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Let A be an n-by-n (n � 2) matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1

0
. . .

. . . an−1

an 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We show that if the aj ’s are nonzero and their moduli are periodic,

then theboundaryof itsnumerical rangecontainsa line segment.We

also prove that ∂W(A) contains a noncircular elliptic arc if and only

if the aj ’s are nonzero, n is even, |a1| = |a3| = · · · = |an−1|, |a2| =
|a4| = · · · = |an| and |a1| �= |a2|. Finally, we give a criterion for A

to be reducible and completely characterize the numerical ranges of

such matrices.

© 2011 Elsevier Inc. All rights reserved.

An n-by-n (n � 2) weighted shift matrix A is one of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1

0
. . .

. . . an−1

an 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the aj ’s, called theweights of A, are complex numbers. The purpose of this paper is to study the

numerical ranges of such matrices with periodic weights.

Recall that the numerical range W(A) of an n-by-n complex matrix A is by definition the subset

{〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} of the complex plane, where 〈·, ·〉 and ‖ · ‖ denote the standard inner

product and Euclidean norm in Cn. It is known thatW(A) is a nonempty compact convex subset of C.

For other properties, the reader may consult [4, Chapter 1] or [2].

The study of the numerical ranges of theweighted shift matriceswas started in [6]. It was proven in

[6, Theorem1] that theboundaryof thenumerical rangeof suchamatrixAhasa line segment if andonly

if theweightsareallnonzeroandall its (n−1)-by-(n−1)principal submatriceshave identicalnumerical

ranges (which are necessarily circular discs centered at the origin). In suchdiscussions,wemay assume

that the weights are all nonnegative. In Theorem 1 below, we show that if the weights a1, . . . , an of

an n-by-nweighted shift matrix A are nonzero and periodic with period k, thenW(A) = W(B), where

B = ∑(n/k)−1

j=0 ⊕(eijθC) and C is the k-by-k weighted shift matrix with weights a1, . . . , ak−1, αak ,

α = (a1 · · · an)k/n/(a1 · · · ak) and θ = 2π/n. In this case, the boundary ofW(A)has a line segment. In

Theorem3,we give a necessary and sufficient condition for the boundary ofW(A) to have a noncircular
elliptic arc.More specifically, it is shown that this is the case if and only if the aj ’s are nonzero, n is even,

|a1| = |a3| = · · · = |an−1|, |a2| = |a4| = · · · = |an| and |a1| �= |a2|. For n = 4, this essentially

generalizes [6, Proposition 12]. Finally, we give a criterion for A to be reducible and characterize their

numerical ranges in Theorem 4. In particular, it says that, for n = 4, A is reducible if and only if either

(1) ai = aj = 0 for some i and j, 1 � i < j � n, or (2) |a1| = |a3| �= 0 and |a2| = |a4| �= 0.

For an n-by-n matrix A, let AT denote its transpose, A∗ its adjoint, Re A its real part (A + A∗)/2
and Im A its imaginary part (A − A∗)/2i. For 1 � i1 < · · · < im � n, let A[i1, . . . , im] denote the

(n − m)-by-(n − m) principal submatrix of A obtained by deleting its rows and columns indexed by

i1, . . . , im. The numerical radius w(A) and generalized Crawford number w0(A) of A are, by definition,

max {|z| : z ∈ W(A)} and min {|z| : z ∈ ∂W(A)}, respectively. A diagonal matrix with diagonals

a1, . . . , an is denoted by diag(a1, . . . , an). Our basic reference for properties of matrices is [3].

For an n-by-nmatrix A, consider the degree-n homogeneous polynomial pA(x, y, z) = det(xRe A+
yIm A + zIn). A result of Kippenhahn [5, p. 199] says that the numerical range W(A) is the convex

hull of the real points in the dual of the curve pA(x, y, z) = 0, that is, W(A) = {a + ib ∈ C :
a, b real, ax + by+ z = 0 is tangent to pA(x, y, z) = 0}∧. Here, for any subset 
 of C, 
∧ denotes its

convex hull, that is, 
∧ is the smallest convex set containing 
.

For any nonzero complex number z = x + iy (x and y real), arg z is the angle θ , 0 � θ < 2π ,

from the positive x-axis to the vector (x, y). If z = 0, then arg z can be an arbitrary real number. In the

following, let ωn = e2π i/n for n � 1.

The main result of this paper is the following.

Theorem 1. Let A be an n-by-n (n � 3) weighted shift matrix with nonzero weights a1, . . . , an. Assume

that |aj| = |ak+j| = · · · = |a(m−1)k+j| for all1 � j � k,where n = km for somek andm, k,m � 2. Then

(a) pA is reducible and W(A) = W(B), where B = C ⊕ (eiθC) ⊕ · · · ⊕ (ei(m−1)θC) and C is the

k-by-k weighted shift matrix with weights a1, . . . , ak−1, αak, α = (a1 · · · an)1/m/(a1 · · · ak) and
θ = 2π/n.

(b) ∂W(A) has a line segment L and dist(0, L) = w0(A) = w(A[i]) = maximum zero of det(λIn−1 −
Re A[i]) for every i, 1 � i � n.

Note that ∂W(A) has a line segment for k = 1 by [6, Proposition 4].

An easy consequence of the preceding theorem is the following:

Corollary 2. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an. Suppose that

n − 2 of the aj’s have equal absolute value and the remaining two terms are ak and al. Then ∂W(A) has a
line segment if and only if all the ai’s are nonzero and either

(a) n is even, |k − l| = n/2, |ak| = |al|, or
(b) all the ai’s have the same absolute values.
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Proof. The sufficiency follows easily from Theorem 1. Now we prove the necessity. By [6, Theorem

1], we have that the ai’s are nonzero and W(A[1]) = · · · = W(A[n]). If n is even and |k − l| = n/2,
then we may assume that k = n/2, l = n, ai = aj > 0 for 1 � i < j � n − 1, i, j �= n/2 and an/2,

an > 0 by [6, Lemma 2(1) and (2)]. Also, W(A[n/2]) = W(A[n]) implies that |an/2| = |an| by [6,

Lemma 5]. Otherwise, we may assume that 1 � k < n/2, l = n, ai = aj > 0 for 1 � i < j � n − 1,

i, j �= k and ak , an > 0 by [6, Lemma 2(1) and (2)]. Let a ≡ ai, where i �= k, n. Note that we

have W(A[k]) = W(A[2k]) = W(A[n − k]) = W(A[n]) and A[n] is the (n − 1)-by-(n − 1) matrix

[sij]n−1
i,j=1, where si,i+1 = a for 1 � i � n − 2, i �= k, sk,k+1 = ak and si,j = 0 otherwise. By [6,

Lemma 2(1)], we may assume that A[k] is the (n − 1)-by-(n − 1) matrix [tij]n−1
i,j=1, where ti,i+1 = a

for 1 � i � n − 2, i �= n − k, tn−k,n−k+1 = an and ti,j = 0 otherwise. For the orders of {an, ak, a},
consider the following three cases:

(1) an � a � ak or an � a � ak . Since W(A[n]) = W(A[k]), by [6, Lemma 5(2)], we infer that

an = a = ak .

(2) an � ak � a or an � ak � a. By [6, Lemma 2(1)], we may assume that A[n − k] is the

(n−1)-by-(n−1)matrix [uij]n−1
i,j=1, where ui,i+1 = a for 1 � i � n−2, i �= k, 2k, uk,k+1 = an,

u2k,2k+1 = ak and ui,j = 0 otherwise. Since W(A[n]) = W(A[n − k]), by [6, Lemma 5(2)], we

also infer that an = a = ak .

(3) ak � an � a or ak � an � a. By [6, Lemma 2(1)], we may assume that A[2k] is the

(n − 1)-by-(n − 1) matrix [vij]n−1
i,j=1, where vi,i+1 = a for 1 � i � n − 2, i �= n − k, n − 2k,

vn−2k,n−2k+1 = an, vn−k,n−k+1 = ak and vi,j = 0 otherwise. Since W(A[k]) = W(A[2k]), by
[6, Lemma 5(2)], we obtain that an = a = ak and complete the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1

(a) Let B = C ⊕ (eiθC) ⊕ · · · ⊕ (ei(m−1)θC), where C is the k-by-k weighted shift matrix with

weights a1, . . . , ak−1, αak , α = (a1 · · · an)1/m/(a1 · · · ak) and θ = 2π/n. Since |aj| = |ak+j| =
· · · = |a(m−1)k+j| �= 0 for 1 � j � k and arg (a1 · · · an)/((a1 · · · ak)mαm) = 0, we may assume that

A is the n-by-nweighted shiftmatrixwith periodicweights a1, . . . , ak−1, αak, . . . , a1, . . . , ak−1, αak

by [6, Lemma 2(2)]. Let the matrix xRe A + yIm A + zIn be partitioned as

⎡
⎢⎢⎢⎢⎣

C11 · · · C1m
...

...

Cm1 · · · Cmm

⎤
⎥⎥⎥⎥⎦
with Cij of

sizes k-by-k for all i, j, 1 � i, j � n. Since C1j + · · · + Cmj = xRe C + yIm C + zIk , for all j, 1 � j � m,

we have

pA(x, y, z)= det(xRe A + yIm A + zIn)

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 + · · · + Cm1 C12 + · · · + Cm2 · · · C1m + · · · + Cmm

C21 C22 · · · C2m
...

...
...

Cm1 Cm2 · · · Cmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎣

xRe C + yIm C + zIk 0 · · · 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Hence pC |pA. Since A and ω
j
nA are unitarily equivalent for all integer j, then pC |pωj

nA
for all integer j,

consequently, p
ω

j
nC

|pA for all j = 0, 1, . . . ,m − 1. Note that the real foci of the curve p
ω

j
nC

= 0 are

eigenvalues ofω
j
nC for each j. Sinceσ(C) = {λ, ωkλ, . . . , ω

k−1
k λ}, whereλ = (a1 · · · ak)1/k , it follows

that σ(ωi
nC)∩σ(ωj

nC) = ∅ for any 0 � i < j � m− 1, thus the homogeneous polynomials pωi
nC

and

p
ω

j
nC

have no common factor for any 0 � i < j � m − 1. Therefore, we deduce that pA = ∏m−1
j=0 p

ω
j
nC

or W(A) = W(B). This completes the proof.

(b)By [6, Proposition3(6)] and itsproof,weneedonlyprove that∂W(A)hasa line segment. Since the

aj ’s are nonzero, from [6, Lemma 2(2)], wemay assume that aj > 0 for all j. Then C is a k-by-kweighted

shift matrix with positive weights, thusw(C) ∈ W(C). Let D = {z ∈ C : |z| � w(C)} and B = C ⊕ B′,
where B′ = ωnC⊕ω2

nC⊕· · ·⊕ωm−1
n C. For each j = 0, 1, . . . ,m−1, by [6, Proposition 3(4)], we have

W(ω
j
nC) ⊆ D and W(ω

j
nC) ∩ ∂D = {ωj

nω
i
kw(C) : i = 0, 1, . . . , k − 1}. Since each point on ∂D is an

extreme point of D, thusW(B′) ⊆ D andW(B′) ∩ ∂D = {ωj
nw(C) : j = 0, 1, . . . , n − 1} \ {ωj

kw(C) :
j = 0, 1, . . . , k − 1}. It follows that w(C) ∈ W(C) \ W(B′) and ωnw(C) ∈ W(B′) \ W(C), that is,
W(C) � W(B′) and W(B′) � W(C). Therefore, W(B′) and W(C) have a common supporting line,

says, cos(t)x + sin(t)y = r. This implies pC(cos(t), sin(t),−r) = 0 = pB′(cos(t), sin(t),−r) and
r = max σ(Re (e−itC)) = max σ(Re (e−itB′)) = max σ(Re (e−itB)). Since pA = pB = pCpB′ from
Theorem 1(a) and its proof, it follows that r is the maximal eigenvalue of Re (e−itA) with multiplic-

ity at least two. By [6, Lemma 11], we obtain that the boundary of W(A) contains a line segment as

asserted. �

The next theorem gives a necessary and sufficient condition for an n-by-nweighted shift matrix A

to have a noncircular elliptic arc in ∂W(A). Moreover, in this case, ∂W(A) also has a line segment.

Theorem 3. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an. Then ∂W(A)
has a noncircular elliptic arc if and only if the aj’s are nonzero, n is even, |a1| = |a3| = · · · = |an−1|,
|a2| = |a4| = · · · = |an| and |a1| �= |a2|. In this case, W(A) = W(B), where B = C ⊕ (eiθC) ⊕
· · ·⊕ (e((n/2)−1)θC), C =

⎡
⎣ 0 a1

αa2 0

⎤
⎦, α = (a1 · · · an)2/n/(a1a2) and θ = 2π/n, and ∂W(A) has a line

segment.

Proof. The sufficiency follows easily from Theorem 1(a) and the fact that W

⎛
⎝

⎡
⎣ 0 a1

αa2 0

⎤
⎦

⎞
⎠ is a non-

circular elliptic disc as |a1| �= |αa2| and both are nonzero, where α = (a1 · · · an)2/n/(a1a2).
To prove the necessity, by [6, Lemma 2(2)], we have that A is unitarily equivalent to eiφA′, where

φ = (
∑n

j=1 arg aj)/n and A′ is the n-by-n weighted shift matrix with weights |a1|, . . . , |an|. Then
σ(A) = {|a1 · · · an|1/nωj

n : j = 0, 1, . . . , n − 1}. Since ∂W(A) has a noncircular elliptic arc, by [1,

Theorem], there is a 2-by-2 matrix C1 such that pC1 |pA′ and σ(C1) ⊆ σ(A′), say, σ(C1) = {β, γ }.
From [6, Proposition 3(1)], we infer that p

ω
j
nC1

|pA′ and σ(ωj
nC1) ⊆ σ(A′) for all j = 0, 1, . . . , n − 1.

Therefore, σ(A′) ⊇ {ωj
nβ : j = 0, . . . , n − 1} ∪ {ωj

nγ : j = 0, . . . , n − 1}. Since these sets

σ(A′), {ωj
nβ : j = 0, . . . , n − 1} and {ωj

nγ : j = 0, . . . , n − 1} consist of n distinct elements,

we deduce that σ(A′) = {ωj
nβ : j = 0, . . . , n − 1} = {ωj

nγ : j = 0, . . . , n − 1}. Therefore,
we may assume that β = |a1 · · · an|1/n and γ = ω

j0
n β for some j0. Now, if ω

j0
n �= −1 or n is

odd, then these irreducible homogeneous polynomials pC1 , pωnC1 , . . . , pω�n/2�
n C1

are distinct, it follows

that pA′ can be divided by the homogeneous polynomial
∏�n/2�

j=0 p
ω

j
nC1

of degree 2(�n/2� + 1) > n,

this contradicts to the fact that pA′ is of degree n. Therefore, we deduce that ω
j0
n = −1 and n is even.
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Moreover,pA′ = ∏(n/2)−1

j=0 p
ω

j
nC1

. On theotherhand, sinceC1 is 2-by-2witheigenvalues±|a1 · · · an|1/n,

by unitarily equivalence, we may assume that C1 =
⎡
⎣ 0 b1

b2 0

⎤
⎦, where b1, b2 > 0, b1 �= b2 and

b1b2 = |a1 · · · an|2/n. Let B′ = C1 ⊕ ωnC1 ⊕ · · · ⊕ ω
(n/2)−1
n C1 and B1 be the n-by-n weighted shift

matrix with periodic weights b1, b2, b1, b2, . . . , b1, b2. By Theorem 1(a), we have pB1 = pB′ = pA′ .
Compute now the coefficients of (x2 + y2)zn−2 and yn of pA′ and pB1 . Since pA′ = pB1 , we have∑n

j=1 |aj|2 = (b21 + b22)n/2 and (
∏n/2

j=1 |a2j−1| − ∏n/2
j=1 |a2j|)2 = (b

n/2
1 − b

n/2
2 )2. Hence we may

assume that b
n/2
1 − b

n/2
2 = ∏n/2

j=1 |a2j−1| − ∏n/2
j=1 |a2j|. In addition, b1b2 = |a1 · · · an|2/n implies that

b
n/2
1 = ∏n/2

j=1 |a2j−1| and b
n/2
2 = ∏n/2

j=1 |a2j|. We also have

n∑
j=1

|aj|2 =
n
2∑

j=1

|a2j−1|2 +
n
2∑

j=1

|a2j|2

� n

2

⎛
⎜⎝

n
2∏

j=1

|a2j−1|2
⎞
⎟⎠

2
n

+ n

2

⎛
⎜⎝

n
2∏

j=1

|a2j|2
⎞
⎟⎠

2
n

= n

2

(
b21 + b22

)
.

Therefore, the equality holds if and only if b1 = |a2j−1| �= 0, b2 = |a2j| �= 0 for all j, 1 � j � n/2

and b1 �= b2. Let C = eiφC1 and B = eiφB1. Then C is unitarily equivalent to

⎡
⎣ 0 a1

αa2 0

⎤
⎦, where

α = ei(2φ−arg a1−arg a2) = (a1 · · · an)2/n/(a1a2) and W(A) = eiφW(A′) = eiφW(B1) = W(B). This
proves our assertion. In particular, it follows from Theorem 1(b) that ∂W(A) has a line segment. �

Note that theweighted shiftmatrixA in the above theorem is a special case of the ones considered in

Theorem 1. The next theorem is another special case. Recall that a matrix A is said to be reducible if it is

unitarily equivalent to the direct sun of two othermatrices; otherwise, A is irreducible. We characterize

those n-by-nweighted shift matrices Awhich are reducible in the following theorem.

Theorem4. Let A be an n-by-n (n � 2) weighted shift matrix withweights a1, . . . , an. Then A is reducible

if and only if one of the following cases holds:

(1) ai = aj = 0 for some 1 � i < j � n,

(2) n is odd, |ai| = |aj| �= 0 for all 1 � i < j � n,

(3) n is even, |ai| = |ai+(n/2)| �= 0 for all 1 � i � n/2.

In case (1), A is unitarily equivalent to B1⊕B2, where B1 and B2 are theweighted shiftmatriceswithweights

aj+1, . . . , ai−1, 0 and ai+1, . . . , aj−1, 0, respectively (ar ≡ an+r for 1 � r � n, B1 ≡ [0] if i = 1, j = n

and B2 ≡ [0] if i = j − 1). Hence W(A) is a circular disc centered at the origin. In case (2), A is unitarily

equivalent to diag(α, αωn, . . . , αω
n−1
n ), where ωn = e2π i/n and α = (a1 · · · an)1/n. Hence W(A) is a

closed regular n-gonal region centered at the origin and the distance from the origin to its vertices equals

|a1 · · · an|1/n. In case (3), A is unitarily equivalent to A1 ⊕ eiθA1, where θ = 2π/n and A1 is an (n/2)-

by-(n/2) weighted shift matrix with weights a1, . . . , a(n/2)−1, αan/2, α = (a1 · · · an)1/2/(a1 · · · an/2).
In particular, ∂W(A) has a line segment.

Proof

(1) Let ai = aj = 0 for some i, j, 1 � i < j � n. Also, by [6, Lemma 2(1)], we may assume

that j = n. Then A = B1 ⊕ B2, where B1 and B2 are the weighted shift matrices with weights

aj+1, . . . , an, a1, . . . , ai−1, 0 and ai+1, . . . , aj−1, 0, respectively (ar ≡ an+r for 1 � r � n, B1 ≡ [0]
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if i = 1, j = n and B2 ≡ [0] if i = j − 1). Hence W(A) is a circular disc centered at the origin.

Let ai = 0 for some i, 1 � i � n, and aj �= 0 for all j �= i. Again, by [6, Lemma 2(1)], we may

assume that i = n. Then for any orthogonal projection P = [pij]ni,j=1 such that AP = PA, we have

ai(pi,i −pi+1,i+1) = ai+1(pi+1,i+1 −pi+2,i+2) = 0 for 1 � i � n−1. Thus p1,1 = p2,2 = · · · = pn,n.

In addition,AP = PA also implies that aipi+1,1 = 0 for 1 � i � n−1.We substitutepi+1,1 = 0 in these

equalities for AP = PA. Then aipi+1,2 = a1pi,1 = 0 for 2 � i � n − 1. Proceeding successively with

the remaining equalities for AP = PA, we have pi,j = 0 for i > j. Hence the assumption P = P∗ = P2

implies that P = 0 or P = In. Therefore, A is irreducible.

(2) If n is odd and ai �= 0 for all 1 � i � n, thenwemay assume that ai > 0 by [6, Lemma 2(2)]. For

anyorthogonalprojectionP = [pij]ni,j=1 such thatAP = PA,wehavea1(p1,1−p2,2) = a2(p2,2−p3,3) =
· · · = an(pn,n − p1,1) = 0. Thus p1,1 = p2,2 = · · · = pn,n. In addition, AP = PA also implies that

aipi+1,i+2 = ai+1pi,i+1 and ai+1pi+2,i+1 = aipi+1,i for 1 � i � n (pn,n+1 ≡ pn,1, pn+1,n+2 ≡ p1,2,

pn+1,n ≡ p1,n, pn+2,n+1 ≡ p2,1, an+1 ≡ a1). Since P = P∗, we have ai+1pi+1,i+2 = aipi,i+1 for

1 � i � n. Thus pi,i+1 = 0 for some i or a1 = · · · = an. Hence pi,i+1 = 0 for every i, 1 � i � n or

a1 = · · · = an. Since n−1 is even, by the same process, we have pi,j = 0 for all i < j or a1 = · · · = an.

Thus P = P∗ = P2 implies that P equals 0 or In, or a1 = · · · = an. That is, A is reducible if and only if

|a1| = · · · = |an| �= 0. Hence the assertion onW(A) follows from [6, Proposition 4].

(3) If n is even and ai �= 0 for all 1 � i � n, then we may assume that ai > 0 by [6, Lemma 2(2)].

For any orthogonal projection P = [pij]ni,j=1 such that AP = PA, following a similar argument as in

the proof of (2), we obtain p1,1 = p2,2 = · · · = pn,n and pi,j = 0 for all i �= j, |i − j| �= n/2. In
addition, we also have aipi+1,(n/2)+i+1 = a(n/2)+ipi,(n/2)+i and a(n/2)+ip(n/2)+i+1,i+1 = aip(n/2)+i,i

for every i, 1 � i � n/2 (p(n/2)+1,n+1 ≡ p(n/2)+1,1, pn+1,(n/2)+1 ≡ p1,(n/2)+1). Hence P = P∗ = P2

implies that P equals 0 or In, or a1 = a(n/2)+1, . . . , an/2 = an. Therefore, A is reducible if and only if

|ai| = |ai+(n/2)| for all i, 1 � i � n/2. Hence ∂W(A) has a line segment by Theorem 1(b). Moreover,

by [6, Lemma 2(2)], A is unitarily equivalent to eiψB, whereψ = (
∑n

j=1 arg aj)/n and B is the n-by-n

weighted shift matrix withweights |a1|, . . . , |an/2|, |a1|, . . . , |an/2|. LetU = (1/
√

2)

⎡
⎣ In/2 In/2

In/2 −In/2

⎤
⎦.

Then U∗BU = B1 ⊕ eiθB1, where θ = 2π/n and B1 is the (n/2)-by-(n/2)weighted shift matrix with

weights |a1|, . . . , |an/2|. Hence A is unitarily equivalent to (eiψB1)⊕ eiθ (eiψB1). Let A1 = eiψB1. Then

A1 is the (n/2)-by-(n/2)weighted shift matrix with weights a1, . . . , a(n/2)−1, αan/2, where α = eiφ

and φ = (n/2)θ − (
∑n/2

j=1 arg aj) = (n/2)(
∑n

j=1 arg aj)/n − (
∑n/2

j=1 arg aj) = (
∑n/2

j=1 arg a(n/2)+j −∑n/2
j=1 arg aj)/2. This proves our assertion. �

An immediate corollary of Theorem 4 and [1, Theorem] is the following:

Corollary 5. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an and ai = 0 for

some i, 1 � i � n. Then

(1) pA is reducible.

(2) A is reducible if and only if aj = 0 for some j �= i, 1 � j � n.

Recall that the reducibility of an n-by-n matrix A implies the reducibility of pA but the converse is

in general not true. We give two examples of weighted shift matrices A for which pA is reducible but

A is irreducible.

Example 6

(1) If A = Jn (n � 3), then A is irreducible, pA is reducible and ∂W(A) has no line segment.

(2) If A is a 6-by-6 weighted shift matrix with weights 1, 2, 1, 2, 1, 2, then A is irreducible, pA is

reducible but ∂W(A) has a line segment.
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Proof

(1) From [6, Proposition 3(3)], we obtain that W(A) is a circular disc centered at the origin. Hence

the assertion follows directly from [1, Theorem] and Theorem 4.

(2) Follow directly from Theorems 1 and 4. �
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