
time ratios TJTo for different values of n (where N = 32 and m = 
32/n) are given in Table 1. 

Table 1: Area ratio AJAO and time ratio TJTO 

A,/A,, “h 81 84 89 99 

- urnform surface 

113 

t u  / 

“ ”, I I 1 I 1 

These results clearly illustrate the advantages of the new structure. 
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Fuzzy uncertainty texture spectrum for 
texture analysis 

Yih-Gong Lee, Jia-Hong Lee and Yuang-Cheh Hsueh 

Indexing terms: Fuzzy set theory, Texture (image processing) 
~~ 

A new method using fuzzy uncertainty, which measures the 
uncertainty of the uniform surface in an image, is proposed for 
texture analysis. A grey-scale image can be transformed into a 
fuzzy image by the uncertainty definition. The distribution of the 
membership in a measured fuzzy image, denoted the fuzzy 
uncertainty texture spectrum (FUTS), is used as the texture 
feature for texture analysis. 

Introduction: Texture analysis is an important technique in image 
processing. The major problem of texture analysis is the extraction 
of texture features. The general methods for feature extraction are 
to estimate local features at each pixel in a texture image and then 
derive a set of statistics from the distributions of the local features. 
The surveys and comparisons of different methods for feature 
extraction can be found in [ l ,  21. 

A new method for texture feature extraction based on fuzzy the- 
ory is presented. Fuzzy set theory [3, 41 is a mathematical tool for 
modelling ambiguity or uncertainty and has been applied to image 

nonuniform surface 

fb.1 -7b.j) 
- max f I i l  0 mox f ( i.;) . ,,. 

R R m 
Fig. 1 Fumy membership function for uniform surface 

simplified triangular membership function is used to define a uni- 
form surface, as illustrated in Fig. 1.  The uniform surface uncer- 
tainty is defined as 

where max,f(i,j) is the maximum intensity within the (a x w) sur- 
face region R centred at point ( i ,  ]), and the average intensity is 
given by 

,,, r”#,., 

Note that if Ai, 1) is equal to the average neighbourhood inten- 
sity f ( i ,  j )  then f ( i ,  I] possesses ‘full membership’ to the surface 
region R;  i.e. pL., = 1.  Alternatively, iff(i, 1) 1s significantly different 
than the average neighbourhood intensity f ( i , j ) ,  then p , j  --f 0. 

To analyse a texture image, we can transform it into its corre- 
sponding fuzzy image by using eqn. 1. As the value in the fuzzy 
image represents the local aspect, the statistics of these values in 
the fuzzy image should reveal its texture surface information. The 
occurrence distribution of these values is called the fuzzy uncer- 
tainty texture spectrum (FUTS), with the abscissa indicating the 
belief degree and the ordinate representing its occurrence fre- 
quency. To evaluate the performance of the extracted feature by 
using the proposed method, we calculated and compared the 
FUTS for two Brodatz textures D77 and D90 [6], respectively. 
The two textures are shown in Figs. 3g and 3h and their corre- 
sponding FUTS are displayed in Fig. 2. From Fig. 2, we can find 
that the measured FUTS are distinguishable from each other so 
they can serve as a good discriminating tool in texture classifica- 
tion. The FUTS of D90 shows a higher frequency than D77 when 
the measured uncertainty is closed to unity, so that the texture 
image D90 is smoother than D77. 

800 I 

I O  a 0 

Fig. 2 Fuzzy image and FUTS of textures 0 7 7  and D90 

a D77 
b D90 

a b e f 

variety of fuzzification functions can be used to reflect the degree C d 9 h m r m  
to which a pixel intensity represents a uniform physical surface. 
However, textural properties need neighbourhood information 
about the pixel to adequately define membership functions. A 

~i~ 3 Eight texture images extracted from Broh t z  album 

a D4, b D5, c D9, d D15, e D18 , f  D54, g D77, h D90 
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Texture classification and results: T o  demonstrate the discrimina- 
tion performance of the FUTS, we use a supervised classification 
with a minimum distance rule to classic nature images, extracted 
from the Brodatz album. Eight 256 x 256 natural images with 256 
grey-levels are used for the texture classification (see Fig. 3). Each 
texture image is divided into 16 nonoverlapping 64 x 64 subim- 
ages. The subimages are further divided into two sets: a training 
set and a test set. The evaluation is performed using a supervised 
classification over these test subimages. In the process of classifica- 
tion, the uniform surface uncertainty values (0 - I )  in a fuzzy 
image are uniformly quantised into 256 levels to reduce the calcu- 
lation time for the pursuit statistics. The procedure used in our 
experiment is described as follows: 

Step 1: Randomly select one subimage as the training set from 
each texture image. 

Step 2: For each texture type k ,  calculate the FUTS of the corre- 
sponding training samples, denoted S,(i), k = I ,  .._, 8 and j = 0, ..., 
255. 

Step 3: Calculate the FUTS for each considered test subimage, 
denoted TU). 

Step 4: Calculate the distance of the FUTS between the considered 
test subimage and the training result SkG] as 

255 

D ( k )  = l S k ( j )  - r(j)l (31 
3=0 

Step 5: The test subimage will be assigned to class l such that D(0 
is the minimum among all the D(k)s. 
The experimental results listed in Table 1 show an average accu- 
racy rate of 97.5%. 

Table 1: Result of test set classified by using FUTS method (average 
accuracy rate = 97%) Average surface intensity f ( i ,  j) given 
over (7 x 7) region 

Classification result 
ID D4 D5 D9 D15 D18 D54 D l l  D90 
D4 
D5 

D9 
D15 
D18 
D54 
D I I  
D90 

15 
15 

15 
14 1* 

15 
2* 13 

15 
15 

* : misclassification 

Conclusions: A new method using FUTS has been proposed for 
texture analysis. The classification method is simple, and the 
number of mathematical operations applied to the FUTS is small. 
Promising results have been obtained with an accuracy rate of 
97.5% by using only one training sample for each texture type. 
From the experimental results, we conclude that the FUTS is an 
excellent discriminating tool for texture analysis and classification. 
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Pose estimation for known arbitrary and 
noisy planar curves 

G.M.T. Man, J.C.H. Poon and W.C. Siu 

Indexing rerm: Compurrr vision 

A new algorithm for pose determination of known arbitrary 
planar curves is presented. The method directly computes the pose 
by using Fourier descriptors and the paraperspective projection 
models. The method is shown to be accurate, eflicient and robust 
to high frequency noises. 

Introduction: One of the important issues in computer vision is to 
determine the pose of an object in a picture. This pose represents 
the orientation of the object with respect to a known camera co- 
ordinate system. Recent work [I, 21 has shown that it is possible to 
estimate the pose of an arbitrary planar curve by using the single 
perspective image. Generally, these methods require heavy compu- 
tation, such as complex conic fitting procedures [l] and solving a 
large set of simultaneous equations [2]. Nevertheless, none of these 
methods produce satisfactory results on the estimation of the tilt 
angles. Furthermore, their performances rapidly degenerate in the 
presence of noise. We present a Fourier-descriptor based algo- 
rithm which is highly accurate and computationally efficient for 
pose recovery. 

Algorithm: Consider a shape lying on an object plane with a gradi- 
ent (p, q )  in the world co-ordinate system OXY‘Z‘, we can express 
it by a periodic sequence of co-ordinates, x,, and y-,,. When this 
shape is projected onto the image plane, we obtain a 2-D contour 
which is represented by another periodic sequence of co-ordinates 
x, and y,. These co-ordinate sequences can be expressed by two 
series of Fourier descriptors (FDs). In the following derivations, 
we show that the FDs of the object image (denoted by X,, and 
YKk)  can be related to the FDs of the projected image (denoted by 
A’, and Y,) [3]. 

According to the paraperspective inverse transformation [4], we 
have 

hence 

where ( A ,  B)  is the centre mass of the projected contour and c is 
the --intercept of the object plane. Similarly, 

~ P B  ~ ( l  -PA)  cB(pA + qB) 
’wrL = (1 -PA - qB) 2 27L+ ( 1 - p A  - qB ) ’,- (1 - p-4 - qB) 

and we have 
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