniques, we introduce a hybrid rendering
scheme that aims to render a complex scene in a constant and high frame rate with only a little or an acceptable quality
loss. The hybrid scheme consists of two stages: pre-processing stage and run-time stage. In the pre-processing stage, to
exploit the spatial coherence, the x-y plane of a 3D scene is partitioned into equal-sized hexagonal navigation cells. To
reduce hole problem due to self-occluding, each object outside a cell is represented either by a LOD mesh or by a depth
mesh depending on its approximate self-occluding error. The object is represented by a LOD mesh of an appropriate
resolution if its self-occluding error is over a user-specified tolerance; otherwise by an object-based depth mesh. The
object-based depth mesh is derived from the object’s original mesh based on the silhouette and depth variation on the
rendered image viewed from the cell center. The resulting depth mesh is a view-dependent LOD model of the object’s
visible part that the resolution becomes coarser when the object is at farther distance while the silhouette is well
preserved. In consequence, for each navigation cell, we have a set of LOD meshes and depth meshes (together with
their cached images) for objects outside the cell. Since viewpoint is constrained in a particular cell during the navigation,

* Further author information:
All: Email: {chihchun, bylee, jhchuang, fengww, tchiou}@csie.nctu.edu.tw, address: Department of Computer Science and
Information Engineering National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30050, ROC.

Third International Conference on Virtual Reality and Its Application in Industry,
Zhigeng Pan, Jiaoying Shi, Editors, Proceedings of SPIE Vol. 4756 (2003)
© 2003 SPIE - 0277-786X/03/$15.00

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

we can further remove back-facing polygons of LOD meshes and occluded polygons for both types of meshes for any
viewpoint inside the cell. This is accomplished by the proposed conservative back-facing culling and a conservative
occlusion culling.

At the run-time stage, LOD meshes and depth meshes associated with the navigation cell where current view-point
lies are rendered. The depth meshes are texture mapped with the cached images by the proposed hardware accelerated
projective-alike texture mapping which generates texture coordinates automatically. Run-time occlusion culling for the
entire scene and back-facing culling for the objects inside the cell can be performed to further reduce the polygon count.
To minimize the impact of the data loading while navigating across the cell boundary, a pre-fetching scheme is also
developed to amortize the loading time to several previous frames.

2. RELATED WORK

View frustum culling that prevents the objects outside the view volume from being sent to the rendering pipeline is the
basic visibility culling. Furthermore, back-face culling is also commonly used. A sub-linear algorithm'® has been
proposed for culling back-facing polygons, but it suffers from the requirements of model partitioning. Zhang and et
al."” improved this by introducing normal mask which reduces the per polygon back-face test to only one logical AND
operation.

Several run-time methods have been proposed to further cull out polygons that are occluded by others. There
include occlusion culling using hierarchical Z-buffer®, and hierarchical occlusion map'®. However, there are inevitable
overheads doing occlusion culling at run-time. Cohen-Or and et al.? proposed a preprocessing algorithm for regional
occlusion culling, but its performance depends heavily on a single strong occluder. Durand and et al’ proposed
extended projection operations to handle occluder fusion of multiple occluders. It subdivides a scene into volumetric
cell, and computes potential visibility set (PVS) for each cell.

With those visibility culling techniques, the remaining polygons might be still too many to achieve interactive rate.
Level-of-detail (LOD) modeling has been very useful in further reducing the number of polygon that are visible and
inside the view frustum. Distant objects get projected to small areas on the screen and hence can be represented with
coarse meshes. On the other hand, nearby objects share larger screen areas and should be modeled by meshes of higher
resolution. Many methods have been proposed to obtain LOD meshes; e.g., edge collapsing’, vertex clustering, vertex
decimation, and etc, ...

Geometry-based rendering based on visibility culling and LOD modeling alone usually still cannot meet interactive
requirement for very complex scenes. Image-based rendering (IBR) has been a well known alternative. IBR takes
parallax into account, and renders a scene by interpolating neighboring reference views"'®>. IBR has efficiency that is
independent of the scene complexity, and can model natural scenes using photographs. It is, however, often constrained
by the limited viewing degree of freedom. IBR in general has problems like folding, gap, and hole. Lumigraph’ and
light field rendering'' have been proposed to reduce the 7D plenoptic function PO,y A, v, VoV, t) tothedD
function P’(s, ¢, u, v) for static scenes. However, both require enormous storage for the extrem}ély large number of
images. Layered depth image (LDI)"’ is a good try to eliminate hole problems due to the visibility changes. LDI
structure is more compact in the sense that redundant information has been reduced when several neighboring reference
images are composed into a single LDI.

Hierarchical image caching' is the first approach that combines geometry- and image-based rendering aiming to
achieve an interactive frame rate for complex static scenes. The cached texture possesses no depth information and, in
turns, limits its life cycle. The image simplification schemes™'® represent background or distant scene using 2D cached
depth meshes derived from the rendered images for some specific views. Such depth meshes are rendered by re-
projection and texture mapping. In such approaches, folding problems and gaps resulting from the resolution changes
can be eliminated; however, the hole problems due to visibility and self-occluding still remain. Moreover, disjointed
objects might be rendered as connected objects, and depth meshes derived on the 2D cached images are in pixel
resolution, which might lead to geometric inaccuracy when re-projected into 3D space. Multi-layered impostors® are
proposed to restrict visibility artifacts between objects to a given size, and as well as a dynamic update scheme to
improve the resolution mismatch. However, it still encountered hole problem due to self occlusion, and an efficient
dynamic update requires a special hardware architecture.

46 Proc. of SPIE Vol. 4756

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

3. PROPOSED HYBRID SCHEME

A scene represented by traditional image-based representation would produce a lot of artifacts such as cracks and holes
due to resolution mismatch and visibility change respectively. However, a scene represented by a single environment-
based depth mesh (impostor) still produces rubber artifacts caused by incorrect connections between disjoint surfaces.
Although, disjoint surfaces are identified, holes still appear in a new view caused by the lack of information of occluded
parts. Such that, we propose an object-based depth meshes scheme to greatly reduce the hole artifacts produced from
the occlusion between objects, as well as a self~occlusion error estimation to restrict the hole artifacts produced from
object’s self-occlusion in a given size. Such estimation decides the representation of objects. Those objects which will
potentially result in holes smaller than a user-specified tolerance are represented by depth meshes; otherwise, by
standard meshes of appropriate LOD resolutions.

To reduce the redundancy of a regular-grid meshing, as well as the precision error caused by the projection from
object space to image space, the depth mesh is simplified by an edge collapsing from original mesh based on the depth
characteristic while preserving most of the important visual appearances.

Furthermore, the regional back-face culling for each object from a cell could be performed before the self-occluding
error estimation, and depth mesh construction as well. Such that, more objects are represented by depth mesh under the
same self-occluding error tolerance, and depth mesh construction would be much faster. Lastly, a conservative
occlusion culling can remove invisible polygons for any view inside the cell of all depth meshes and LOD meshes. Ina
result, the polygon count in scene navigation can be greatly reduced.

3.1. Pre-Processing Stage

The processing steps in the pre-processing stage are:

Hexagonal spatial subdivision.

Regional conservative back-face culling.

Selection of object’s representation based on its self-occluding error estimation.
Depth mesh construction.

LOD mesh generation.

Nk W=

3.1.1. Hexagonal spatial subdivision

In order to utilize the spatial locality of a complex scene, we subdivide the x-y plane of the scene into NxM hexagonal
navigation cells (Figure 1(a)). With the spatial subdivision, the scene data and viewpoints can be localized to cells,
and, therefore, visibility culling, conservative back-facing and occlusion culling can be performed in preprocessing
phase. A reason why the hexagonal subdivision, rather than rectangular subdivision, is used is that, in worse case, data
of three adjacent cells need to be loaded, instead of four for rectangular subdivision, when navigating across the cell
boundary. Table 1 depicts the maximum ratio of side faces could be seen from an inside point of the hexagonal and
rectangular cell under different FOVs, we can see that hexagonal subdivision is better than rectangular one in most
cases, except that they are equal under the 45° case.

Table 1. Maximum ratio of side faces seen from a point inside the cell under different FOVs.

FOV(°) 120 90 60 45 30
Hexagonal 5/6 2/3 1/2 1/2 1/3
Rectangular 4/4 3/4 3/4 1/2 172

3.1.2. Regional conservative back-face culling
As shown in Figure 3(b), for each polygon, we obtain the vector from one of six corner vertices of the navigation cell to
the center of polygon, and do the dot product of the vector with polygon’s normal vector. If it is negative, the polygon
is back-facing with respect to that corner vertex. If a polygon is back-facing for all six vertices of the cell, the polygon
is back-facing wrt. any point inside the cell, and hence should be culled. In short, a polygon P is back-facing for a
navigation cell C, if
dot_product(P.normal; vector(C;, P.center)) <0, foreveryi=0,..., 5,

where C;’s are the corners of the navigation cell. A simple proof for the 2D case is as follows:

If a polygon P is back-facing wrt. both point 4 and B, P is back-facing wrt. any point on the line 4B (see Figure 3(a).)

Any inner point [of a navigation cell is on a line C,E , where vertex E is on an edge C,Ciymoa (see Figure 3(b).)

Because, P is back-facing wrt. to all corners Cp, k=0, ..., 5, P is back-facing wrt. E and therefore /.

Proc. of SPIE Vol. 4756 47

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

Moreover, two corners are necessary and sufficient for this regional back-facing test for each polygon (see Figure 3(c).)
For any point /” inside the navigation cell, C, ' intersect C,P at point D’, because D’ is on C,P and P is back-facing

with respect to both C; and C;; such that, P is back-facing with respect to D’, as well as I". Note that, each polygon
would be required to test with different pair of corners.

(a) A bird's eye view (b) size 50, 1-pixel (c) size 50, 3-pixel

Figure 1. (a) shows the distribution of objects, (b) and (c) show the distribution of LOD
meshes and depth meshes under two different self-occluding errors.

Coopmors

(a) P is back-facing (b) P is back-facing (c) P is back-facing
with respect to any wrt. any inner point / wrt. to the navigation
point on 4B, if P is in a navigation cell, cell, if P is back-
back-facing wrt. to when P is back-facing facing wrt. both C;
both 4 and B. wrt. all corners. and C;.

Figure 2. The maximum self-occluding error occurs at the
position V.

Figure 3. Regional back-face culling.

3.1.3. Self-occluding error estimation
The major problem of depth mesh representation is that it is only the visible part of the object viewed from the cell
center hence has limited viewing degree of freedom. When a new view is far from the cell center, parts that are
invisible originally might become visible and get rendered as holes. We propose a self-occluding error to estimate the
maximum size of the hole that may appear when the object is represented by a depth mesh.

As shown in Figure 2, the maximum error occurs at the farthest view position ¥’ from the cell center V. Let the cell
size, ie., the length of V¥ ' be c, the distant between object and the cell center, i.e., the length of VO
be d, and the size in depth of the object itself, i.e., the length of OP be I. The length of OC is [* tan @ , the angle §

between7P and¥ 'P is @ = tan ~' o< and s which is the projected size of OP as wellas OC is:

5= AB , ImageRes.
c
Since

48 Proc. of SPIE Vol. 4756

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

Le, o _ 31 |
d d+l 2dd+])

therefore,

s = ﬂ_ « ImageRes.
2d(d + 1)

The test on self-occluding error is to check if the object's maximum projected error s is smaller then a user-specified
tolerance in image precision. If it is, the object is represented by a depth mesh; otherwise by a LOD mesh.

3.1.4. Depth mesh construction

The cached image of an object is obtained by rendering the object using the cell center as the center of projection and
using the cell's side face as the projection window. The depth image is the cached image augmented with the depth
values. The simplest way to construct a depth mesh for an object is to use the regular-grid triangulation'? performed on
the depth image, which would, however, results in too many redundant triangles and produces rubber effects caused by
incorrect connections. Furthermore, since it is performed in the image space, it always suffers from the precision error
caused by the projection (from floating-point precision in world space into integer precision in image space).

In order to reduce the number of the triangles on a depth mesh while preserving most of the visual appearances,
several properties of the depth image could be adopted. The most important one is to use the depth coherence, by that
we mean pixels of similar depth variation are likely to be on the same surface, and a pixel that has a sharp depth
variation from adjacent pixels would have a high possibility to be on a contour edge. Moreover, the external contour
edges of the rendered object on the image are the most important visual appearances, and hence must be included in the
depth mesh. External contour edges can be easily derived by using the contour extraction in the field of image
processing. On the other hand, if we can extract all the internal contour edges from the depth image, rubber effects
caused by undetected gaps (C° discontinuity) between disjointed surfaces represented by a connected mesh and blur
effects appearing at the sharp edges (C' discontinuity) represented by a flatted mesh could be greatly reduced.

In order to minimize the precision error caused by projection, we simplify the depth mesh in both the image and the
object space in three steps. Firstly, we categorize image pixels on the depth image based on the importance of its visual
appearance and its characteristic into four categories:

L] external contour: a pixel on the external contour extracted by contour extraction.

o internal contour (gap) (C° discontinuity): a pixel whose next guessed Z value differs from neighboring pixels over a
specified tolerance Tc" (i.e., |Zi— (Zi+ (Z:- Z1y))| > Tc" , see Figure 4.)'

° sharp edge (C' discontinuity): a pixel whose Z variation differs from neighboring pixels over a specified tolerance Tc' (e,
i - 2) - Zi- Ze)> T,

L] interior: other pixel whose Z value is different from the background Z value.

Secondly, vertices of object's original mesh are projected again (but do not alter the value of depth image) with the
same projection setup of the depth image to do the visibility test for each vertex. If Z value of a projected vertex equals
to the Z value at the pixel on the depth image, the pixel on the depth image is representing the vertex of the original
mesh; otherwise the vertex is behind other surfaces. For the former case, a weight rela-tive to the category of the pixel
is assigned to the vertex (The highest weight is assigned for external contour category, a lower weight is assigned for
internal contour category, and so on.) On the other hand, for the later case (invisible vertex), the vertex gets the weight
Zero.

Lastly, weight-based edge collapsing is performed based on the weights of vertices to simplify the object's original
mesh. Moreover, to obtain a proper resolution of the simplified depth mesh and preserve the visual appearances, the
edge with one of or both vertices' weight smaller than the weight of the sharp edge category and whose projected size
smaller than a user-specified length tolerance (in pixels) is simplified. The collapsing order is based on the area of the

! If we use depths of only two neighboring pixels to test C° discontinuity, surfaces that are nearly parallel to the viewing direction
would treated to be discrete pixels.
2 Note that both equations for testing C° and C' discontinuity are equivalent, except that T..>T,., -

Proc. of SPIE Vol. 4756 49

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

projected triangle, i.e., a smaller projected triangle is simplified earlier. As a result, a more optimized triangle aspect
ratio is obtained and tiny triangles with respect to the view contain no important visual appearances are removed.
Figure 5(b-¢) show the simplified depth meshes at different distances.

Figure 4. Gap and sharp edge extraction.

(a) 2 cells away. (b) 6. () 7. 9. (e) 10.

Figure 5. (a) is the original mesh of a horse captured at two cells away (at distance 173), and (b-¢) are depth meshes generated at 6,
7,9 and 10 cells away.

3.1.5. Regional conservative occlusion culling

It is very common that objects or part of objects are occluded by other objects in a complex scene, especially a densely
occluded environment. In order to utilize the spatial coherence of occlusion, we perform a regional conservative
occlusion culling in the pre-processing stage for both LOD meshes and depth meshes. The extended projection’
provides us a useful tool with a little modification for our hexagonal subdivision scheme. This extended projection can
also handle the case of multiple occluders by using occluder fusion. The selection of occluders is based on the meshes'
projected size. Only those meshes whose projected sizes are larger than a user-specified threshold are selected to be
occluders.

3.2. Run-Time Stage

In the run-time stage, we do the following steps:

1. At program start-up time, we setup a lowest priority thread for pre-fetching the geometry and image data of neighboring
cells.

Ensure that the geometry and image data for the current navigation cell is loaded into memory.

Perform a run-time normal-cluster-based back-face culling for the objects inside the current navigation cell.

Perform a run-time occlusion culling for all meshes.

Render the remaining polygons. Depth meshes are rendered using the projective-alike texture mapping.

Pre-fetch data of neighboring cells when CPU load is relative low.

SNk W

3.2.1. Rendering

Objects inside the navigation cell can be seen from any direction, it is impossible to determine the visibility during the
pre-processing stage. Those polygons inside the navigation cell can be grouped into clusters according to its normal'®
in the pre-processing stage. During the run-time stage, we can quickly cull out the whole back-facing cluster of
polygons according to the viewing direction and the FOV.

Although there are considerable overheads, it is a beneficial approach to reduce the polygons sent into graphic
pipeline by applying a run-time occlusion culling for a densely occluded environment. To perform the culling, we
generate an occlusion map similar to the idea proposed in Ref. 18. Only LOD meshes, depth meshes, and original
meshes inside the navigation cell whose projected area larger than a pre-specified threshold are selected to be occluders.

50 Proc. of SPIE Vol. 4756

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

Though this approach of occluder selection is not optimized, it is advantageous not to spend too much time on selecting
occluders.

3.2.2. Projective-alike texture mapping
A projective-alike-texture-mapping method is developed to map the cached image onto depth mesh in such a way that
the texture coordinate of each vertex can be generated automatically by the standard OpenGL (glTexGen().)

In most cases, an object-based depth mesh located in part of a source image. To minimize the storage requirement
and to reduce the loading time of cached images. Only necessary rectangular part of source image is stored as cached
image, and, in addition, S3's S3TC is applied to compress the cached images. Such that, more textures can put into the
limited texture memory, bandwidth between host and graphics hardware can be greatly reduced, and a decompression is
not required at run-time anymore.

Texture coordinates (s, £) mapped from image coordinates (x, y) can be derived by (s, £) = ((* - Xofset)/ Wstoreds (¥ -
Yoftset) Astored), WhETe Xofrser and yomser are the offset of the cached image relative to source image, and Wyored and Agoreq are
width and height of the cached image, respectively. The GPU of graphics hardware can also do the transformation of
re-projection from the source image coordinates to the destination image coordinates by multiply the inverse of the
camera matrix of the source image, allowing CPU leisurely does the visibility culling, level-of-detail selection, pre-
fetching, and so on.

This method does not need to specify texture coordinates, and in consequence, reduces the bandwidth needed
between CPU and graphics accelerator, and does not require additional memory for storing texture coordinate at each
vertex. Moreover, vertices of a depth meshes are allowed to be stored in source image coordinate system, which
requires 16-bit unsigned integer for x and y, and 32-bit floating point for z (provides a tradeoff between storage
requirement and precision). As a result, only 8 bytes is necessarily sufficient for each vertex, compared to 20 bytes per
vertex if all x, y, and z are stored as world coordinates as well as texture coordinates s and .

3.2.3. Cell transition

A major problem arises in spatial-subdivision approach is how to achieve smooth and unnoticeable transition between
cells. When the view point moves across the cell boundary and makes a transition from cell 4 to cell B, we will switch
the geometry set from G, to Gp, depth mesh set from D4 to Dp, and cached image set from I, to /. Accordingly, it may
spend a lot of time on loading data from disk.

Here, we develop a pre-fetch mechanism which preloads the geometry and image data of neighboring cells when
CPU load is relative low. It will amortize the loading time to several inside-cell frames and reduce the difference of
rendering time between an inside-cell frame and a cross-cell-boundary frame. We can easily attain this by setting the
priority of a pre-fetch thread to be lower then others. As a result, we will not be interrupted by the loading of newly
navigated data during the cell transition and obtain a more smooth frame rates and an unnoticeable transition. Note that
the smaller cell size is the more frequent the transition is.

4. EXPERIMENTS

Our test scenes are two statuary parks, one is consists of 358 objects with 970,254 polygons (sparse scene), and another
is consists of 956 objects with 2,265,978 polygons (dense scene, see Figure 1(a)) on an area of 2400%2000. Figure 6
represents images of the same view rendered by different rendering schemes.

The test platform is a PC with an AMD ThunderBird 1200Mhz CPU, 512MB main memory, and an nVidia
GeForce3 with 64MB DDR RAM graphics accelerator.

4.1. Image Quality
To identify how much quality-loss of our proposed method, we use the signal-to-noise ratio SNR(dB), defined as

follows:
2o Lyma S 502)°
>yl - renf
where f (x,) is the pixel color of the approximated image at position (x, y), M and N are the dimensions of the image.

Before applying SNR, the RGB color is mapped to a single luminance value Y since our human eyes are more sensitive
to the changes in luminance than to the changes in chrominance. Such mapping® is ¥ = 0.299*R + 0.587*G + 0.114*B.
Note that, human eyes in general would not able to distinguish between two images that have an SNR greater than 25dB.

SNR = 10 *log

Proc. of SPIE Vol. 4756 51

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

4.2. Cell Size and Self-Occluding Error Consideration
Several settings of the combination of different cell size (50 and 100) and self-occluding error tolerance (1-, 3-, and 5-
pixel) are used in our experimental test.

The distributions of LOD meshes and depth meshes under two different self-occluding error tolerances for the dense
scene are shown in Figure 1(b) and Figure 1(c), respectively. A LOD mesh is marked as a blue rectangle while a depth
mesh as a red hollow diamond. As we can expect, the higher self-occluding error we can tolerate, the more objects are
represented by depth meshes. In the case of cell size 50 and 1-pixel error tolerance, 54.0% objects are represented by
depth meshes, while it is 63.9% for 3-pixel error tolerance. However, with no doubt, image quality for 3-pixel tolerance
is lower than that of 1-pixel tolerance.

Since we want to identify how much benefit and image quality-loss comes from the depth mesh representation alone,
we use original meshes instead of LOD meshes to represent those objects with the self-occluding error exceeding the
tolerance. Such that, when cooperating with LOD techniques the performance would be even better.

Table 2 lists the polygon number of regional back-face culled LOD meshes, depth meshes, polygons inside a cell,
the number of objects represented by depth mesh, the average frame rate, and average image quality under different
settings. Under 60° FOV, three view windows should be rendered, such that, half of the LOD meshes, half of the depth
meshes and all meshes inside the cell are the potential visible polygons. All of them show that, more polygons are
simplified for the higher error tolerance setting with the cost of higher quality-loss. That is, our proposed scheme
provides a tradeoff between the performance and image quality. Note that, under the same self-occluding tolerance, a
larger cell size would not produce much poorer image quality, mainly due to the fact that the selection of object's
representation is designed to ensure the bounded self-occluding error. Hence, the cell size has little impact on the image
quality under our proposed scheme. However, as the cell size increases, more objects are represented by LOD meshes,
more objects are put inside the navigation cell, and the number of potential visible polygons increases also, so the
number of polygons increases dramatically. As a result, worse performance will be found.

The depth mesh simplification can simplify about 94% polygons in average, and, the farther object is, the greater
simplification ratio is. On the other hand, the conservative back-facing culling could cull out about 43.7% polygons of
LOD meshes for the case of cell size 50, and 41.3% for cell size 100. In general, the larger size a cell has or the nearer
object is, the fewer back-facing rate is. At the time of writing this paper, we are still working on several minor bugs of
this pre-processing occlusion culling program; therefore, we have no information about how many percentage of
polygons could be culled.

4.3. Performance

We use the setting of cell size 50 and 3-pixel self-occluding error tolerance for the further testing for the dense scene.
Three rendering configurations are used to do the performance comparison:

® A: (Pure geometry) The original meshes of the scene are rendered using the traditional graphics pipeline.
® B: (Pure geometry w/ view frustum culling) Same as A, but with software view frustum culling.

® C: (Proposed scheme w/o run-time occlusion culling) The scene is rendered by proposed scheme with view frustum culling
but without run-time occlusion culling.

Table 3 lists the performance of each configuration. Configuration C spends additional time on loading neighboring
cell data at the first frame, such that, there is a low peak at the first frame. Our proposed scheme w/o run-time
occlusion culling has about 20.4 speedup factor compare to the pure geometric rendering while yields an average SNR
about 22.2dB (13.6x under 1-pixel error tolerance and yields an SNR about 26.5dB.) It shows that our proposed
method provides a faster rendering with an acceptable quality-loss while configuration B is hardly to achieve interactive
frame rate for such complex scene. Figure 7 depicts the frame rate of every rendering frame on the same navigation
path under these three rendering configurations.

As mentioned before, the overhead of run-time occlusion culling is un-negligible, and our test scene is not a densely
occluded environment, our experiment is, w/ runtime occlusion culling, it is slower than C but still outperforms B.

5. DISCUSSION & FUTURE WORK

In this paper, we have proposed a hexagonal spatial subdivision and a hybrid rendering scheme for navigating complex
scenes. Such scheme can achieve a smooth, navigation with no apparent popping effects at an almost constant and
interactive frame rate for a very complex scene. By cooperating with LOD meshes and object-based depth meshes,

52 Proc. of SPIE Vol. 4756

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

(a) Rendered by pure geometries.

Figure 6. The same view rendered by different methods of our test scene.

(b) Rendered by the proposed scheme.

frame.

(c) Depth meshes are rendered with its wire-

Table 2. The average potential visible polygon no. for a cell, the average frame rate, and image quality under the different settings.

Polygon no.
of inside

Polygon no. of
regional back-face
ed LOD

Polygon no.
of depth mesh

Polygon no. of
potentially

No. of objects
represented by

Average

Image quality
(SNR(dB))

size 50, 1-pixel 198,830 27,579 2,278 115,483 183.5 30.0 264
size 50, 3-pixel 80,875 43,086 2,278 64,258 221.5 42.8 239
size 50, 5-pixel 50,921 48,843 2,278 52,160 231.5 48.9 232

size 100, 3-pixel 35,745

152,796

size 50, 1-pixel

102,723

179,805 102,501 5,281

146,434

29.9

22.2

size 50, 3-pixel
Table 3. Performance under the three configurations.
A B C
Frame time(ms) 680.3 268.1 334
Frame rate(fps 1.47 3.713 29.9
Speed up 1.0x(baseline) 2.54x 20.4x
Gonf. B Conf. C

[- = = 1Conf. A

1 26 51 76 101

0 nC I T BN B A I

126 151

Figure 7. The frame rate (fps) under the three configurations on the same navigation path.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

Proc. of SPIE Vol. 4756

53

parallax error, crack, hole, rubber effect, and popping effect can be minimized. Further-more, with visibility
preprocessing, polygons invisible from a region will never be sent into graphics pipeline. A tradeoff between
performance and quality requirement can be easily made by specifying the self-occluding error tolerance.

When constructing the depth mesh in both object and image space, a special affair should handle with care. The
rasterization engine of graphics hardware may render small polygon specially, such that a vertex may not projected into
the same image pixel, in a result, a wrong weight may retrieved.

As the future works, we will firstly finish the preprocessing occlusion culling program to effectively cull out the
polygons that are invisible from a cell region. We will also improve the depth mesh construction and simplification to
have a better simplified depth mesh. For handling more complicated and extremely large scale scene, distant objects
that are close to each other can clustered together to generate a single depth mesh. Such that, the amount of textures
could be reduced and an approximated occlusion culling is done on the fly. Moreover, we will try to exploit the data
coherence between neighboring cells to improve our pre-loading scheme.

REFERENCES

1. S. E. Chen and L. Williams. “View Interpolation for Image Synthesis,” in Computer Graphics (SIGGRAPH 93
Proceedings), pp. 279-288, 1993.

2. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. “Conservative Visibility and Strong Occlusion for
Viewspace Partitioning of Densely Occluded Scenes,” Computer Graphics Forum, 17(3):243-253, 1998.

3. L. Darsa, B. Costa, and A. Varshney. “Walkthroughs of Complex Environments using Image-based
Simplification,” in Computers & Graphics, volume 22, pp. 55-69, 1998.

4. X. Decoret, G. Schaufler, F. X. Sillion, and J. Dorsey. “Multi-Layered Impostors for Accelerated Rendering,”
Computer Graphics Forum, 18(3):61-73, 1999.

5. F. Durand, G. Drettakis, J. Thollot, and C. Puech. “Conservative Visibility Preprocessing using Extended
Projections,” in Computer Graphics (SIGGRAPH 2000 Proceedings), pp. 239-248, 2000.

6. R.C. Gonzalez and R. E. Woods. Digital Image Processing, chapter 4, page 228, 1993.

7. S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. “The Lumigraph,” In Proceedings of SIGGRAPH 96, pp.
43-54, 1996.

8. N. Greene, M. Kass, and G. Miller. “Hierarchical Z-Buffer Visibility,” In Computer Graphics (SIGGRAPH 93
Proceedings), pp. 231-238, 1993.

9. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. “Mesh Optimization,” in Computer Graphics
(SIGGRAPH 93 Proceedings), pp. 19-26, 1993.

10. S. Kumar, D. Manocha, B. Garrett, and M. Lin. “Hierarchical Back-face Culling,” In 7th Eurogra-phics Workshop
on Rendering, pp. 231-240, 1996.

11. M. Levoy and P. Hanrahan. “Light Field Rendering,” in Proceedings of SIGGRAPH 96, pp. 31-42, 1996.

12. W. R. Mark, L. McMillan, and G. Bishop. “Post-Rendering 3D Warping,” in Symposium on Interactive 3D
Graphics, pp. 7-16, 1997.

13. L. McMillan and G. Bishop. “Plenoptic Modeling: An Image-Based Rendering System,” in Proceedings of
SIGGRAPH 95, pp. 3946, 1995.

14. J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. “Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments,” in Proceedings of SIGGRAPH 96, pp. 75-82, 1996.

15. J. W. Shade, S. J. Gortler, L.-W. He, and R. Szeliski. “Layered Depth Images,” in Proceedings of SIGGRAPH 98,
pp. 231-242, 1998.

16. F. Sillion, G. Drettakis, and B. Bodelet. “Efficient Impostor Manipulation for Real-Time Visualization of Urban
Scenery,” in Proceedings of Eurographics’97, pp. 207-218, 1997.

17. H. Zhang and K. E. Hoff IIl. “Fast Backface Culling Using Normal Masks,” in Symposium on Interactive 3D
Graphics, pp. 103-106, 1997.

18. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. “Visibility Culling Using Hierarchical Occlusion Maps,” in
Computer Graphics, volume 31, pp. 77-88, 1997.

54 Proc. of SPIE Vol. 4756

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.or g/terms

