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In general, introducing dither reduces the dynamic range availa- 
ble from an SDM, because the addition of dither will both 
increase the total noise power within the loop and reduce modula- 
tor stability [4]. Given that 1 bit dithering of SDM ADCs is 
advantageous for the reasons outlined above, a series of simula- 
tions was performed to determine whether such an approach car- 
ries an additional SNR penalty compared to multilevel dither. 

Simulations: 64-times oversampled modulators with noise-shaping 
orders between 2 and 5 and with a range of dither amplitudes, 
were individually optimised to yield maximum dynamic range, 
using the approach described in [4]. The noise-shaping poles of 
each modulator were arranged in a Butterworth highpdss configu- 
ration, and noise-shaping zeros were set to yield maximum base- 
band SNR. Optimisation was achieved by controlling the cutoff 
frequency of the Butterworth poles. Dithered systems individually 
optimised for maximum dynamic range were simulated to deter- 
mine the presence of unwanted baseband errors. A modulator was 
deemed ‘linear’ if two conditions were satisfied: 

(i) no idle tones were visible in the baseband noise floor power 
spectrum across a range of D C  input signals; the noise floor was 
examined using a 4096point FFT 

(ii) naseband noise modulation was <1 dB for sinusoidal excitation 
across the dynamic range of the modulator. 

Three dither amplitude distributions were investigated: single-bit 
quantised, i.e. bipolar probability distribution (BPD), rectangular 
probability distribution (RPD), and triangular probability distri- 
bution (TPD). For each distribution, the minimum dither ampli- 
tude that successfully linearised the modulators was determined, 
and the associated SNR penalty relative to the undithered modu- 
lator noted. 

Table 1: SNR penalties for dithered sigma-delta modulators 

Order 

93.6 
109.3 4.9 5.3 5.6 

Results: The results of the simulations are shown in Table 1 .  It is 
seen that the SNR penalty for linearising SDMs using dither 
remains approximately constant with changes in modulator order, 
with an average value of 5.5dB. For higher-order systems (order 
> 2), single-bit (BPD) dither can successfully linearise sigma-delta 
modulators with no significant additional SNR penalty compared 
to RPD-dithered systems. However, for second-order systems, 
there appears to be an additional SNR penalty to pay for quan- 
tising the dither to one bit. We speculate that use of dither signals 
with many levels introduces an added degree of randomness to the 
dithering process, which can be of benefit when linearising simple 
(low-order) systems. The results also show that T P D  dither carries 
a slightly higher SNR penalty compared to R P D  dither. 

Fig. 26 shows a noise-floor plot for a fourth-order modulator 
linearised using single-bit dither of amplitude kO.14 (determined 
by the optimisation process). No idle tones are visible, the power 
spectral density of the noise floor essentially being invariant with 
input signal characteristics. 

Conclusions: We have demonstrated that sigma-delta modulators 
can be efficiently linearised using dither that has been quantised to 
one bit, a technique that is relatively straightforward to implement 
in sigma-delta ADCs. For higher-order systems, the SNR penalty 
for linearisation with single-bit dither is no greater than that paid 
when using multilevel dither. 
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Adaptive IIR blind algorithms 

Fang-Biau Ueng and Y.T. Su 

Inde-xing leim.~: Adaprive equalisers, Adaptive filters, Equalisers 

Infinite impulse response (IIR) filtering, when compared with 
finite impulse response (FIR) filtering, can result in a substantial 
computational saving and small mean-squared error (MSE). Two 
IIR blind algorithms based on the second and fourth order 
cumulants are presented. Simulation results indicate that the 
proposed 1IR blind algorithms not only have faster convergence 
rates but also lower MSEs than their FIR counterparts. 

Introduction: The purpose of blind equalisation is to recover the 
intersymbol-interference and noise-corrupted signal from the 
received signal without the help of a training signal. Earlier inves- 
tigators of Godard [2], Benvensite and Goursat [ l]  used different 
FIR-type algorithms to deal with this problem. 

The application of 11R adaptive filtering has recently drawn the 
interest of many researchers, because of its potential advantages of 
achieving better performance and saving computational load, 
when compared with the FIR filtering technique. We present two 
blind IIR algorithms based on higher-order statistics. These two 
algorithms have decision-feedback and parallel-form structures, 
respectively. We describe these two blind IIR algorithms and pro- 
vide numerical simulation results concerning the performance of 
the proposed algorithms and its FIR counterpart. 

Adaptive IIR blind algorithms: Let h = [..A, h, h, ...I represent the 
system (channel) impulse response, a, be the system (channel) 
input sequence, consisting of zero-mean i.i.d. real random varia- 
bles with an arbitrary discrete probability distribution and y, rep- 
resent the system (channel) output. We want to select a filter C = 
[...c , co c, ...I such that the filter output z,  is identical to the input 
U ,  up to a constant delay, i.e. the overall impulse response 

s,  = h, o C, = h,-ici (1) 
1 

where ‘0 ’  denotes the convolution operator, must be of the fol- 
lowing form: 

s e [. . ‘ S L 1 S 0 S , ~ ’  .] = t-JO(0 ... 1...0) ( 2 )  

Consider the relationship between a, and q: z, = a, o s, = XI a ,  
and hence the following two relations exist [3]: 

E[-:] = E[aT] Jsil’ ( 3 )  

Ii(ZZ] = I .  1 [ 4  1 ~ 1 1 ~  (4) 
1 

where E denotes the expectation operator and q z , ]  is the kurtosis 
associated with zr ,  That is, 

A’[zz] = E[.:] - 3E2[z:] ( 5 )  
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The inequality 

where equality holds if and only ifs has at most one nonzero com- 
ponent, implies that to achieve perfect equalisation, the following 
two relations must hold instantaneously: 

C(.5,1* = 1 ( 7 )  

c Is,? = 1 (8) 

I 

I 

This is equivalent to minimising the cost function 

J = (E[z ; ]  - E [ a 3 ) 2  + (E[.:] - E[af])’ (9) 

Decision-feedback IIR blind algorithm: Consider an equaliser C 
with an IIR structure that satisfies the input-output relationship 

L L 

3k = d n y k - n  f b n i k - n  = wzuk (10) 
lL=O ,=I 

where 2, is the estimate of 2,; the time-varying weight vector W, 
and the new signal vector U, are defined as 

w k  = [ d O k , d l k ,  . . .  d L k , b i b .  ’ .  . b ~ k ] ~  (11) 

u k  = [ y k ,  y k - 1 ,  ’ .  ’ v I ; - L ,  ? & I .  ’ ’ ’ ?k-LIT (12) 

By defining J, = a( 2,-zJ2], applying the gradient-descent method 
to the cost function J,,, = J + JI and making the approximations 

(13) 
ai, az, 
-N -  

ad, - ad, 

ai, az,  
ab,  ~ ab,, 
- N -  

Parallel fo rm IIR blind algorithm: The IIR equaliser C has the 
input-output relationship 

L 

Z k  = 2 t )  (18) 

.:“’ = b(t)zF!l + d k ) Y k - ,  (19) 

z = 1  

where 
1 

n=O 

Defining T, = [b,l‘I doL1l d,$’’ ... b,‘L) dotLi d,tL’], ‘l’, = [z, ,lLi y ,  yx I 
_.. y,  y,J,  employing a cost function J and followed by a 
procedure similar to that described in the preceding Section, we 
then arrive at 

TI;+]  = Tk - ~ ~ [ 4 ( E [ ~ : ] - E [ n ~ ] ) z s + 8 ( E [ 2 ~ ] - E [ a 4 , ] ) - ~ ] S k  
(20) 

(21) 

where Zk = [€$I1) q0L” qlt1I ... Ox(L) qoLL) q,tL1] and 

0:’ = Yk + bt)O:Jl 
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simulation results: We performed Monte-Carlo simulations of the 
proposed blind algorithms. Binary PSK data were transmitted. 
The two channels defined below were used in the simulations. 

+0.25yk-a+ak+0.8a,k-l+0.6ai,-? channel 1 : yi: = yk 

channel 2 : yk = ok t 0.9ak-1 

The step sise is chosen to be IO 4, the length of the 1IR equal- 
iser is L = 4. The number of taps for the FIR equaliser under 
comparison is M = 20. 

-22 I 
0 1  2 3 L 5 6 7  

number of iterattons (x Id) 

Fig. 1 Channel 1 

(i) Decision-feedback IIR algorithm 
(ii) Parallel form 11R algorithm 
(iii) FIR algorithm 

2 3 4 5 6 7  0 1  
1019121 numberof iterations ( x  lo3) 

Fig. 2 Channel2 

(i) Decision-feedback IIR algorithm 
(ii) Parallel form IIR algorithm 
(iii) FIR algorithm 

Shown in Figs 1 and 2 are the learning curves for these two IIR 
algorithms and their FIR counterpart in channels 1 and 2, respec- 
tively. These curves indicated that the proposed algorithms not 
only have faster convergence speeds but also yield smaller steady 
state MSEs. 
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