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In this paper, a new strategy by using GYC partial region stability theory is proposed to
achieve generalized chaos synchronization. via using the GYC partial region stability the-
ory, the new Lyapunov function used is a simple linear homogeneous function of states
and the lower order controllers are much more simple and introduce less simulation error.
Numerical simulations are given for new Mathieu–Van der Pol system and new Duffing–
Van der Pol system to show the effectiveness of this strategy.
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1. Introduction

In the last few years, synchronization in chaotic dynamical systems has received a great deal of interest among scientists
from various fields [1–8]. The phenomenon of synchronization of two chaotic systems is fundamental in science and has a
wealth of applications in technology. In recent years, more and more applications of chaos synchronization were proposed.
There are many control techniques to synchronize chaotic systems, such as linear error feedback control, adaptive control,
active control [9–19].

In this paper, a new chaos generalized synchronization strategy by GYC partial region stability theory is proposed [20,21].
It means that there exists a given functional relationship between the states of the master and that of the slave. via using the
GYC partial region stability theory, the new Lyapunov function is a simple linear homogeneous function of states and the
lower order controllers are much more simple and introduce less simulation error.

The layout of the rest of the paper is as follows. In Section 2, generalized chaos synchronization strategy by GYC partial
region stability theory is proposed. In Section 3, new Mathieu–Van der pol system and new Duffing–Van der pol system are
introduced. In Section 4, six simulation examples are given. In Section 5, conclusions are given.
. All rights reserved.
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2. Generalized Chaos Synchronization Strategy by GYC Partial Region Stability Theory

2.1. GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous system in the normal form
dxs

dt
¼ Xsðt; x1; . . . ; xnÞ; ðs ¼ 1; . . . ; nÞ; ð1Þ
where the function Xs is defined on the intersection of the partial region X (shown in Fig. 1) and
X
s

x2
s 6 H ð2Þ
and t > t0, where t0 and H are certain positive constants. Xs which vanishes when the variables xs are all zero, is a real valued
function of t, x1, . . . ,xn. It is assumed that Xs is smooth enough to ensure the existence, uniqueness of the solution of the initial
value problem. When Xs does not contain t explicitly, the system is autonomous.

Obviously, xs = 0 (s = 1, . . .n) is a solution of Eq. (1). We are interested to the asymptotical stability of this zero solution on
partial region X (including the boundary) of the neighborhood of the origin which in general may consist of several subre-
gions (Fig.1).

Definition 1. For any given number e > 0, if there exists a d > 0, such that on the closed given partial region X when
X
s

x2
s0 6 d; ðs ¼ 1; . . . ;nÞ ð3Þ
for all t P t0, the inequality
X
s

x2
s < e; ðs ¼ 1; . . . ;nÞ ð4Þ
is satisfied for the solutions of Eq. (19) on X, then the disturbed motion xs = 0 (s = 1, . . .n) is stable on the partial region X.
Definition 2. If the undisturbed motion is stable on the partial region X, and there exists a d0 > 0, so that on the given partial
region X when
X

s

x2
s0 6 d0; ðs ¼ 1; . . . ; nÞ: ð5Þ
The equality
lim
t!1

X
s

x2
s

 !
¼ 0 ð6Þ
is satisfied for the solutions of Eq. (1) on X, then the undisturbed motion xs = 0 (s = 1, . . .n) is asymptotically stable on the
partial region X.
subregion 2

subregion 3

subregion 1

1

2

1

1

1

h

Fig. 1. Partial regions X and X1.
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The intersection of X and region defined by Eq. (2) is called the region of attraction.
Definition of Functions V(t,x1, . . . ,xn): Let us consider the functions V(t,x1, . . . ,xn) given on the intersection X1 of the

partial region X and the region
X
s

x2
s 6 h; ðs ¼ 1; . . . ;nÞ ð7Þ
for t P t0 > 0, where t0 and h are positive constants. We suppose that the functions are single-valued and have continuous
partial derivatives and become zero when x1 =� � �= xn = 0.
Definition 3. If there exists t0 > 0 and a sufficiently small h > 0, so that on partial region X1 and t P t0, V P 0 (or 60), then V
is a positive (or negative) semidefinite, in general semidefinite, function on the X1 and t P t0.
Definition 4. If there exists a positive (negative) definitive function W(x1� � � xn) on X1, so that on the partial region X1 and
t P t0
V �W P 0ðor � V �W P 0Þ; ð8Þ
then V(t,x1, . . . ,xn) is a positive definite function on the partial region X1 and t P t0. Eq. (1)
Definition 5. If V(t,x1, . . . ,xn) is neither definite nor semidefinite on X1 and t P t0, then V(t,x1, . . . ,xn) is an indefinite function
on partial region X1 and t P t0. That is, for any small h > 0 and any large t0 > 0, V(t,x1, . . . ,xn) can take either positive or neg-
ative value on the partial region X1 and t P t0.
Definition 6. Bounded function VIf there exist t0 > 0, h > 0, so that on the partial region X1, we have
Vðt; x1; . . . ; xnÞj j < L;
where L is a positive constant, then V is said to be bounded on X1.
Definition 7. Function with infinitesimal upper bound If V is bounded, and for any k > 0, there exists l > 0, so that on X1

when
P

sx
2
s 6 l, and t P t0, we have
jVðt; x1; . . . ; xnÞj 6 k
then V admits an infinitesimal upper bound on X1.
Theorem 1. If there can be found a definite function V(t,x1, . . . , xn) on the partial region for Eq. (1), and the derivative with respect
to time based on these equations:
dV
dt
¼ @V
@t
þ
Xn

s¼1

@V
@xs

Xs ð9Þ
is a semidefinite function on the paritial region whose sense is opposite to that of V, or if it becomes zero identically, then the
undisturbed motion is stable on the partial region.
Proof. Let us assume for the sake of definiteness that V is a positive definite function. Consequently, there exists a suffi-
ciently large number t0 and a sufficiently small number h< H, such that on the intersection X1 of partial region X and
X

s

x2
s 6 h; ðs ¼ 1; . . . ;nÞ
and t P t0, the following inequality is satisfied
Vðt; x1; . . . ; xnÞP Wðx1; . . . ; xnÞ;
where W is a certain positive definite function which does not depend on t. Besides that, Eq. (9) may assume only negative or
zero value in this region.

Let e be an arbitrarily small positive number. We shall suppose that in any case e < h. Let us consider the aggregation of all
possible values of the quantities x1, . . . ,xn, which are on the intersection x2 of X1 and
X

s

x2
s ¼ e; ð10Þ
and let us designate by l > 0 the precise lower limit of the function W under this condition. By virtue of Eq. (5), we shall have
Vðt; x1; . . . ; xnÞP l for ðx1; . . . ; xnÞ on x2: ð11Þ
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We shall now consider the quantities xs as functions of time which satisfy the differential equations of disturbed motion. We
shall assume that the initial values xs0 of these functions for t = t0 lie on the intersection X2 of X1 and the region
X

s

x2
s 6 d; ð12Þ
where d is so small that
Vðt0; x10; . . . ; xn0Þ < l: ð13Þ
By virtue of the fact that V(t0,0, . . . ,0) = 0, such a selection of the number d is obviously possible. We shall suppose that in any
case the number d is smaller than e.Then the inequality
X

s

x2
s < e; ð14Þ
being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t � t0, since the functions xs (t)
very continuously with time. We shall show that these inequalities will be satisfied for all values t > t0. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant t = T for which this inequality would
become an equality. In other words, we would have
X

s

x2
s ðTÞ ¼ e;
and consequently, on the basis of Eq. (11)
VðT; x1ðTÞ; . . . ; xnðTÞÞP l: ð15Þ
On the other hand, since e < h, the inequality (Eq. (4)) is satisfied in the entire interval of time [t0,T], and consequently, in this
entire time interval dV

dt 6 0. This yields
VðT; x1ðTÞ; . . . ; xnðTÞÞ 6 Vðt0; x10; . . . ; xn0Þ;
which contradicts Eq. (14) on the basis of Eq. (13). Thus, the inequality (Eq. (1)) must be satisfied for all values of t > t0, hence
follows that the motion is stable.

Finally, we must point out that from the view-point of mathematics, the stability on partial region in general does not be
related logically to the stability on whole region. If an undisturbed solution is stable on a partial region, it may be either
stable or unstable on the whole region and vice versa. In specific practical problems, we do not study the solution starting
within X2 and running out of X. h
Theorem 2. If in satisfying the conditions of theorem 1, the derivative dV
dt is a definite function on the partial region with opposite

sign to that of V and the function V itself permits an infinitesimal upper limit, then the undisturbed motion is asymptotically stable
on the partial region.
Proof. Let us suppose that V is a positive definite function on the partial region and that consequently, dV
dt is negative definite.

Thus on the intersection X1 of X and the region defined by Eq. (4) and t P t0 there will be satisfied not only the inequality
(Eq. (5)), but the following inequality as will:
dV
dt
6 �W1ðx1; . . . xnÞ; ð16Þ
where W1 is a positive definite function on the partial region independent of t. Let us consider the quantities xs as functions of
time which satisfy the differential equations of disturbed motion assuming that the initial values xs0 = xs(t0) of these quan-
tities satisfy the inequalities (Eq. (12)). Since the undisturbed motion is stable in any case, the magnitude d may be selected
so small that for all values of t P t0 the quantities xs remain within X 1. Then, on the basis of Eq. (16) the derivative of func-
tion V(t,x1(t), . . . ,xn(t)) will be negative at all times and, consequently, this function will approach a certain limit, as t in-
creases without limit, remaining larger than this limit at all times. We shall show that this limit is equal to some positive
quantity different from zero. Then for all values of t P t0 the following inequality will be satisfied:
Vðt; x1ðtÞ; . . . ; xnðtÞÞ > a; ð17Þ
where a > 0.
Since V permits an infinitesimal upper limit, it follows from this inequality that
X

s

x2
s ðtÞP k; ðs ¼ 1; . . . ;nÞ; ð18Þ
where k is a certain sufficiently small positive number. Indeed, if such a number k did not exist, that is, if the quantity
P

sxsðtÞ
were smaller than any preassigned number no matter how small, then the magnitude V(t,x1(t), . . . ,xn(t)), as follows from the
definition of an infinitesimal upper limit, would also be arbitrarily small, which contradicts (17).
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If for all values of t P t0 the inequality (Eq. (18)) is satisfied, then Eq. (16) shows that the following inequality will be
satisfied at all times:
dV
dt
6 �l1;
where l1 is positive number different from zero which constitutes the precise lower limit of the function W1(t,x1(t), . . . ,xn(t))
under condition (Eq. (18)). Consequently, for all values of t P t0 we shall have:
Vðt; x1ðtÞ; . . . ; xnðtÞÞ ¼ Vðt0; x10; . . . ; xn0Þ þ
Z t

t0

dV
dt

dt 6 Vðt0; x10; . . . ; xn0Þ � l1ðt � t0Þ;
which is, obviously, in contradiction with Eq. (17). The contradiction thus obtained shows that the function V(t,x1(t), . . . ,xn(t))
approached zero as t increase without limit. Consequently, the same will be true for the function W(x1(t), . . . ,xn(t)) as well,
from which it follows directly that
lim
t!1

xsðtÞ ¼ 0; ðs ¼ 1; . . . ;nÞ;
which proves the theorem. h
2.2. Generalized Chaos Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
_x ¼ fðt;xÞ
_y ¼ hðt; yÞ þ u;

ð19Þ
Where x = [x1,x2, . . . ,xn]T 2 Rn, y = [y1,y2, . . . ,yn]T 2 Rn denote the master state vector and slave state vector respectively, f and
h are nonlinear vector functions, and u = [u1,u2, . . . ,un]T 2 Rn is a control input vector.

The generalized synchronization can be accomplished when t ? 1, the limit of the error vector e = [e1,e2, . . . , en]T ap-
proaches zero:
lim
t!1

e ¼ 0; ð20Þ
where
e ¼ GðxÞ � y: ð21Þ
G(x) is a given function of x.
By using the partial region stability theory, the Lyapunov function is easier to find, since the linear terms of the entries of e

can be used to construct the definite Lyapunov function and the controllers can be designed in lower order.

3. New Chaotic Mathieu–Van der Pol System and New Chaotic Duffing–Van der Pol System

This section introduces new Mathieu–van der Pol system and new Duffing–van der Pol system, respectively.

3.1. New Mathieug–van der Pol system

Mathieu equation and van der Pol equation are two typical nonlinear non-autonomous systems:
_x1 ¼ x2

_x2 ¼ �ðaþ b sin xtÞx1 � ðaþ b sinxtÞx3
1 � cx2 þ d sin xt

�
ð22Þ

_x3 ¼ x4

_x4 ¼ �ex3 þ f ð1� x2
3Þx4 þ g sin xt:

�
ð23Þ
Exchanging sinxt in Eq. (22) with x3 and sinxt in Eq. (23) with x1, we obtain the autonomous new Mathieu–van der Pol
system:
_x1 ¼ x2

_x2 ¼ �ðaþ bx3Þx1 � ðaþ bx3Þx3
1 � cx2 þ dx3

_x3 ¼ x4

_x4 ¼ �ex3 þ f ð1� x2
3Þx4 þ gx1;

8>>><
>>>:

ð24Þ
where a, b, c, d, e, f, g are uncertain parameter. This system exhibits chaos when the parameters of system are a = 10, b = 3,
c = 0.4, d = 70, e = 1, f = 5, g = 0.1 and the initial states of system are (x10,x20,x30,x40)=(0.1,-0.5, 0.1, -0.5), its phase portraits
and Lyapunov exponent as shown in Figs. 2 and 3.



Fig. 2. Phase portraits of new chaotic Mathieu–Van der Pol System.

Fig. 3. Lyapunov exponents of new chaotic Mathieu–Van der Pol System.
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3.2. New Duffing–van der Pol system

Duffing equation and van der Pol equation are two typical nonlinear non-autonomous systems:
_z1 ¼ z2

_z2 ¼ �z1 � z3
1 � hz2 þ i sin xt

�
ð25Þ
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_z3 ¼ z4

_z4 ¼ �jz3 þ k 1� z2
3

� �
z4 þ l sinxt:

(
ð26Þ
Exchanging sinxt in Eq. (25) with z3 and sinxt in Eq. (26) with z1, we obtain the autonomous master new Duffing–van der
Pol system:
_z1 ¼ z2

_z2 ¼ �z1 � z3
1 � hz2 þ iz3

_z3 ¼ z4

_z4 ¼ �jz3 þ k 1� z2
3

� �
z4 þ lz1;

8>>><
>>>:

ð27Þ
where h, i, j, k, l are uncertain parameter. This system exhibits chaos when the parameters of system are h = 0.0006, j = 1,
k = 5, i = 0.67 and l = 0.05 and initial states is (2,2.4,5,6), its phase portraits and Lyapunov exponents as shown in Figs. 4
and 5.
Fig. 4. Phase portraits of new chaotic Duffing–Van der Pol System.

Fig. 5. Lyapunov exponents of new chaotic Duffing-Van der Pol System.
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4. Numerical simulations

The two unidirectional coupled new chaotic Mathieu–Van der pol systems are shown as follows:
_x1 ¼ x2

_x2 ¼ �ðaþ bx3Þx1 � ðaþ bx3Þx3
1 � cx2 þ dx3

_x3 ¼ x4

_x4 ¼ �ex3 þ f 1� x2
3

� �
x4 þ gx1;

ð28Þ

_y1 ¼ y2 þ u1

_y2 ¼ �ðaþ by3Þy1 � ðaþ by3Þy3
1 � cy2 þ dy3 þ u2

_y3 ¼ y4 þ u3

_y4 ¼ �ey3 þ f 1� y2
3

� �
y4 þ gy1 þ u4:
CASE I. The generalized synchronization error function is ei = (xi � yi + 100), (i = 1,2,3,4.).
The addition of 100 makes the error dynamics always happens in first quadrant. Our goal isyi = xi + 100, i.e.
lim
t!1

ei ¼ lim
t!1
ðxi � yi þ 100Þ ¼ 0 ði ¼ 1;2;3;4Þ: ð29Þ
The error dynamics becomes:
_e1 ¼ _x1 � _y1 ¼ x2 � y2 � u1;

_e2 ¼ _x2 � _y2 ¼ �ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ðaþ bx3Þx3
1 � ðaþ by3Þy3

1

� �
� cðx2 � y2Þ þ dðx3 � y3Þ � u2;

_e3 ¼ _x3 � _y3 ¼ x4 � y4 � u3;

_e4 ¼ _x4 � _y4 ¼ �eðx3 � y3Þ þ f 1� x2
3

� �
x4 � 1� y2

3

� �
y4

� �
þ gðx1 � y1Þ � u4:

ð30Þ
System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70,e = 1, f = 5, g = 0.1 and initial states are (x10,x20

,x30,x40)=(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30 ,y40)=(0.3, � 0.1,0.3, � 0.1). Before control action, the error dynamics always hap-
pens in first quadrant as shown in Fig. 6. By GYC partial region stability, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4: ð31Þ
Fig. 6. Phase portraits of error dynamics for Case I.
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Its time derivative through Eq. (29) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 � y2 � u1Þ þ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ
þdðx3 � y3Þ � u2Þ þ ðx4 � y4 � u3Þ þ ð�eðx3 � y3Þ þ f ðð1� x2

3Þx4 � ð1� y2
3Þy4Þ þ gðx1 � y1Þ � u4Þ:

ð32Þ
Choose
u1 ¼ ðx2 � y2Þ þ e1;

u2 ¼ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ þ dðx3 � y3ÞÞ þ e2;

u3 ¼ ðx4 � y4Þ þ e3;

u4 ¼ ð�eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1ÞÞ þ e4:

ð33Þ
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0; ð34Þ
which is negative definite function in the first quadrant. Four state errors versus time and time histories of states are shown
in Figs. 7 and 8.

CASE II. The generalized synchronization error function is ei = (xi � yi + Fisinxt + 100), (i=1,2,3,4).
The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is yi = xi + Fisinxt + 100, i.e.
lim
t!1

ei ¼ lim
t!1
ðxi � yi þ Fi sin xt þ 100Þ ¼ 0 ði ¼ 1;2;3;4Þ; ð35Þ
Where F1 = F2 = F3 = F4 = F = 10, x = 0.5.
The error dynamics becomes
_e1 ¼ x2 � y2 � u1 þ Fx cos xt;

_e2 ¼ �ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ þ dðx3 � y3Þ � u2 þ Fx cos xt;

_e3 ¼ x4 � y4 � u3 þ Fx cos xt;

_e4 ¼ �eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1Þ � u4 þ Fx cos xt:

ð36Þ
Fig. 7. Time histories of errors for Case I.



Fig. 8. Time histories of x1, x2, x3, y1, y2, y3 for Case I.
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System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70,e = 1, f = 5, g = 0.1 and initial states are (x10,x20,x30,x40)=
(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30,y40)=(0.3, � 0.1,0.3, � 0.1). Before control action, the error dynamics always happens in
first quadrant as shown in Fig. 9. By GYC partial region stability, one can choose a Lyapunov function in the form of a positive
definite function in first quadrant:
Fig. 9. Phase portraits of error dynamics for Case II.
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V ¼ e1 þ e2 þ e3 þ e4: ð37Þ
Its time derivative through Eq. (35) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4

¼ ðx2 � y2 � u1 þ Fx cos xtÞ þ �ððaþ bx3Þx1 � ðaþ by3Þy1ð Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ

þ dðx3 � y3Þ � u2 þ Fx cos xtÞ þ ðx4 � y4 � u3 þ Fx cos xtÞ þ ð�eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ

þ gðx1 � y1Þ � u4 þ Fx cos xtÞ: ð38Þ
Choose
u1 ¼ ðx2 � y2Þ þ Fx cos xt þ e1

u2 ¼ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ þ dðx3 � y3ÞÞ þ Fx cos xt þ e2

u3 ¼ ðx4 � y4Þ þ Fx cos xt þ e3

u4 ¼ ð�eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1ÞÞ þ Fx cos xt þ e4:

ð39Þ
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð40Þ
which is a negative definite function in the first quadrant. Three state errors versus time and time histories of xi � yi + 100
and � Fisin wt are shown in Figs. 10 and 11.

CASE III. The generalized synchronization error function is ei = xi � yi + Fie
sinxt + 100, (i=12,3,4).

The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is yi = xi + Fie

sinxt + 100, i.e.
lim
t!1

ei ¼ lim
t!1
ðxi � yi þ Fiesin xt þ 100Þ ¼ 0 ði ¼ 1;2;3;4Þ: ð41Þ
Fig. 10. Time histories of errors for Case II.



Fig. 11. Time histories of xi � yi + 100 and � Fsinxt for Case II.
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The error dynamics becomes
_e1 ¼ x2 � y2 � u1 þ Fxesin xt cos xt;
_e2 ¼ �ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3

1 � ðaþ by3Þy3
1Þ � cðx2 � y2Þ þ dðx3 � y3Þ � u2 þ Fxesin xt cos xt;

_e3 ¼ x4 � y4 � u3 þ Fxesin xt cos xt;
_e4 ¼ �eðx3 � y3Þ þ f ðð1� x2

3Þx4 � ð1� y2
3Þy4Þ þ gðx1 � y1Þ � u4 þ Fxesin xt cos xt:

ð42Þ
System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70, e = 1, f = 5, g = 0.1, F1 = F2 = F3 = F4 = F = 10, x = 0.5 and initial
states are (x10,x20,x30,x40)=(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30,y40)=(0.3, � 0.1,0.3, � 0.1). Before control action, the error
dynamics always happens in first quadrant as shown in Fig. 12. By GYC partial region stability, one can choose a Lyapunov
function in the form of a positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4: ð43Þ
Its time derivative through Eq. (41) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 � y2 � u1 þ Fxesin xt cos xtÞ þ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ
� cðx2 � y2Þ þ dðx3 � y3Þ � u2 þ Fxesin xt cos xtÞ þ ðx4 � y4 � u3 þ Fxesin xt cos xtÞ
þ ð�eðx3 � y3Þ þ f ðð1� x2

3Þx4 � ð1� y2
3Þy4Þ þ gðx1 � y1Þ � u4 þ Fxesin xt cos xtÞ: ð44Þ
Choose
u1 ¼ ðx2 � y2Þ þ Fxesin xt cos xt þ e1;

u2 ¼ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ þ dðx3 � y3ÞÞ þ Fxesin xt cos xt þ e2;

u3 ¼ ðx4 � y4Þ þ Fxesin xt cos xt þ e3;

u4 ¼ ð�eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1ÞÞ þ Fxesin xt cos xt þ e4:

ð45Þ
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð46Þ



Fig. 12. Phase portraits of error dynamics for Case III.

Fig. 13. Time histories of errors for Case III.
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which is a negative definite function in the first quadrant. Three state errors versus time and time histories of xi � yi + 100
and � Fi esinwt are shown in Figs. 13 and 14.

CASE IV. The generalized synchronization error function is ei ¼ 1
2 x2

i � yi þ 100, (i=1,2,3,4). The addition of 100 makes the
error dynamics always happens in first quadrant.



Fig. 14. Time histories of xi � yi + 100 and � Fesin (wt) for Case III.

5258 Z.-M. Ge, S.-Y. Li / Applied Mathematical Modelling 35 (2011) 5245–5264
Our goal is yi ¼ 1
2 x2

i þ 100, i.e.
lim
t!1

ei ¼ lim
t!1

1
2

x2
i � yi þ 100

� �
ði ¼ 1;2;3;4Þ ð47Þ
The error dynamics becomes
_e1 ¼ x1 _x1 � _y1 ¼ x1x2 � y2 � u1;

_e2 ¼ x2 _x2 � _y2 ¼ �ððaþ bx3Þx2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2x3
1 � ðaþ by3Þy3

1Þ � cðx2
2 � y2Þ þ dðx2x3 � y3Þ � u2;

_e3 ¼ x3 _x3 � _y3 ¼ x3x4 � y4 � u3;

_e4 ¼ x4 _x4 � _y4 ¼ �eðx4x3 � y3Þ þ f ðð1� x2
3Þx2

4 � ð1� y2
3Þy4Þ þ gðx4x1 � y1Þ � u4:

ð48Þ

System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70,e = 1, f = 5, g = 0.1 and initial states are (x10,x20,x30,x40)=
(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30 ,y40)=(0.3, � 0.1,0.3,� 0.1). Before control action, the error dynamics always happens in
first quadrant as shown in Fig. 15. By GYC partial region stability, one can choose a Lyapunov function in the form of a po-
sitive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4: ð49Þ
Its time derivative through Eq. (47) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx1x2 � y2 � u1Þ þ ð�ððaþ bx3Þx2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2x3
1 � ðaþ by3Þy3

1Þ � cðx2
2 � y2Þ

þ dðx2x3 � y3Þ � u2Þ þ ðx3x4 � y4 � u3Þ þ ð�eðx4x3 � y3Þ þ f ðð1� x2
3Þx2

4 � ð1� y2
3Þy4Þ þ gðx4x1 � y1Þ � u4Þ:

ð50Þ

Choose
u1 ¼ x1x2 � y2 þ e1;

u2 ¼ �ððaþ bx3Þx2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2x3
1 � ðaþ by3Þy3

1Þ � cðx2
2 � y2Þ þ dðx2x3 � y3Þ þ e2;

u3 ¼ x3x4 � y4 þ e3;

u4 ¼ �eðx4x3 � y3Þ þ f ðð1� x2
3Þx2

4 � ð1� y2
3Þy4Þ þ gðx4x1 � y1Þ þ e4:

ð51Þ
We obtain

_V ¼ �e1 � e2 � e3 � e4 < 0; ð52Þ
which is a negative definite function in the first quadrant. Three state errors versus time is shown in Fig. 16.



Fig. 15. Phase portraits of error dymanics for Case IV.

Fig. 16. Time histories of errors for Case IV.
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CASE V. The generalized synchronization error function is ei ¼ 1
3 x3

i � yi þ 10000 (i=1,2,3,4).
The addition of 10000 makes the error dynamics always happens in first quadrant.
Our goal is yi ¼ 1

3 x3
i þ 10000, i.e.
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lim
t!1

ei ¼ lim
t!1

1
3

x3
i � yi þ 10000

� �
ði ¼ 1; 2; 3; 4Þ: ð53Þ
The error dynamics becomes
_e1 ¼ x2
1 _x1 � _y1 ¼ x2

1x2 � y2 � u1;

_e2 ¼ x2
2 _x2 � _y2 ¼ �ððaþ bx3Þx2

2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2
2x3

1 � ðaþ by3Þy3
1Þ � cðx3

2 � y2Þ þ dðx2
2x3 � y3Þ � u2;

_e3 ¼ x2
3 _x3 � _y3 ¼ x2

3x4 � y4 � u3;

_e4 ¼ x2
4 _x4 � _y4 ¼ �eðx2

4x3 � y3Þ þ f ðð1� x2
3Þx3

4 � ð1� y2
3Þy4Þ þ gðx2

4x1 � y1Þ � u4:

ð54Þ
System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70,e = 1, f = 5, g = 0.1 and initial states are (x10,x20,x30 ,x40)=
(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30 ,y40)=(0.3, � 0.1,0.3, � 0.1). Before control action, the error dynamics always happens in
first quadrant as shown in Fig. 17. By GYC partial region stability, one can choose a Lyapunov function in the form of a po-
sitive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4: ð55Þ
Its time derivative through Eq. (53) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2
1x2 � y2 � u1Þ þ ð�ððaþ bx3Þx2

2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2
2x3

1 � ðaþ by3Þy3
1Þ � cðx3

2 � y2Þ
þ dðx2

2x3 � y3Þ � u2Þ þ ðx2
3x4 � y4 � u3Þ þ ð�eðx2

4x3 � y3Þ þ f ðð1� x2
3Þx3

4 � ð1� y2
3Þy4Þ þ gðx2

4x1 � y1Þ � u4ÞÞ:
ð56Þ
Choose
u1 ¼ x2
1x2 � y2 þ e1;

u2 ¼ �ððaþ bx3Þx2
2x1 � ðaþ by3Þy1Þ � ððaþ bx3Þx2

2x3
1 � ðaþ by3Þy3

1Þ � cðx3
2 � y2Þ þ dðx2

2x3 � y3Þ þ e2;

u3 ¼ x2
3x4 � y4 þ e3;

u4 ¼ �eðx2
4x3 � y3Þ þ f ðð1� x2

3Þx3
4 � ð1� y2

3Þy4Þ þ gðx2
4x1 � y1Þ þ e4:

ð57Þ
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0: ð58Þ
which is a negative definite function in the first quadrant. Three state errors versus time is shown in Fig. 18.
Fig. 17. Phase portraits of error dymanics for Case V.



Fig. 18. Time histories of errors for Case V.
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CASE VI. The generalized synchronization error function is ei = xi � yi + zi + 100,zi(i=1,2,3,4) is the states of new chaotic
Duffing–Van der pol system.

The functional system for synchronization is new Duffing-Van der pol system and initial states is (2,2.4,5,6), system
parameters h = 0.0006, j = 1, k = 5, i = 0.67 and l = 0.05.
_z1 ¼ z2;

_z2 ¼ �z1 � z3
1 � hz2 þ iz3;

_z3 ¼ z4;

_z4 ¼ �jz3 þ kð1� z2
3Þz4 þ lz1:

ð59Þ
We have
lim
t!1

ei ¼ lim
t!1
ðxi � yi þ zi þ 100Þ ¼ 0ði ¼ 1; 2; 3; 4Þ ð60Þ
The error dynamics becomes
_e1 ¼ _x1 þ _z1 � _y1 ¼ x2 þ z2 � y2 � u1;

_e2 ¼ _x2 þ _z2 � _y2 ¼ �ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ
þdðx3 � y3Þ þ ð�z1 � z3

1 � hz2 þ iz3Þ � u2;

_e3 ¼ _x3 þ _z3 � _y3 ¼ x4 þ z4 � y4 � u3;

_e4 ¼ _x4 þ _z4 � _y4 ¼ �eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1Þ � u4 þ ð�jz3 þ kð1� z2
3Þz4 þ lz1Þ:

ð61Þ
System parameters are chosen as a = 10, b = 3, c = 0.4, d = 70,e = 1, f = 5, g = 0.1 and initial states are (x10,x20,x30,
x40)=(0.1, � 0.5,0.1, � 0.5), (y10,y20,y30 ,y40)=(0.3, � 0.1,0.3, � 0.1). Before control action, the error dynamics always happens
in first quadrant as shown in Fig. 19. By GYC partial region stability, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4: ð62Þ
Its time derivative through Eq. (60) is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 þ z2 � y2 � u1Þ þ ð�ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1

� ðaþ by3Þy3
1Þ � cðx2 � y2Þ þ dðx3 � y3Þ þ ð�z1 � z3

1 � hz2 þ iz3Þ � u2Þ þ ðx4 þ z4 � y4 � u3Þ
þ ð�eðx3 � y3Þ þ f ðð1� x2

3Þx4 � ð1� y2
3Þy4Þ þ gðx1 � y1Þ � u4 þ ð�jz3 þ kð1� z2

3Þz4 þ lz1ÞÞ: ð63Þ



Fig. 19. Phase portraits of error dymanics for Case VI.

Fig. 20. Time histories of errors for Case VI.
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Fig. 21. Time histories of xi � yi + 100 and � zi for Case VI.
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Choose
u1 ¼ x2 þ z2 � y2 þ e1;

u2 ¼ �ððaþ bx3Þx1 � ðaþ by3Þy1Þ � ððaþ bx3Þx3
1 � ðaþ by3Þy3

1Þ � cðx2 � y2Þ þ dðx3 � y3Þ þ ð�z1 � z3
1 � hz2 þ iz3Þ þ e2;

u3 ¼ x4 þ z4 � y4 þ e3;

u4 ¼ �eðx3 � y3Þ þ f ðð1� x2
3Þx4 � ð1� y2

3Þy4Þ þ gðx1 � y1Þ þ e4 þ ð�jz3 þ kð1� z2
3Þz4 þ lz1Þ:

ð64Þ
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0; ð65Þ
which is a negative definite function in the first quadrant. Four state errors versus time and time histories of xi � yi + 100 and
� zi are shown in Figs. 20 and 21.
5. Conclusions

In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve generalized chaos syn-
chronization. via using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homoge-
neous function of states and the lower order controllers are much simpler and introduce less simulation error. The new
chaotic Mathieu–Van der pol system and new chaotic Duffing–Van der pol system are used as simulation examples which
confirm the scheme effectively.
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