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1. Introduction

In the last few years, synchronization in chaotic dynamical systems has received a great deal of interest among scientists
from various fields [1-8]. The phenomenon of synchronization of two chaotic systems is fundamental in science and has a
wealth of applications in technology. In recent years, more and more applications of chaos synchronization were proposed.
There are many control techniques to synchronize chaotic systems, such as linear error feedback control, adaptive control,
active control [9-19].

In this paper, a new chaos generalized synchronization strategy by GYC partial region stability theory is proposed [20,21].
It means that there exists a given functional relationship between the states of the master and that of the slave. via using the
GYC partial region stability theory, the new Lyapunov function is a simple linear homogeneous function of states and the
lower order controllers are much more simple and introduce less simulation error.

The layout of the rest of the paper is as follows. In Section 2, generalized chaos synchronization strategy by GYC partial
region stability theory is proposed. In Section 3, new Mathieu-Van der pol system and new Duffing-Van der pol system are
introduced. In Section 4, six simulation examples are given. In Section 5, conclusions are given.
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2. Generalized Chaos Synchronization Strategy by GYC Partial Region Stability Theory
2.1. GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous system in the normal form
dx

?;:XS(t7X17"'7xn)7 (5:17"‘7'1)7 (1)
where the function X; is defined on the intersection of the partial region € (shown in Fig. 1) and
> x2<H 2)
N

and t > ty, where ty and H are certain positive constants. X; which vanishes when the variables x; are all zero, is a real valued
function of t, x4, . .. ,x,. It is assumed that X; is smooth enough to ensure the existence, uniqueness of the solution of the initial
value problem. When X; does not contain t explicitly, the system is autonomous.

Obviously, x; =0 (s=1,...n) is a solution of Eq. (1). We are interested to the asymptotical stability of this zero solution on
partial region 2 (including the boundary) of the neighborhood of the origin which in general may consist of several subre-
gions (Fig.1).

Definition 1. For any given number ¢ > 0, if there exists a 6 >0, such that on the closed given partial region 2 when

Sk <o, (s=1,....n) 3)
N

for all t > ty, the inequality
doxt<e (s=1,...,nm) 4)

is satisfied for the solutions of Eq. (19) on €, then the disturbed motion x;=0 (s=1,...n) is stable on the partial region Q.

Definition 2. If the undisturbed motion is stable on the partial region €2, and there exists a &' > 0, so that on the given partial
region 2 when

S xp <, (s
N
The equality

lim (fo) =0 (6)

is satisfied for the solutions of Eq. (1) on €2, then the undisturbed motion x;=0 (s =1,...n) is asymptotically stable on the
partial region Q.

Il
_

s ). (5)

subregion 2

vl

subregion 3

Fig. 1. Partial regions @ and ;.
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The intersection of Q and region defined by Eq. (2) is called the region of attraction.
Definition of Functions V(t,xy,...,x,): Let us consider the functions V(t,xy,...,x,) given on the intersection 2 of the
partial region © and the region

nggh, (s=1,...,n) (7)

for t > ty > 0, where ty and h are positive constants. We suppose that the functions are single-valued and have continuous
partial derivatives and become zero when x; =-- .= x, = 0.

Definition 3. If there exists ty; > 0 and a sufficiently small h > 0, so that on partial region ©; and t > to, V > 0 (or <0), then V
is a positive (or negative) semidefinite, in general semidefinite, function on the €, and t > t,.

Definition 4. If there exists a positive (negative) definitive function W(x;- - - x,,) on ;, so that on the partial region Q; and
t>ty

V-W=0(r-V-W >0), (8)

then V(t,x;,...,X,) is a positive definite function on the partial region €, and t > to. Eq. (1)

Definition 5. If V(t,x,,...,x,) is neither definite nor semidefinite on €, and t > t,, then V(t,x4,...,x,) is an indefinite function
on partial region €, and t > t,. That is, for any small h > 0 and any large to, > 0, V(t,x4,...,X,) can take either positive or neg-
ative value on the partial region ; and t > t,.

Definition 6. Bounded function VIf there exist ty > 0, h > 0, so that on the partial region £, we have
|V(t,X], s 7Xn)| < L7

where L is a positive constant, then V is said to be bounded on ;.

Definition 7. Function with infinitesimal upper bound If V is bounded, and for any /> 0, there exists u >0, so that on €,
when > x2 <y, and t > to, we have

V(t,X1,....%)| < 2

then V admits an infinitesimal upper bound on ;.

Theorem 1. If there can be found a definite function V(t,xy, .. .,x,) on the partial region for Eq. (1), and the derivative with respect
to time based on these equations:

v oV oV
E75+;8—X5x5 9)

is a semidefinite function on the paritial region whose sense is opposite to that of V, or if it becomes zero identically, then the
undisturbed motion is stable on the partial region.

Proof. Let us assume for the sake of definiteness that V is a positive definite function. Consequently, there exists a suffi-
ciently large number t; and a sufficiently small number h< H, such that on the intersection €2, of partial region €2 and

dox<h, (s=1,..n

and t > t,, the following inequality is satisfied

V(t, X1, %) = W(X1,... %),
where W is a certain positive definite function which does not depend on t. Besides that, Eq. (9) may assume only negative or
zero value in this region.

Let ¢ be an arbitrarily small positive number. We shall suppose that in any case ¢ < h. Let us consider the aggregation of all
possible values of the quantities xy,...,X;, which are on the intersection w, of €; and

Y= (10)

and let us designate by [ > 0 the precise lower limit of the function W under this condition. By virtue of Eq. (5), we shall have
V(t,X1,...,x,) =1 for (xq,...,x,) on w,. 11
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We shall now consider the quantities x; as functions of time which satisfy the differential equations of disturbed motion. We
shall assume that the initial values xyo of these functions for t = ty lie on the intersection €2, of £2; and the region

SR <o, (12)
S

where § is so small that
V(to,Xm,...,Xno) <L (13)

By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number § is obviously possible. We shall suppose that in any
case the number § is smaller than ¢.Then the inequality

> X <e, (14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t — to, since the functions x; (t)
very continuously with time. We shall show that these inequalities will be satisfied for all values t > t,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant t = T for which this inequality would
become an equality. In other words, we would have

S R(T) =¢,

and consequently, on the basis of Eq. (11)
V(T x(T),....,xn(T)) = L (15)

On the other hand, since ¢ < h, the inequality (Eq. (4)) is satisfied in the entire interval of time [ty, T], and consequently, in this
entire time interval 4/ < 0. This yields

V(T,x:1(T), ..., xx(T)) < V(to, X10,- - -, Xn0),

which contradicts Eq. (14) on the basis of Eq. (13). Thus, the inequality (Eq. (1)) must be satisfied for all values of t > t, hence
follows that the motion is stable.

Finally, we must point out that from the view-point of mathematics, the stability on partial region in general does not be
related logically to the stability on whole region. If an undisturbed solution is stable on a partial region, it may be either
stable or unstable on the whole region and vice versa. In specific practical problems, we do not study the solution starting
within 2, and running out of Q. O

Theorem 2. If in satisfying the conditions of theorem 1, the derivative 9¢ is a definite function on the partial region with opposite
sign to that of V and the function V itself permits an infinitesimal upper limit, then the undisturbed motion is asymptotically stable
on the partial region.

Proof. Let us suppose that V is a positive definite function on the partial region and that consequently, & is negative definite.
Thus on the intersection Q; of Q and the region defined by Eq. (4) and t > ¢, there will be satisfied not only the inequality
(Eq. (5)), but the following inequality as will:

& < Wi ), (16)
where W; is a positive definite function on the partial region independent of t. Let us consider the quantities x; as functions of
time which satisfy the differential equations of disturbed motion assuming that the initial values xso = X,(to) of these quan-
tities satisfy the inequalities (Eq. (12)). Since the undisturbed motion is stable in any case, the magnitude § may be selected
so small that for all values of t > t, the quantities xs remain within €2 ;. Then, on the basis of Eq. (16) the derivative of func-
tion V(t,x(t),...,x,(t)) will be negative at all times and, consequently, this function will approach a certain limit, as t in-
creases without limit, remaining larger than this limit at all times. We shall show that this limit is equal to some positive
quantity different from zero. Then for all values of t > t; the following inequality will be satisfied:

V(t,x1(L),...,Xa(t)) > 01, (17)
where o > 0.
Since V permits an infinitesimal upper limit, it follows from this inequality that
S RO >4 (s=1,....m), (18)
N

where 4 is a certain sufficiently small positive number. Indeed, if such a number 2 did not exist, that is, if the quantity > x(t)
were smaller than any preassigned number no matter how small, then the magnitude V(t,x;(t),...,x,(t)), as follows from the
definition of an infinitesimal upper limit, would also be arbitrarily small, which contradicts (17).
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If for all values of t > t, the inequality (Eq. (18)) is satisfied, then Eq. (16) shows that the following inequality will be
satisfied at all times:

av

dt
where [; is positive number different from zero which constitutes the precise lower limit of the function Wy(t,x(t),...,x,(t))
under condition (Eq. (18)). Consequently, for all values of t > to we shall have:

tav
V(t,x1(t),..., X (t)) = V(to,X10, - -, Xn0) + Edt < V(to, X10,- -, Xno) — i (£ — to),
Jitg
which is, obviously, in contradiction with Eq. (17). The contradiction thus obtained shows that the function V(t,x(t),...,x,(t))
approached zero as t increase without limit. Consequently, the same will be true for the function W(x4(t),...,x,(t)) as well,

from which it follows directly that

< -,

}imxs(t) =0, (s=1,...,n),

which proves the theorem. 0O

2.2. Generalized Chaos Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
x = f(t,x)

y=h(ty) +u, (19)

Where X = [X1,X2,...,X,]T € R, ¥ = [y1,¥2.....yn]" € R" denote the master state vector and slave state vector respectively, f and
h are nonlinear vector functions, and u = [u4,Us,. . .,u,]” € R" is a control input vector.

The generalized synchronization can be accomplished when t - oo, the limit of the error vector e = [ey,e5 .. e,]" ap-
proaches zero:

lime =0, (20)
where
e=Gx) . 1)

G(x) is a given function of x.
By using the partial region stability theory, the Lyapunov function is easier to find, since the linear terms of the entries of e
can be used to construct the definite Lyapunov function and the controllers can be designed in lower order.

3. New Chaotic Mathieu-Van der Pol System and New Chaotic Duffing-Van der Pol System
This section introduces new Mathieu-van der Pol system and new Duffing-van der Pol system, respectively.
3.1. New Mathieug-van der Pol system

Mathieu equation and van der Pol equation are two typical nonlinear non-autonomous systems:

X1 =X

) . . . 22
{xz = —(a+bsinwt)x; — (a+ bsinwt)x3 — cx, +dsinwt @2)

5(3 = X4

. . 23
{x4 = —exX3 +f(1 — X3)x4 + g sinwt. )

Exchanging sinwt in Eq. (22) with x3 and sinwt in Eq. (23) with x;, we obtain the autonomous new Mathieu-van der Pol
system:

5(1 = X3
):cz = —(a+ bx3)x1 — (a+ bx3)x3 — cx + dx3 (24)
X3 = X4

Xy = —ex3 + f(1 —x3)x4 + g%,

where a, b, ¢, d, e, f, g are uncertain parameter. This system exhibits chaos when the parameters of system are a=10, b = 3,
c=04,d=70,e=1, f=5,g=0.1 and the initial states of system are (X19,X20,X30,X40)=(0.1,-0.5, 0.1,-0.5), its phase portraits
and Lyapunov exponent as shown in Figs. 2 and 3.
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Fig. 3. Lyapunov exponents of new chaotic Mathieu-Van der Pol System.

3.2. New Duffing—van der Pol system

Duffing equation and van der Pol equation are two typical nonlinear non-autonomous systems:

{ h=2 (25)

Zy=-z1 — 73 — hz; +isinwt
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23 =124
A , . (26)
24 = —jz3 + k(1 — 23)z4 + Isin wt.

Exchanging sinwt in Eq. (25) with z; and sinwt in Eq. (26) with z;, we obtain the autonomous master new Duffing-van der
Pol system:

21 =2
22 =—-Z1 — Z? — hZZ + iZ3 (27)
Z3=24

Zy=—jz3+ k(1 - 23)zs + lza,

where h, i, j, k, | are uncertain parameter. This system exhibits chaos when the parameters of system are h = 0.0006, j =1,
k=5,i=0.67 and [=0.05 and initial states is (2,2.4,5,6), its phase portraits and Lyapunov exponents as shown in Figs. 4
and 5.

Fig. 4. Phase portraits of new chaotic Duffing-Van der Pol System.

0.04 -
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Fig. 5. Lyapunov exponents of new chaotic Duffing-Van der Pol System.
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4. Numerical simulations

The two unidirectional coupled new chaotic Mathieu-Van der pol systems are shown as follows:

).(] =Xy
):<2 = —(a+bx3)x; — (a+ bx3)x3 — cx; + dxs (28)
X3 =Xg
X3 = —exs +f(1 —x3)xs + 8%,
Vi=Y,+ U
2 =—(a+bys)y; — (a+bys)y] —cy, +dy; +uz
V3=Ys+ U3
Va=—eys +f(1 - y3)ya + &1 + Ua.
CASE I. The generalized synchronization error function is e;= (x; — y; + 100), (i=1,2,3,4.).
The addition of 100 makes the error dynamics always happens in first quadrant. Our goal isy; = x; + 100, i.e.
}imei:}im(xi—yi—«—lOO):O (i=1,2,3,4). (29)
The error dynamics becomes:
e1=X1—Y1=2X2 -y, — U,
€y =Xy — Y2 = —((a+bx3)xi — (a+by;)y;) — ((@+ bx3)x} — (a+by;)y3) — c(x2 — ;) +d(x3 — y3) — U, (30)

€3 =2X3 — Y3 =X4 — Y, — Us,

s =Xs —Ya=—€(x3—y3) +f((1 = X3)xa — (1 = y3)ys) +8(x1 —y1) — Us.
System parameters are chosen as a=10, b=3, ¢=04, d=70,e=1, f=5 g=0.1 and initial states are (Xj0,X20
,X30,X40)=(0.1, — 0.5,0.1, — 0.5), (V10,Y20,Y30 ,Y40)=(0.3, — 0.1,0.3, — 0.1). Before control action, the error dynamics always hap-
pens in first quadrant as shown in Fig. 6. By GYC partial region stability, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:

V=e;+e; +es+es. (31)

90
%7 % 9% 100 101 102 103
e3

Fig. 6. Phase portraits of error dynamics for Case I.
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Its time derivative through Eq. (29) is

V=6 +e+es5+e=(xy—Y, — )+ (—((a+bxs)xy — (a+bys)y,) — ((a+bx3)x} — (a+bys)y3) — c(x2 — y,)

+d(X3 = y3) = Uz) + (X4 — Vg — Us) + (—€(X3 —y3) +f((1 = x5)Xs — (1 = Y3)ya) +&(X1 — 1) — Ua). .

Choose

U = (X2 — ¥,) +e1,

Uz = (=((a+bxs)x1 — (@ +bys)y;) — ((a+bx3)x — (a+bys)y;) — c(x2 = y,) +d(X3 = y3)) + €2, (33)

Us = (X4 — Y4) + €3,

Us = (—e(x3 —y3) +f((1 = x3)%s — (1 = ¥3)ya) + &(X1 — y1)) + €a.
We obtain

V=—e;—e;—e3—e4<0, (34)

which is negative definite function in the first quadrant. Four state errors versus time and time histories of states are shown
in Figs. 7 and 8.

CASE II. The generalized synchronization error function is e; = (x; — y; + Fisinwt + 100), (i=1,2,3,4).
The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = x; + Fisinwt + 100, i.e.

!L%ei = }L@(xi —Yyi+Fisinwt+100)=0 (i=1,2,3,4), (35)
Where F; =F,=F3=F,=F=10, w=0.5.
The error dynamics becomes
é1 =X, — Yy, — U + Focoswt,
€y = —((a+bx3)x; — (a+bys)y;) — ((a+bxs)xj — (a+bys)y3) — c(x2 = ¥,) +d(xs — y3) — Uz + Fw cos ot
€3 =X4 — Y, — Us + Fow cos wt,
€4 =—e(x3 —y3) +f((1 = x3)xs — (1 = y3)ys) + 81 —y;) — us + Forcos ct.

2 ; ; ; ; 0 ; ; ; i
0 n 40 B A 100 0 2 40 B0 ] 100

Fig. 7. Time histories of errors for Case I.
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150

Fig. 8. Time histories of Xy, X2, X3, Y1, V2, ¥3 for Case L.

System parameters are chosen as a=10, b=3, c=04, d=70,e=1, f=5, g=0.1 and initial states are (x10,X20,X30,X40)=
(0.1, -0.5,0.1, — 0.5), (¥10.Y20,¥30,Y40)=(0.3, — 0.1,0.3, — 0.1). Before control action, the error dynamics always happens in
first quadrant as shown in Fig. 9. By GYC partial region stability, one can choose a Lyapunov function in the form of a positive
definite function in first quadrant:

i i i i
85 50 9 100 106 10 115

Fig. 9. Phase portraits of error dynamics for Case II.
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V=e+e +es+ea.

Its time derivative through Eq. (35) is

V=e¢1+eé+eé3+¢4
= (X2 — Y, — U +Focoswt) + (—((a+ bxs)x; — (a+ bys)y;) — (@ + bx3)x3 — (@ + by;)y3) — c(x2 — ¥,)
+d(X3 —y3) — Uy + F cos wt) + (X4 — Y4 — Uz + Fo cos ot) + (—e(x3 — y3) +f((1 —x3)xq — (1 —¥2)ys)
+8(X1 —y,) — us + Foo cos wt).

Choose

U = (X2 —y,) + Focoswt + e,

Uy = (—((@+ bxs)x; — (a+bys)y;) — ((@+bxs)xi — (a+by;)y3) — c(x2 — ¥,) + d(x3 — y3)) + Fo cos ot + e,
Uz = (X4 —Y,) + F cos ot + e3

Ug = (—e(x3 —y3) +f((1 = X3)Xa — (1 = y3)y4) + &(x1 — 1)) + Focos ot + ey

We obtain

V=—e,—€;—e3—€,<0

5255

(37)

(38)

(39)

(40)

which is a negative definite function in the first quadrant. Three state errors versus time and time histories of x; — y; + 100

and — F;sin wt are shown in Figs. 10 and 11.

CASE III. The generalized synchronization error function is e; = x; — y; + Fe*™®t + 100, (i=12,3,4).
The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = x; + Fe¥"®" + 100, i.e.

lime; = lim(xi —y; + Fe" 1 100) =0 (i=1,2,3,4).

o i i i i 2 i i ; i
0

Fig. 10. Time histories of errors for Case II.

(41)
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120 150
: ; : x1-y1+100
-Fsinfwi)

x2-y2+100
-Fsin{wt)

100

1] T ERRTI] PR ............. . 1

100 a0 100

ud-yd+100
-Fsin{w)

%3-y3+100
-Fsinfwt)

2y 20 40 &0 80 100 2y 20 40 80 &0 100

t t

Fig. 11. Time histories of x; — y; + 100 and — Fsinwt for Case II.

The error dynamics becomes

&1 =Xy — ¥, — Uy + Fwes"t cos wt,

€ = —((a+Dbx3)x; — (@ +bys)y;) — ((a+bxs)x} — (a+Dbys)y}) — c(x2 —y,) +d(xs — y3) — U + Fwes" cos o,

€3 = X4 — ¥, — Uz + Fowes" ! cos wt,

és = —e(x3 —y3) +f((1 = X5)xs — (1 = Y3)y4) +8(X1 — y1) — s + Foes"* cos wt.

(42)

System parameters are chosen as a=10,b=3,c=04,d=70,e=1, f=5,g=0.1, FF=F,=F;=F;,=F=10, ®w=0.5 and initial
states are (X10,X20,X30,X40)=(0.1, — 0.5,0.1, — 0.5), (¥10,¥20,¥30.Y40)=(0.3, — 0.1,0.3, — 0.1). Before control action, the error
dynamics always happens in first quadrant as shown in Fig. 12. By GYC partial region stability, one can choose a Lyapunov
function in the form of a positive definite function in first quadrant:

V=e +e +e;+e,. (43)
Its time derivative through Eq. (41) is

V=@ +éy+65+6e4=(Xy— Yy — Uy + Fesn® cos wt) + (—((a+ bxs)x; — (a+ bys)y,) — ((a+bx3)x3 — (a+bys)y;)
— (X2 —Y,) + d(x3 — y3) — Uy + Fwes™ ™t cos wt) + (X4 — Y4 — Us + Fwe" cos wt)

+(—e(x3 —y3) +f(1 = X3)Xa — (1 = Y3)y4) + &(x1 — ¥;) — Us + Fwe " cos ot). (44)
Choose
U = (X3 — ¥,) + Foes"®t cos ot + ey,
Uy = (—((a+bx3)x; — (a+bys)y,) — ((a+bx3)x} — (a+by;)y3) — c(xa —y,) + d(x3 — y3)) + Fwe* cos wt + e,,
Uz = (X4 — Y,) + Fwe"t cos wt + e,
Uy = (—e(x3 —y3) +f((1 = x3)Xa — (1 = ¥3)ys4) + &(x1 = ¥1)) + Fwes ' cos wt + es.
(45)
We obtain

V:—€1—€2—E3—€4<0 (46)
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180 ! ! T ! ! T !
140 s

100

£ 100 105 10 15 120 125 130 135

0 i i i i i
100 106 110 15 120 125 130
ed

Fig. 12. Phase portraits of error dynamics for Case III.

A0 i ; i
0

=

Fig. 13. Time histories of errors for Case III.

5257

which is a negative definite function in the first quadrant. Three state errors versus time and time histories of x; — y; + 100
and — F; e™* are shown in Figs. 13 and 14.

CASE IV. The generalized synchronization error function is e; = 1x? — y; + 100, (i=1,2,3,4). The addition of 100 makes the
error dynamics always happens in first quadrant.
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Fig. 14. Time histories of x; — y; + 100 and — Fes™ ™9 for Case IIL.

Our goal is y; = 1x? + 100, i.e.

t—oo

ime; = lim | sx* —y; + i=1,2,3,
li } ;,2 .+ 100 i=1,2,3,4 47

The error dynamics becomes

81 =X1X1 — Y1 = X1X3 — Y, — Uy,

€y = XpXy — Yo = —((a+ bx3)xx%1 — (a+by3)y;) — ((@+ bx3)xox3 — (a + bys)y3) — c(x3 — y,) + d(Xox3 — y3) — Uy,

€3 = X3X3 — Y3 = X3X4 — Y4 — U3,

€1 =XaXq — Vs = —e(XaX3 — y3) + (1 = x3)x§ — (1 = y3)¥s) + &(XaX1 — Y1) — Ua.

(48)

System parameters are chosen as a=10, b=3, c=04, d=70,e=1, f=5, g=0.1 and initial states are (x10,X20,X30,X40)=
(0.1, -0.5,0.1, — 0.5), (¥10,¥20,¥30 »¥40)=(0.3, — 0.1,0.3,— 0.1). Before control action, the error dynamics always happens in

first quadrant as shown in Fig. 15. By GYC partial region stability, one can choose a Lyapunov function in the form of a po-
sitive definite function in first quadrant:

V=e +e+e;+es. (49)
Its time derivative through Eq. (47) is

V=61 +6+635+84=(X1X2 — ¥, — U1) + (—((a+ bx3)xoX1 — (a+ bys)y;) — (@ + bx3)x2x3 — (a+ by3)y3) — c(x3 — y,)
+d(X2X3 —Y3) — Uz) + (X3X4 — Y4 — U3) + (—€(XaX3 — y3) + f((1 — X%)Xzzl -1 *yg)h) +8(X4X1 — Y1) — Ug).

(50)

Choose

U =X1X2 — Yy, + €1,

Uy = —((a+ bx3)xox1 — (@ +bys)y;) — (@ +bx3)xx3 — (a+bys)y3) — ¢(X3 = y,) + d(x2x3 — y3) + €2, (51)

U3 = X3X4 — Y4 + €3,

Us = —e(xax3 —y3) +f((1 = x3)x5 — (1 = ¥3)y4) + &(Xak1 — y1) + €a.
We obtain

V=—e —e—e;5—es <0, (52)

which is a negative definite function in the first quadrant. Three state errors versus time is shown in Fig. 16.
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Fig. 16. Time histories of errors for Case IV.

CASE V. The generalized synchronization error function is e; = 1x3 — y; + 10000 (i=1,2,3,4).
The addition of 10000 makes the error dynamics always happens in first quadrant.
Our goal is y; = 1x? + 10000, i.e.

100
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lime; = lim (%xf —Vit 10000) (i=1,2,3,4). (53)

t—o0
The error dynamics becomes

1 =XiX1 — Y1 = Xixy -y, — U,
€2 = X3%2 — Y2 = —((a + bx3)x3x1 — (a+bys)y;) — ((a + bx3)x3x; — (a+by3)y7) — c(x3 — y,) +d(X3x3 — y3) — Uz,
é3 = X§X3 -y = X§X4 — Y4 — U,
€3 =XjXs — Va = —e(xjxs — y3) +f(1 = X3)x3 — (1 = y3)ya) + &(XGx1 — Y1) — Ua.
(54)
System parameters are chosen as a=10, b=3, c=04, d=70,e=1, f=5, g=0.1 and initial states are (X;9,X20,X30 »X40)=
(0.1,-0.5,0.1, — 0.5), (¥10,¥20,¥30 »Y40)=(0.3, — 0.1,0.3, — 0.1). Before control action, the error dynamics always happens in

first quadrant as shown in Fig. 17. By GYC partial region stability, one can choose a Lyapunov function in the form of a po-
sitive definite function in first quadrant:

V=e +e +e;+ey. (55)
Its time derivative through Eq. (53) is

V=20 +é+e3+6es=(X{xa -y, — 1) + (—((a + bx3)x3x; — (a+ bys)y;) — ((a + bx3)x3x3 — (a -+ by3)y3) — c(x3 — y,)
+d(X3X3 = y3) — Uz) + (X3Xa — Yy — Us) + (—e(X4x3 — y3) + f((1 = X3)X5 — (1 = ¥3)ya) + &(X3X1 — yy) — Ua)).

(56)

Choose

Uy =X3% — ¥, + €1,

Uy = —((a + bx3)x3x; — (a+ bys)y;) — ((@+ bx3)x3x3 — (a+ by3)y3) — c(x3 —y,) + d(x3x3 — y3) + €, (57)

Uz = X3x4 — y, + €3,

Us = —e(Xjxs —y3) +f((1 = x3)x — (1 = y3)ya) +&(X3x1 — y1) +ea.
We obtain

V:—E]—€2—€3—€4<0. (58)

which is a negative definite function in the first quadrant. Three state errors versus time is shown in Fig. 18.

16000

14000
12000
10000

e2

8000

6000

4000

2000 i i i i i i
9950 9960 9970 9980 9990 10000 10010 10020

1015

ed

i i i i i
0% e 0.9997 0.59% 0.9999 1 1.0001 1.0002 1.0003 1.0004
e3 10t

Fig. 17. Phase portraits of error dymanics for Case V.
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Fig. 18. Time histories of errors for Case V.

CASE VI. The generalized synchronization error function is e; = x; — y; + z; + 100,z,(i=1,2,3,4) is the states of new chaotic
Duffing-Van der pol system.

The functional system for synchronization is new Duffing-Van der pol system and initial states is (2,2.4,5,6), system
parameters h = 0.0006,j=1, k=5, i=0.67 and [ = 0.05.

21 =2,
Zy = —jz3 + k(1 = 22)z4 + Izy.
We have
}Lge,- = }Lg(xi -yi+z+100)=0(i=1, 2, 3,4) (60)

The error dynamics becomes

e =X+Z1—Y1=X+2—y, U,

€ =X +2, — yo = —((a+bx3)x; — (a+bys)y;) — ((a+bx3)x} — (a+bys)y?) — c(x2 — y,)

+d(X3 —¥3) + (=21 — 23 — hzy + iz3) — Uy, (61)

e3=X3+2Z3—Y3=X4+24 — Y4 — U3,

b =Ra+24—Ya=—ex3—Y3) +f((1 —=x2)xa — (1 —=y2)ys) + 8x1 —¥1) — Ua + (—jz5 + k(1 — 22)z4 + Iz9).
System parameters are chosen as a=10, b=3, c=04, d=70,e=1, f=5, g=0.1 and initial states are (X;0,X20,X30,
X40)=(0.1, — 0.5,0.1, — 0.5), (¥10,¥20,¥30 »Y40)=(0.3, — 0.1,0.3, — 0.1). Before control action, the error dynamics always happens
in first quadrant as shown in Fig. 19. By GYC partial region stability, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:

V=e +e +es+e,. (62)

Its time derivative through Eq. (60) is

V=t +é+e3+e = X+2—y,— )+ (—((a+bxs)x; — (a+bys)y;) — ((a+ bx3)x3
—(@+bys)y}) —c(x2 — y,) +d(Xs — y3) + (21 — 23 — hzy + iz3) — Us) + (X4 + 24 — Y4 — U3)
+(—e(x3 —y3) + (1 = x3)xa — (1 = y3)¥a) + &(X1 — ¥1) — Ua + (—jzs + k(1 — Z3)z4 + 1z1)). (63)
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Fig. 19. Phase portraits of error dymanics for Case VI.

Fig. 20. Time histories of errors for Case VI.
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Fig. 21. Time histories of x; — y; + 100 and — z; for Case VI.

Choose

Uy =X2+2, -y, +é€,
Uy = —((a+bxs)xi — (a+bys)y;) — ((@+bx3)x} — (a+bys)y3) — (X2 — y,) +d(x3 —y3) + (=21 — 2} — hzy +iz3) + €3,
U3 =X4 +2Z4 — Y4+ €3,

Uy = —e(x3 —y3) +f((1 = X8)xa — (1 = y3)ys) +&(x1 — y1) + s+ (—jzs + k(1 — )24 + I21).
(64)
We obtain
V:—e]—€2—63—64<0, (65)

which is a negative definite function in the first quadrant. Four state errors versus time and time histories of x; — y; + 100 and
— z; are shown in Figs. 20 and 21.

5. Conclusions

In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve generalized chaos syn-
chronization. via using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homoge-
neous function of states and the lower order controllers are much simpler and introduce less simulation error. The new
chaotic Mathieu-Van der pol system and new chaotic Duffing-Van der pol system are used as simulation examples which
confirm the scheme effectively.
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